Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (4): 789-798.DOI: 10.3969/j.issn.1004-1524.2023.04.06
• Crop Science • Previous Articles Next Articles
XU Jinming(), CHANG Yihong, GONG Han, GONG Wenfang, YUAN Deyi(
)
Received:
2022-05-12
Online:
2023-04-25
Published:
2023-05-05
CLC Number:
XU Jinming, CHANG Yihong, GONG Han, GONG Wenfang, YUAN Deyi. Effects of different exogenous substances on pollen germination and pollen tube growth of Camellia oleifera[J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 789-798.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2023.04.06
水平 Level | 因素Factor | |||
---|---|---|---|---|
CaCl2·2H2O | MgSO4 | NAA | GA3 | |
1 | 50 | 10 | 0.5 | 2 |
2 | 100 | 30 | 1.0 | 5 |
3 | 150 | 50 | 2.0 | 8 |
Table 1 Factors and levels for orthogonal test mg·L-1
水平 Level | 因素Factor | |||
---|---|---|---|---|
CaCl2·2H2O | MgSO4 | NAA | GA3 | |
1 | 50 | 10 | 0.5 | 2 |
2 | 100 | 30 | 1.0 | 5 |
3 | 150 | 50 | 2.0 | 8 |
质量浓度 Concentration/ (mg·L-1) | 乙烯利Ethephon | 萘乙酸NAA | 赤霉素GA3 | |||
---|---|---|---|---|---|---|
花粉萌发率 Pollen germination rate/% | 2 h花粉管长度 Pollen tube length at 2 h/μm | 花粉萌发率 Pollen germination rate/% | 2 h花粉管长度 Pollen tube length at 2 h/μm | 花粉萌发率 Pollen germination rate/% | 2 h花粉管长度 Pollen tube length at 2 h/μm | |
0 | 54.78±1.46 a | 789.22±37.73 a | 54.78±1.46 b | 789.22±37.73 b | 54.78±1.46 a | 789.22±37.73 b |
0.5 | 47.57±3.54 b | 719.87±71.26 a | 71.29±1.27 a | 1 011.51±54.49 a | 56.85±4.09 a | 998.98±71.18 a |
5 | 45.99±1.44 b | 708.44±22.50 a | 50.31±3.99 b | 750.63±8.48 b | 59.07±2.59 a | 1 013.94±42.04 a |
50 | 4.37±2.76 c | 202.59±16.25 b | 2.86±0.09 c | 127.83±17.11 c | 4.90±0.58 b | 357.95±32.26 c |
Table 2 Pollen germination rate and pollen tube length of C. oleifera under different plant growth regulator treatments
质量浓度 Concentration/ (mg·L-1) | 乙烯利Ethephon | 萘乙酸NAA | 赤霉素GA3 | |||
---|---|---|---|---|---|---|
花粉萌发率 Pollen germination rate/% | 2 h花粉管长度 Pollen tube length at 2 h/μm | 花粉萌发率 Pollen germination rate/% | 2 h花粉管长度 Pollen tube length at 2 h/μm | 花粉萌发率 Pollen germination rate/% | 2 h花粉管长度 Pollen tube length at 2 h/μm | |
0 | 54.78±1.46 a | 789.22±37.73 a | 54.78±1.46 b | 789.22±37.73 b | 54.78±1.46 a | 789.22±37.73 b |
0.5 | 47.57±3.54 b | 719.87±71.26 a | 71.29±1.27 a | 1 011.51±54.49 a | 56.85±4.09 a | 998.98±71.18 a |
