Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (4): 780-788.DOI: 10.3969/j.issn.1004-1524.2023.04.05
• Crop Science • Previous Articles Next Articles
ZHANG Bin(
), FENG Xiaoqing, ZHENG Qian, CHEN Wen, TENG Jie
Received:2022-05-12
Online:2023-04-25
Published:2023-05-05
CLC Number:
ZHANG Bin, FENG Xiaoqing, ZHENG Qian, CHEN Wen, TENG Jie. OsPUT5 silencing reduced low temperature resistance in rice[J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 780-788.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2023.04.05
| 多胺转运蛋白 基因名称 Name of polyamine transporter gene | 多胺转运蛋白 基因编号 Locus of polyamine transporter gene | 物种 Species |
|---|---|---|
| OsPUT1 | Os02g0700500 | 水稻 Oryza sativa L. |
| OsPUT2 | Os03g0374900 | 水稻 Oryza sativa L. |
| OsPUT3 | Os03g0375300 | 水稻 Oryza sativa L. |
| OsPUT4 | Os03g0375966 | 水稻 Oryza sativa L. |
| OsPUT5 | Os03g0576900 | 水稻 Oryza sativa L. |
| OsPUT6 | Os12g0580400 | 水稻 Oryza sativa L. |
| ATPUT1 | AT1G31820 | 拟南芥 Arabidopsis thaliana |
| ATPUT2 | AT1G31830 | 拟南芥 Arabidopsis thaliana |
| ATPUT3 | AT5G05630 | 拟南芥 Arabidopsis thaliana |
| ATPUT4 | AT3G13620 | 拟南芥 Arabidopsis thaliana |
| ATPUT5 | AT3G19553 | 拟南芥 Arabidopsis thaliana |
Table 1 Gene information
| 多胺转运蛋白 基因名称 Name of polyamine transporter gene | 多胺转运蛋白 基因编号 Locus of polyamine transporter gene | 物种 Species |
|---|---|---|
| OsPUT1 | Os02g0700500 | 水稻 Oryza sativa L. |
| OsPUT2 | Os03g0374900 | 水稻 Oryza sativa L. |
| OsPUT3 | Os03g0375300 | 水稻 Oryza sativa L. |
| OsPUT4 | Os03g0375966 | 水稻 Oryza sativa L. |
| OsPUT5 | Os03g0576900 | 水稻 Oryza sativa L. |
| OsPUT6 | Os12g0580400 | 水稻 Oryza sativa L. |
| ATPUT1 | AT1G31820 | 拟南芥 Arabidopsis thaliana |
| ATPUT2 | AT1G31830 | 拟南芥 Arabidopsis thaliana |
| ATPUT3 | AT5G05630 | 拟南芥 Arabidopsis thaliana |
| ATPUT4 | AT3G13620 | 拟南芥 Arabidopsis thaliana |
| ATPUT5 | AT3G19553 | 拟南芥 Arabidopsis thaliana |
Fig.1 Bioinformatics analysis of OsPUT5 protein A, Phylogenetic tree of PUT family protein in rice and other plants; B, A cartoon representation showing the 10 transmembrane domains in the OsPUT5 protein with both C-and N-termini in the cytoplasmic side; C, Domains conserved in the OsPUT5 protein. The black bar shows the length of the amino acid sequence.
Fig.2 Identification of transgenic seedlings and detection of gene expression level A, DNA level detection of RNAi lines, 1-6 were resistant plantlets, 7 was pFGC5941-OsPUT5-RNAi plasmid; B, DNA level detection of OE lines, 1-4 were resistant plantlets, 5 was pCAM1390-OsPUT5 plasmid; C, RNA level detection in OE lines and RNAi lines; D, OsPUT5 expression pattern. Different lowercase letters indicated significant difference at P <0.05, the error bars represented the standard deviation. The same as below.
Fig.3 Comparison of cold tolerance of seedlings of OE lines, Nip lines and RNAi lines G, Phenotype of plant after 10 days of normal culture after low temperature treatment; H, The survival rate of plants after 10 days of normal culture after low temperature treatment.