5 | 45.99±1.44 b | 708.44±22.50 a | 50.31±3.99 b | 750.63±8.48 b | 59.07±2.59 a | 1 013.94±42.04 a |
50 | 4.37±2.76 c | 202.59±16.25 b | 2.86±0.09 c | 127.83±17.11 c | 4.90±0.58 b | 357.95±32.26 c |
矿质元素 Mineral element | 花粉萌发率 Pollen germination rate/% | 2 h花粉管长度 Pollen tube length at 2 h/μm | |
---|---|---|---|
硫酸镁MgSO4/(mg·L-1) | 0 | 54.78±1.46 b | 789.22±37.73 b |
10 | 65.83±2.99 a | 1026.35±45.37 a | |
30 | 60.57±2.72 ab | 883.52±22.81 b | |
50 | 56.88±3.40 ab | 860.97±52.52 b | |
二水氯化钙CaCl2·2H2O/(mg·L-1) | 0 | 54.78±1.46 b | 789.22±37.73 c |
50 | 63.28±1.46 a | 976.28±20.30 a | |
150 | 59.91±7.08 b | 803.10±32.52 b | |
450 | 33.44±1.34 c | 639.74±17.60 d | |
乙二醇双四乙酸EGTA/(μmol·L-1) | 0 | 54.78±1.46 a | 789.22±37.73 a |
200 | 49.92±4.35 a | 555.46±20.54 b | |
400 | 39.71±6.23 b | 445.88±37.14 c | |
600 | 21.03±1.56 c | 427.23±23.17 c | |
800 | 10.13±3.67 d | 394.26±22.32 d |
Table 3 Pollen germination rate and pollen tube length of C. oleifera under different mineral element treatments
矿质元素 Mineral element | 花粉萌发率 Pollen germination rate/% | 2 h花粉管长度 Pollen tube length at 2 h/μm | |
---|---|---|---|
硫酸镁MgSO4/(mg·L-1) | 0 | 54.78±1.46 b | 789.22±37.73 b |
10 | 65.83±2.99 a | 1026.35±45.37 a | |
30 | 60.57±2.72 ab | 883.52±22.81 b | |
50 | 56.88±3.40 ab | 860.97±52.52 b | |
二水氯化钙CaCl2·2H2O/(mg·L-1) | 0 | 54.78±1.46 b | 789.22±37.73 c |
50 | 63.28±1.46 a | 976.28±20.30 a | |
150 | 59.91±7.08 b | 803.10±32.52 b | |
450 | 33.44±1.34 c | 639.74±17.60 d | |
乙二醇双四乙酸EGTA/(μmol·L-1) | 0 | 54.78±1.46 a | 789.22±37.73 a |
200 | 49.92±4.35 a | 555.46±20.54 b | |
400 | 39.71±6.23 b | 445.88±37.14 c | |
600 | 21.03±1.56 c | 427.23±23.17 c | |
800 | 10.13±3.67 d | 394.26±22.32 d |
化合物 Compound | 浓度 Concentration/(μmol·L-1) | 花粉萌发率 Pollen germination rate/% | 2 h花粉管长度 Pollen tube length at 2 h/μm |
---|---|---|---|
硝普钠SNP | 0 | 54.78±1.46 a | 789.22±37.73 a |
100 | 53.19±2.34 a | 735.99±41.53 a | |
200 | 51.25±1.43 ab | 720.24±61.36 a | |
300 | 47.38±2.08 b | 717.12±51.11 a | |
N'-硝基-L-精氨酸 L-NNA | 0 | 54.78±1.46 b | 789.22±37.73 b |
100 | 59.69±4.52 ab | 879.72±45.66 ab | |
200 | 68.12±2.66 a | 948.64±50.26 a | |
300 | 61.85±5.42 ab | 891.66±29.00 ab | |
过氧化氢H2O2 | 0 | 54.78±1.46 a | 789.22±37.73 a |
100 | 48.39±6.33 a | 576.75±29.06 b | |
300 | 36.75±2.24 b | 441.87±26.04 c | |
500 | 19.38±3.16 c | 403.03±30.43 c | |
乙酰半胱氨酸NAC | 0 | 54.78±1.46 a | 789.22±37.73 a |
100 | 45.78±1.58 b | 591.13±32.43 b | |
300 | 42.23±2.13 b | 562.81±6.88 bc | |
500 | 38.94±3.75 c | 497.45±14.82 c |
Table 4 Pollen germination rate and pollen tube length of C. oleifera under different compound treatments
化合物 Compound | 浓度 Concentration/(μmol·L-1) | 花粉萌发率 Pollen germination rate/% | 2 h花粉管长度 Pollen tube length at 2 h/μm |
---|---|---|---|
硝普钠SNP | 0 | 54.78±1.46 a | 789.22±37.73 a |
100 | 53.19±2.34 a | 735.99±41.53 a | |
200 | 51.25±1.43 ab | 720.24±61.36 a | |
300 | 47.38±2.08 b | 717.12±51.11 a | |
N'-硝基-L-精氨酸 L-NNA | 0 | 54.78±1.46 b | 789.22±37.73 b |
100 | 59.69±4.52 ab | 879.72±45.66 ab | |
200 | 68.12±2.66 a | 948.64±50.26 a | |
300 | 61.85±5.42 ab | 891.66±29.00 ab | |
过氧化氢H2O2 | 0 | 54.78±1.46 a | 789.22±37.73 a |
100 | 48.39±6.33 a | 576.75±29.06 b | |
300 | 36.75±2.24 b | 441.87±26.04 c | |
500 | 19.38±3.16 c | 403.03±30.43 c | |
乙酰半胱氨酸NAC | 0 | 54.78±1.46 a | 789.22±37.73 a |
100 | 45.78±1.58 b | 591.13±32.43 b | |
300 | 42.23±2.13 b | 562.81±6.88 bc | |
500 | 38.94±3.75 c | 497.45±14.82 c |
试验号 Test No. | 试验设计方案Rxperiment scheme | 结果Result | ||||
---|---|---|---|---|---|---|
CaCl2·2H2O (A) | MgSO4(B) | NAA(C) | GA3(D) | 花粉萌发率 Pollen germinationrate/% | 花粉管长度 Pollen tube length/μm | |
CK | 0 | 0 | 0 | 0 | 58.60±2.36 d | 702.88±43.12 e |
1 | 1 | 1 | 1 | 1 | 80.82±2.59 a | 1 015±30.94 a |
2 | 1 | 2 | 2 | 2 | 76.24±3.84 ab | 824.95±19.79 cd |
3 | 1 | 3 | 3 | 3 | 72.12±2.41 abc | 907.30±20.88 bc |
4 | 2 | 1 | 3 | 2 | 69.86±1.20 bc | 773.73±39.01 de |
5 | 2 | 2 | 1 | 3 | 66.92±1.26 bcd | 798.60±15.08 de |
6 | 2 | 3 | 2 | 1 | 63.57±6.51 cd | 726.13±21.14 de |
7 | 3 | 2 | 2 | 1 | 67.68±2.06 bcd | 793.71±54.95 de |
8 | 3 | 3 | 3 | 2 | 62.65±4.61 cd | 750.84±31.86 de |
9 | 3 | 1 | 1 | 3 | 71.06±1.49 bc | 927.95±7.74 ab |
Table 5 Orthogonal test results of pollen germination of C. oleifera
试验号 Test No. | 试验设计方案Rxperiment scheme | 结果Result | ||||
---|---|---|---|---|---|---|
CaCl2·2H2O (A) | MgSO4(B) | NAA(C) | GA3(D) | 花粉萌发率 Pollen germinationrate/% | 花粉管长度 Pollen tube length/μm | |
CK | 0 | 0 | 0 | 0 | 58.60±2.36 d | 702.88±43.12 e |
1 | 1 | 1 | 1 | 1 | 80.82±2.59 a | 1 015±30.94 a |
2 | 1 | 2 | 2 | 2 | 76.24±3.84 ab | 824.95±19.79 cd |
3 | 1 | 3 | 3 | 3 | 72.12±2.41 abc | 907.30±20.88 bc |
4 | 2 | 1 | 3 | 2 | 69.86±1.20 bc | 773.73±39.01 de |
5 | 2 | 2 | 1 | 3 | 66.92±1.26 bcd | 798.60±15.08 de |