| 株系 Line | 株高 Plant height/cm | 穗长 Ear length/cm | 每穗粒数 Seed numbers per panicle | 初级枝梗数 Primary branch number | 每穗实粒数 Plump grains per panicle | 千粒重 1 000-grain weight/g | 结实率 Seed setting rate/% |
|---|---|---|---|---|---|---|---|
| OE株系OE lines | 81.2±5.8 a | 19.9±2.4 a | 103.1±23.3 a | 10.2±0.9 a | 83.1±18.4 a | 24.5±0.45 a | 80.6±8.2 a |
| Nip株系Nipponbare lines | 81.7±4.6 a | 20.3±2.1 a | 102.8±20.5 a | 10.4±0.7 a | 84.4±19.7 a | 24.3±0.47 a | 82.1±9.0 a |
| RNAi株系RNAi lines | 79.8±6.2 a | 19.7±1.8 a | 101.9±21.6 a | 10.1±0.7 a | 83.6±18.2 a | 24.1±0.33 a | 82.0±10.2 a |
Table 2 Comparison of main agronomic characters of OE lines, Nip lines and RNAi lines
| 株系 Line | 株高 Plant height/cm | 穗长 Ear length/cm | 每穗粒数 Seed numbers per panicle | 初级枝梗数 Primary branch number | 每穗实粒数 Plump grains per panicle | 千粒重 1 000-grain weight/g | 结实率 Seed setting rate/% |
|---|---|---|---|---|---|---|---|
| OE株系OE lines | 81.2±5.8 a | 19.9±2.4 a | 103.1±23.3 a | 10.2±0.9 a | 83.1±18.4 a | 24.5±0.45 a | 80.6±8.2 a |
| Nip株系Nipponbare lines | 81.7±4.6 a | 20.3±2.1 a | 102.8±20.5 a | 10.4±0.7 a | 84.4±19.7 a | 24.3±0.47 a | 82.1±9.0 a |
| RNAi株系RNAi lines | 79.8±6.2 a | 19.7±1.8 a | 101.9±21.6 a | 10.1±0.7 a | 83.6±18.2 a | 24.1±0.33 a | 82.0±10.2 a |
| [1] |
IGARASHI K, KASHIWAGI K. Functional roles of polyamines and their metabolite acrolein in eukaryotic cells[J]. Amino Acids, 2021, 53(10): 1473-1492.
DOI PMID |
| [2] |
YU J, WANG B A, FAN W Q, et al. Polyamines involved in regulating self-incompatibility in apple[J]. Genes, 2021, 12(11): 1797.
DOI URL |
| [3] |
DAS K C, MISRA H P. Hydroxyl radical scavenging and singlet oxygen quenching properties of polyamines[J]. Molecular and Cellular Biochemistry, 2004, 262(1): 127-133.
DOI URL |
| [4] |
ZARZA X, SHABALA L, FUJITA M, et al. Extracellular spermine triggers a rapid intracellular phosphatidic acid response in Arabidopsis, involving PLDδ activation and stimulating ion flux[J]. Frontiers in Plant Science, 2019, 10: 601.
DOI URL |
| [5] |
SODA K. Overview of polyamines as nutrients for human healthy long life and effect of increased polyamine intake on DNA methylation[J]. Cells, 2022, 11(1): 164.
DOI URL |
| [6] |
CHEN D D, SHAO Q S, YIN L H, et al. Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses[J]. Frontiers in Plant Science, 2018, 9: 1945.
DOI PMID |
| [7] |
TAKÁCS Z, POÓR P, TARI I. Interaction between polyamines and ethylene in the response to salicylic acid under normal photoperiod and prolonged darkness[J]. Plant Physiology and Biochemistry, 2021, 167: 470-480.
DOI PMID |
| [8] |
GERLIN L, BAROUKH C, GENIN S. Polyamines: double agents in disease and plant immunity[J]. Trends in Plant Science, 2021, 26(10): 1061-1071.
DOI PMID |
| [9] | 何超, 沈登荣, 花蕾, 等. 梨小食心虫滞育过程中多胺代谢的变化[J]. 浙江农业学报, 2015, 27(11): 1960-1964. |
| HE C, SHEN D R, HUA L, et al. Changes of polyamine metabolism in larvae of oriental fruit moth, Grapholita molesta, during diapause development[J]. Acta Agriculturae Zhejiangensis, 2015, 27(11): 1960-1964. (in Chinese with English abstract) | |
| [10] | 胡俊杰, 张古文, 胡齐赞, 等. 低温胁迫对菜用大豆生长、叶片活性氧及多胺代谢的影响[J]. 浙江农业学报, 2011, 23(6): 1113-1118. |
| HU J J, ZHANG G W, HU Q Z, et al. Effects of chilling stress on growth, metabolism of reactive oxygen species and polyamines in vegetable soybean seedlings[J]. Acta Agriculturae Zhejiangensis, 2011, 23(6): 1113-1118. (in Chinese with English abstract) | |
| [11] |
JIMÉNEZ-BREMONT J F, CHÁVEZ-MARTÍNEZ A I, ORTEGA-AMARO M A, et al. Translational and post-translational regulation of polyamine metabolic enzymes in plants[J]. Journal of Biotechnology, 2022, 344: 1-10.