6 | 2 | 3 | 2 | 1 | 63.57±6.51 cd | 726.13±21.14 de |
7 | 3 | 2 | 2 | 1 | 67.68±2.06 bcd | 793.71±54.95 de |
8 | 3 | 3 | 3 | 2 | 62.65±4.61 cd | 750.84±31.86 de |
9 | 3 | 1 | 1 | 3 | 71.06±1.49 bc | 927.95±7.74 ab |
因素 Factor | 花粉萌发率Pollen germinationrate/% | 花粉管长度Pollen tube length/μm | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
k1 | k2 | k3 | R | 最优水平 Optimal level | k1 | k2 | k3 | R | 最优水平 Optimal level | |
CaCl2·2H2O(A) | 76.39 | 66.78 | 67.13 | 9.61 | 1 | 915.75 | 766.15 | 824.17 | 149.6 | 1 |
MgSO4(B) | 73.91 | 70.28 | 66.11 | 7.8 | 1 | 905.56 | 805.75 | 794.76 | 110.8 | 1 |
NAA(C) | 72.93 | 69.16 | 68.21 | 4.72 | 1 | 913.85 | 781.6 | 810.62 | 132.25 | 1 |
GA3(D) | 70.69 | 69.58 | 70.03 | 1.11 | 1 | 844.95 | 783.17 | 877.95 | 94.78 | 3 |
Table 6 Results of range analysis
因素 Factor | 花粉萌发率Pollen germinationrate/% | 花粉管长度Pollen tube length/μm | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
k1 | k2 | k3 | R | 最优水平 Optimal level | k1 | k2 | k3 | R | 最优水平 Optimal level | |
CaCl2·2H2O(A) | 76.39 | 66.78 | 67.13 | 9.61 | 1 | 915.75 | 766.15 | 824.17 | 149.6 | 1 |
MgSO4(B) | 73.91 | 70.28 | 66.11 | 7.8 | 1 | 905.56 | 805.75 | 794.76 | 110.8 | 1 |
NAA(C) | 72.93 | 69.16 | 68.21 | 4.72 | 1 | 913.85 | 781.6 | 810.62 | 132.25 | 1 |
GA3(D) | 70.69 | 69.58 | 70.03 | 1.11 | 1 | 844.95 | 783.17 | 877.95 | 94.78 | 3 |
[1] | 庄瑞林. 中国油茶[M]. 北京: 中国林业出版社, 1988. |
[2] |
YU C Y, ZHANG H K, WANG N, et al. Glycosylphosphatidylinositol-anchored proteins mediate the interactions between pollen/pollen tube and pistil tissues[J]. Planta, 2021, 253(1): 19.
DOI PMID |
[3] |
DRESSELHAUS T, FRANKLIN-TONG N. Male-female crosstalk during pollen germination, tube growth and guidance, and double fertilization[J]. Molecular Plant, 2013, 6(4): 1018-1036.
DOI PMID |
[4] |
LOPES A L, MOREIRA D, FERREIRA M J, et al. Insights into secrets along the pollen tube pathway in need to be discovered[J]. Journal of Experimental Botany, 2019, 70(11): 2979-2992.
DOI PMID |
[5] |
FRAGALLAH S, LIN S Z, LI N, et al. Effects of sucrose, boric acid, pH, and incubation time on in vitro germination of pollen and tube growth of Chinese fir (Cunnighamial lanceolata L.)[J]. Forests, 2019, 10(2): 102.
DOI URL |
[6] |
KREMER D, JEMRIC T. Pollen germination and pollen tube growth in Fraxinus pennsylvanica[J]. Biologia, 2006, 61(1): 79-83.
DOI URL |
[7] | 蔡昭艳, 董龙, 王小媚, 等. 培养基pH值及蔗糖、硼酸、PEG-4000对百香果花粉体外萌发的影响[J]. 分子植物育种, 2021, 19(21): 7274-7281. |
CAI Z Y, DONG L, WANG X M, et al. Effects of medium pH and sucrose, boric acid and PEG-4000 on in vitro germination of passion fruit pollen[J]. Molecular Plant Breeding, 2021, 19(21): 7274-7281. (in Chinese with English abstract) | |
[8] | 冯都煌, 刘会云, 张莉, 等. 促进油茶花粉萌发的营养物质配比研究[J]. 西南林业大学学报(自然科学), 2022, 42(1): 91-99. |
FENG D H, LIU H Y, ZHANG L, et al. Study on the ratio of nutrients for promoting pollen germination of Camellia oleifera[J]. Journal of Southwest Forestry University(Natural Sciences), 2022, 42(1): 91-99. (in Chinese with English abstract) | |
[9] | 刘林秀, 曾海涛, 徐皓, 等. 几种植物激素对4种山茶属植物花粉萌发及花粉管生长的影响[J]. 中国油料作物学报, 2021, 43(4): 700-707. |
LIU L X, ZENG H T, XU H, et al. Effects of phytohormones on pollen germination and pollen tube growth of 4 Camellia plants[J]. Chinese Journal of Oil Crop Sciences, 2021, 43(4): 700-707. (in Chinese with English abstract) | |
[10] | 郭丽, 朱飞雪, 王存纲, 等. 温度与汞胁迫对大岩桐花粉萌发及花粉管生长的影响[J]. 分子植物育种, 2022, 20(2): 511-517. |
GUO L, ZHU F X, WANG C G, et al. Effects of different temperature and Hg stress on pollen morphology and germination characteristics in Sinningia speciosa[J]. Molecular Plant Breeding, 2022, 20(2): 511-517. (in Chinese with English abstract) | |
[11] |
BECK-PAY S L. The effect of temperature and relative humidity on Acacia mearnsii polyad viability and pollen tube development[J]. South African Journal of Botany, 2012, 83: 165-171.
DOI URL |
[12] | 王波, 周兰英, 夏华梅, 等. 蔗糖、硼酸、Ca2+对大白杜鹃花粉萌发的影响[J]. 江苏农业科学, 2021, 49(6): 129-133. |
WANG B, ZHOU L Y, XIA H M, et al. Impacts of sucrose, boric acid and Ca2+ on pollen germination of Rhododendron decorum Franch[J]. Jiangsu Agricultural Sciences, 2021, 49(6): 129-133. (in Chinese) | |
[13] | ZHAO R, HU X, YUAN D Y, et al. Orthogonal test design for optimizing culture medium for in vitro pollen germination of interspecific oil tea hybrids[J]. Anais Da Academia Brasileira De Ciencias, 2021, 93(2): e20190431. |
[14] |
WANG Y H, LI X C, ZHU-GE Q, et al. Nitric oxide participates in cold-inhibited Camellia sinensis pollen germination and tube growth partly via cGMP in vitro[J]. PLoS One, 2012, 7(12): e52436.
DOI URL |
[15] | SINGH R, SINGH S, PARIHAR P, et al. Reactive oxygen species (ROS): beneficial companions of plants’ developmental processes[J]. Frontiers in Plant Science, 2016, 7: 1299. |
[16] | 谭晓风, 袁德义, 袁军, 等. 维生素C及植物生长调节物质对油茶花粉萌发率的影响[J]. 浙江林学院学报, 2010, 27(6): 941-944. |
TAN X F, YUAN D Y, YUAN J, et al. Pollen germination in Camellia oleifera with ascorbic acid and plant growth regulators[J]. Journal of Zhejiang Forestry College, 2010, 27(6): 941-944. (in Chinese with English abstract) | |
[17] | 邹锋, 谭晓风, 袁德义, 等. 油茶花粉数量及4℃贮藏萌发率特性研究[J]. 江西农业大学学报, 2009, 31(5): 892-895. |
ZOU F, TAN X F, YUAN D Y, et al. A study on Camellia pollen number and the vitality change under 4 ℃ storage[J]. Acta Agriculturae Universitatis Jiangxiensis, 2009, 31(5): 892-895. (in Chinese with English abstract) | |
[18] | 胡适宜. 植物胚胎学实验方法 (一)花粉生活力的测定[J]. 植物学通报, 1993, 28(2): 60-62. |
HU S Y. Experimental methods in plant embryology (ⅰ) determination of pollen viability[J]. Chinese Bulletin of Botany, 1993, 28(2): 60-62. (in Chinese) | |
[19] |
XIONG H, ZOU F, YUAN D, et al. Orthogonal test design for optimising the culture medium for in vitro pollen germination of feijoa (Acca sellowiana cv. Unique)[J]. New Zealand Journal of Crop and Horticultural Science, 2016, 44(3): 192-202.