DOI URL |
| [12] | KHAZAAL S, AL SAFADI R, OSMAN D, et al. Investigation of the polyamine biosynthetic and transport capability of Streptococcus agalactiae: the non-essential PotABCD transporter[J]. Microbiology (Reading, England), 2021, 167(12): 001124. |
| [13] | FUJITA M, FUJITA Y, IUCHI S, et al. Natural variation in a polyamine transporter determines paraquat tolerance in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): 6343-6347. |
| [14] |
CHAI H X, GUO J F, ZHONG Y L, et al. The plasma-membrane polyamine transporter PUT3 is regulated by the Na(+)/H(+) antiporter SOS1 and protein kinase SOS2[J]. The New Phytologist, 2020, 226(3): 785-797.
DOI URL |
| [15] |
MULANGI V, CHIBUCOS M C, PHUNTUMART V, et al. Kinetic and phylogenetic analysis of plant polyamine uptake transporters[J]. Planta, 2012, 236(4): 1261-1273.
DOI PMID |
| [16] |
WIPF D, LUDEWIG U, TEGEDER M, et al. Conservation of amino acid transporters in fungi, plants and animals[J]. Trends in Biochemical Sciences, 2002, 27(3): 139-147.
PMID |
| [17] |
OKUMOTO S, PILOT G. Amino acid export in plants: a missing link in nitrogen cycling[J]. Molecular Plant, 2011, 4(3): 453-463.
DOI PMID |
| [18] |
BEGAM R A, GOOD A G. The Arabidopsis paraquat resistant1 mutant accumulates leucine upon dark treatment[J]. Botany, 2017, 95(7): 751-761.
DOI URL |
| [19] |
DONG S C, HU H Z, WANG Y M, et al. A pqr2 mutant encodes a defective polyamine transporter and is negatively affected by ABA for paraquat resistance in Arabidopsis thaliana[J]. Journal of Plant Research, 2016, 129(5): 899-907.
DOI URL |
| [20] |
SAGOR G H M, BERBERICH T, KOJIMA S, et al. Spermine modulates the expression of two probable polyamine transporter genes and determines growth responses to cadaverine in Arabidopsis[J]. Plant Cell Reports, 2016, 35(6): 1247-1257.
DOI URL |
| [21] |
MARTINIS J, GAS-PASCUAL E, SZYDLOWSKI N, et al. Long-distance transport of thiamine (vitamin B1) is concomitant with that of polyamines[J]. Plant Physiology, 2016, 171(1): 542-553.
DOI PMID |
| [22] |
SHEN Y, RUAN Q X, CHAI H X, et al. The Arabidopsis polyamine transporter LHR1/PUT3 modulates heat responsive gene expression by enhancing mRNA stability[J]. The Plant Journal, 2016, 88(6): 1006-1021.
DOI URL |
| [23] |
AHMED S, ARIYARATNE M, PATEL J, et al. Altered expression of polyamine transporters reveals a role for spermidine in the timing of flowering and other developmental response pathways[J]. Plant Science, 2017, 258: 146-155.
DOI PMID |
| [24] |
LI J Y, MU J Y, BAI J T, et al. PARAQUAT RESISTANT1, a golgi-localized putative transporter protein, is involved in intracellular transport of paraquat[J]. Plant Physiology, 2013, 162(1): 470-483.
DOI PMID |
| [25] | 张斌, 刘询, 耿雅楠, 等. 水稻多胺转运蛋白OsPUT1基因RNAi载体的构建及遗传转化[J]. 分子植物育种, 2016, 14(10): 2653-2658. |
| ZHANG B, LIU X, GENG Y N, et al. Construction and genetic transformation of RNAi vector for OsPUT1 gene in rice[J]. Molecular Plant Breeding, 2016, 14(10): 2653-2658. (in Chinese with English abstract) | |
| [26] | 张斌, 阮颖. 水稻多胺转运蛋白OsPUT1基因过表达载体构建及遗传转化[J]. 基因组学与应用生物学, 2018, 37(1): 386-392. |
| ZHANG B, RUAN Y. Construction of overexpression vector and genetic transformation of polyamine transporter OsPUT1 gene in rice[J]. Genomics and Applied Biology, 2018, 37(1): 386-392. (in Chinese with English abstract) | |
| [27] |
王长龙, 张力, 罗立新, 等. 水稻NAL11基因对苗期非生物逆境的响应分析[J]. 华北农学报, 2020, 35(4): 120-128.
DOI |
| WANG C L, ZHANG L, LUO L X, et al. Response analysis of rice gene NAL11 to abiotic stresses at the stage of seedling[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(4): 120-128. (in Chinese with English abstract) | |
| [28] | 张斌, 黄亚玲, 彭英姿, 等. 拟南芥突变体atput3过表达水稻OsPUT1基因对百草枯敏感性的研究[J]. 农业生物技术学报, 2023, 30(2): 242-249. |
| ZHANG B, HUANG Y L, PENG Y Z, et al. Study on the sensitivity of Arabidopsis thaliana mutant atput3 which overexpressing rice(Oryza sativa) OsPUT1 gene to paraquat[J]. Journal of Agricultural Biotechnology, 2023, 30(2): 242-249. (in Chinese with English abstract) | |
| [29] |
ZHAO H M, MA H L, YU L, et al. Genome-wide survey and expression analysis of amino acid transporter gene family in rice (Oryza sativa L.)[J]. PLoS One, 2012, 7(11): e49210.