DOI URL |
[20] | 袁德义, 王瑞, 袁军, 等. 不同营养元素及配比对油茶花粉萌发率的影响[J]. 福建农林大学学报(自然科学版), 2010, 39(5): 471-474. |
YUAN D Y, WANG R, YUAN J, et al. The influence of nutrient elements on pollen germination percentage in Camellia oleifera[J]. Journal of Fujian Agriculture and Forestry University(Natural Science Edition), 2010, 39(5): 471-474. (in Chinese with English abstract) | |
[21] |
GOKBAYRAK Z, ENGIN H. Brassinosteroids and gibberellic acid: effects on in vitro pollen germination in grapevine[J]. OENO One, 2017, 51(3): 303.
DOI URL |
[22] | 曾令达, 谭秋霞, 黄建昌, 等. NAA和ETH对荔枝花粉萌发及花粉管生长的影响[J]. 仲恺农业工程学院学报, 2017, 30(4): 15-20. |
ZENG L D, TAN Q X, HUANG J C, et al. Effects of NAA and ETH on germination and tube growth of litchi’s pollen[J]. Journal of Zhongkai University of Agriculture and Engineering, 2017, 30(4): 15-20. (in Chinese with English abstract) | |
[23] | ACAR I, AK B, SARPKAYA K. Effects of boron and gibberellic acid on in vitro pollen germination of pistachio Pistacia vera L[J]. African Journal of Biotechnology, 2010, 9: 5126-5130. |
[24] | 薛晓敏, 王金政, 张安宁, 等. 植物生长调节物质对桃花粉萌发和花粉管生长的影响[J]. 西北农林科技大学学报(自然科学版), 2008, 36(4): 123-127, 134. |
XUE X M, WANG J Z, ZHANG A N, et al. Effects of plant growth regulating substances on pollen germination and tube growth in Chaohong peach[J]. Journal of Northwest A & F University(Natural Science Edition), 2008, 36(4): 123-127, 134. (in Chinese with English abstract) | |
[25] | 刘才宇, 王成斌. 植物生长调节剂及硼营养与蔬菜花粉萌发及生长关系的研究[J]. 安徽农业科学, 2000, 28(4): 502-503. |
LIU C Y, WANG C B. Study on the relationship between plant growth regulators and boron nutrition and vegetable pollen germination and growth[J]. Journal of Anhui Agricultural Sciences, 2000, 28(4): 502-503. (in Chinese) | |
[26] | 韩志强, 袁德义, 陈文涛, 等. 不同营养元素及其配比对枣花粉萌发与花粉管生长的影响[J]. 江西农业大学学报, 2014, 36(2): 357-363. |
HAN Z Q, YUAN D Y, CHEN W T, et al. Effects of different nutrient elements on pollen germination and tube growth in Ziziphus jujube Mill[J]. Acta Agriculturae Universitatis Jiangxiensis, 2014, 36(2): 357-363. (in Chinese with English abstract) | |
[27] | 常海龙, 张伟, 陈俊吕, 等. 甘蔗花粉离体萌发研究[J]. 热带作物学报, 2019, 40(10): 2068-2075. |
CHANG H L, ZHANG W, CHEN J L, et al. Sugarcane pollen germination in vitro[J]. Chinese Journal of Tropical Crops, 2019, 40(10): 2068-2075. (in Chinese with English abstract) | |
[28] | STEINHORST L, KUDLA J. Calcium-a central regulator of pollen germination and tube growth[J]. Biochimica et Biophysica Acta(BBA)-Molecular Cell Research, 2013, 1833(7): 1573-1581. |
[29] | 谢彭雪, 张伟伟, 张卿, 等. EGTA对‘秦冠’苹果花粉管Ca2+、微丝分布以及囊泡运输的影响[J]. 北京农学院学报, 2017, 32(3): 27-32. |
XIE P X, ZHANG W W, ZHANG Q, et al. Effects of EGTA treatment on calcium, actin distribution and vesicle trafficking of apple (Malus pumila Mill.) pollen tubes[J]. Journal of Beijing University of Agriculture, 2017, 32(3): 27-32. (in Chinese with English abstract) | |
[30] |
BREWBAKER J L, KWACK B H. The essential role of calcium ion in pollen germination and pollen tube growth[J]. American Journal of Botany, 1963, 50(9): 859-865.
DOI URL |
[31] | 何金环, 李巧枝, 任敏. Ca2+对黄瓜花粉萌发和花粉管生长的影响[J]. 河南农业科学, 2006, 35(1): 75-77. |
HE J H, LI Q Z, REN M. The effects of Ca2+ on pollen germination and tube growth in cucumber[J]. Journal of Henan Agricultural Sciences, 2006, 35(1): 75-77. (in Chinese with English abstract) | |
[32] |
ZHAN N, HUANG L J. Effects of Ca2+ on in vitro pollen germination of three Acacia species[J]. Silvae Genetica, 2016, 65(2): 11-16.
DOI URL |
[33] |
DELLEDONNE M. NO news is good news for plants[J]. Current Opinion in Plant Biology, 2005, 8(4): 390-396.
PMID |
[34] |
LAMOTTE O, COURTOIS C, BARNAVON L, et al. Nitric oxide in plants: the biosynthesis and cell signalling properties of a fascinating molecule[J]. Planta, 2005, 221(1): 1-4.
PMID |
[35] | 李孝诚. 一氧化氮调节茶树花粉低温萌发和花粉管生长的研究[D]. 南京: 南京农业大学, 2012. |
LI X C. Modulation of nitric oxide in tea pollen germination and pollen tube growth under low temperature[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese with English abstract) | |
[36] |
PASQUALINI S, CRESTI M, DEL CASINO C, et al. Roles for NO and ROS signalling in pollen germination and pollen-tube elongation in Cupressus arizonica[J]. Biologia Plantarum, 2015, 59(4): 735-744.
DOI URL |
[37] |
DUAN Q H, LIU M C J, KITA D, et al. FERONIA controls pectin-and nitric oxide-mediated male-female interaction[J]. Nature, 2020, 579(7800): 561-566.
DOI |
[38] |
CURTIN J F, DONOVAN M, COTTER T G. Regulation and measurement of oxidative stress in apoptosis[J]. Journal of Immunological Methods, 2002, 265(1/2): 49-72.
DOI URL |
[39] |
TRACHOOTHAM D, ALEXANDRE J, HUANG P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?[J]. Nature Reviews Drug Discovery, 2009, 8(7): 579-591.
DOI PMID |
[40] | AZAD M B, CHEN Y Q, GIBSON S B. Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment[J]. Antioxidants & Redox Signaling, 2009, 11(4): 777-790. |
[41] |
FINKEL T, HOLBROOK N J. Oxidants, oxidative stress and the biology of ageing[J]. Nature, 2000, 408(6809): 239-247.
DOI |
[42] |
LIU C, SHEN L P, XIAO Y, et al. Pollen PCP-B peptides unlock a stigma peptide-receptor kinase gating mechanism for pollination[J]. Science, 2021, 372: 171-175.