DOI URL |
| [30] |
IGARASHI K, KASHIWAGI K. Characteristics of cellular polyamine transport in prokaryotes and eukaryotes[J]. Plant Physiology and Biochemistry, 2010, 48(7): 506-512.
DOI PMID |
| [31] |
ALHAG A, SONG J, DAHRO B, et al. Genome-wide identification and expression analysis of polyamine uptake transporter gene family in sweet orange (Citrus sinensis)[J]. Plant Biology (Stuttgart, Germany), 2021, 23(6): 1157-1166.
DOI PMID |
| [32] |
LI M, WANG C H, SHI J L, et al. Abscisic acid and putrescine synergistically regulate the cold tolerance of melon seedlings[J]. Plant Physiology and Biochemistry, 2021, 166: 1054-1064.
DOI PMID |
| [1] | PEI Huimin, WU Mingming, ZHAI Rongrong, YE Jing, JIN Yue, ZHU Yi, HOU Jianjun, ZHU Guofu, YE Shenghai. Research progress on gene function and breeding of low-cadmium rice cultivars [J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 2012-2020. |
| [2] | TAN Shiyi, YU Guohong, XUE Xianglei, ZHAO Yinglei, XU Baoyu, ZHANG Chenghao. Design and experiment of tray handling device for industrialized rice seedling raising [J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1545-1555. |
| [3] | ZHANG Zhi, HE Haohao, YU Miao, XU Jianfeng. Effects of chemical fertilizer reduction combined with soil conditioner on soil acidity, soil nutrients and rice yield [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1301-1308. |
| [4] | LIN Xiaobing, LI Jiang, CHENG Yanhong, WANG Binqiang, HE Shaolang, HUANG Shangshu, HUANG Qianru. Effects of organic materials on soil microbial biomass, mineral nitrogen content and rice yield [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1309-1318. |
| [5] | SU Yang, SHANG Xiaolan, QIAN Zhongming, WU Lingen, HUANG Jiaqi, ZHUANG Haifeng, ZHAO Yufei, DANG Hongyang, XU Lijun. Effects of synergistic enhancement of straw returning to the field with decomposition agent and biochar on soil quality and rice growth [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1139-1148. |
| [6] | ZHU Xiao, ZHU Ying, LI Hongjun, CHEN Shanfeng. Preparation and quality of oat chickpea compound rice by squeezing [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1149-1158. |
| [7] | LIU Qihua, SUN Zhaowen, ZHENG Chongke. Effects of nitrogen management on absorption and allocation of microelements in above-ground parts of dry direct-sowing rice [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 987-997. |
| [8] | YING Yongfei, HAN Dongxuan, MENG Fang, YU Lin, SHEN Jialuan, WANG Kaiying. Effects of biogas slurry substituting chemical fertilizer on rice yield and quality and soil characteristics [J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 880-891. |
| [9] | SONG Xinlu, FAN Shuhong, WU Guangqi, ZHAN Mengqi, HOU Qian, LI Mingyue, XU Yan. Effects of combined copper-phenanthrene pollution on physiological characteristics and pollutant accumulation of rice roots at tillering stage [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 521-529. |
| [10] | LEI Zhiwei, LI Xinxin, XU Heng, ZHANG Heng, ZHU Ying, ZHANG Hua. Identification of QTLs for stem borer resistance using chromosome segment substitution lines in rice [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 530-537. |
| [11] | XIE Changyan, JIN Yumeng, ZHANG Miao, DONG Qingjun, LI Qing, JI Li, ZHONG Ping, CHEN Chuan, ZHANG Ankang. Application effect of nutrient soil made from river sludge for machine-transplanted rice seedling [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 538-547. |
| [12] | LI Guiping, XU Xiaomei, LU Lizhi. Rice-duck farming and its environmental effects [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 643-653. |
| [13] | WU Jiaqi, ZHU Xueming, BAO Jiandong, WANG Caoyi, ZHOU Xiaoyu, LI Lin, LIN Fucheng. Research progress on biological control of rice blast [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 736-744. |
| [14] | WAN Shaoyuan, LIU Xianbo, CAI Shuo, SHI Hong, CHENG Jie. Effect of irrigation and planting methods on the yield and quality of double-cropping rice [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 257-268. |
| [15] | LAN Xuecheng, ZHAO Fengliang, ZHANG Guangxu, LI Yang, GUO Xiaohong. Effects of nano zinc oxide and nano silicon dioxide on rice seed germination [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 269-277. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||