DOI PMID |
[1] | CHEN Leran, ZHENG Jianbo, JIA Yongyi, CHI Meili, LI Fei, CHENG Shun, LIU Shili, LIU Yinuo, JIANG Wenping, GU Zhimin. Expression profiles of CHH2 gene in redclaw crayfish Cherax quadricarinatus and its role in ovarian development [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 33-40. |
[2] | JIN Baoxia, WANG Weijie, ZHU Xiaolin, WANG Xian, WEI Xiaohong. Effects of different hormone combinations on tomato in vitro regeneration and related gene expression [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1889-1900. |
[3] | SHEN Zhiguo, SUN Meng, DING Xin, CHENG Jianming, CHEN Dixin. Effects of different culture medium composition on pollen germination and pollen tube growth of 5 strains of Chimonanthus praecox [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 278-287. |
[4] | YUE Jianhua, DONG Yan, LI Wenyang, LI Meng, ZHANG Yan. Effects of pH on physiological characters in somatic embryo induction stage of Agapanthus praecox [J]. , 2020, 32(8): 1405-1414. |
[5] | QIU Wenyi, WANG Shiyu, LI Xiaofang, XU Heng, ZHANG Hua, ZHU Ying, WANG Liangchao. Functions of plant MYB transcription factors in response to abiotic stress and plant hormones [J]. , 2020, 32(7): 1317-1328. |
[6] | WANG Feng, YE Jing, GAO Jingwen, WANG Qiang, YU Qiaogang, HE Xinhua, MA Junwei. Potassium alleviates inhibition of ammonium stress on wheat root [J]. , 2020, 32(11): 1923-1933. |
[7] | WANG Zhenguang, YU Yihe, GUO Dalong. Advances in ROS promoting fruit development and ripening [J]. , 2020, 32(11): 2103-2110. |
[8] | LIU Jialin, LIU Shili, JIANG Wenping, CHENG Shun, CHI Meili, ZHENG Jianbo, JIA Yongyi, ZHAO Jinliang, YIN Shaowu, GU Zhimin. Cloning and bioinformatics analysis of GH gene and its flanking region in Odontobutis potamophila [J]. , 2019, 31(9): 1461-1470. |
[9] | LIU Shili, JIANG Wenping, CHENG Shun, CHI Meili, ZHENG Jianbo, JIA Yongyi, ZHAO Jinliang, GU Zhimin. Correlation analysis of growth traits and two microsatellite polymorphisms in flanking region of growth hormone gene in topmouth culter (Culter alburnus Basilewsky) [J]. , 2019, 31(1): 62-68. |
[10] | YANG Yanyi, DENG Junliang, CHEN Yun, GAO Shuang, LIU Qi, CHEN Chong, YAO Shuhua. Effects of concentrate level and dietary supplementation of recombinant antimicrobial peptides (AMPs) on growth performance and serum immunoglobulin, cytokines, complement, hormone levels in male Chuanzhong black goats [J]. , 2017, 29(8): 1243-1252. |
[11] | LIU Shili, JIA Yongyi, JIANG Wenping, CHI Meili, CHENG Shun, ZHAO Jinliang, GU Zhimin, FU Jianjun. Cloning and sequence analysis of growth hormone gene and its flanking region in topmouth culter (Culter alburnus Basilewsky) [J]. , 2017, 29(8): 1281-1289. |
[12] | WANG Daiyi, YU Yang, ZHANG Fengsong, LI Xingyuan, GOU Tizhong. Effects of composting temperature and manner on degradation of natural hormones during cattle manure composting [J]. , 2017, 29(12): 2104-2108. |
[13] | LI Dongyue, YUAN Wenxia, ZHENG Chao, WANG Xuming, ZHOU Jie, YAN Chengqi, CHEN Jianping. Roles of bZIP transcription factors in phytohormone-mediated disease resistance and stress tolerance [J]. , 2017, 29(1): 168-175. |
[14] | GUO Jing 1, ZHOU Kejin2,*. The differences of endogenous hormones level and their response to ripener among the different rapeseed varieties [J]. , 2016, 28(3): 383-. |
[15] | YUE Meng-meng, ZHAO Jin-liang, TANG Shou-jie, WANG Yan, ZHAO Yong-hua. Study on growth difference and steroid hormones between female and male Nile tilapia Oreochromis niloticus before sexual maturity [J]. , 2016, 28(10): 1678-1686. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||