Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (4): 799-808.DOI: 10.3969/j.issn.1004-1524.2023.04.07
• Animal Science • Previous Articles Next Articles
NIE Wei(
), MENG Ke, RONG Xuan, QIANG Hao, GUO Chenhao, TAO Maohai, FENG Dengzhen(
)
Received:2022-05-26
Online:2023-04-25
Published:2023-05-05
CLC Number:
NIE Wei, MENG Ke, RONG Xuan, QIANG Hao, GUO Chenhao, TAO Maohai, FENG Dengzhen. Analysis of GRM1 gene polymorphism and its correlation with meat quality traits in sheep[J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 799-808.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2023.04.07
| SNPs | 突变类型 Mutation type | 上游引物 Forward primer(5’→3’) | 下游引物 Reverse primer (5’→3’) | 延伸引物 Extended primer (5’→3’) |
|---|---|---|---|---|
| rs415006419 | 同义突变 Synonymous mutation | ACGTTGGATGGAAAGGGAGAAAGAGATAG | ACGTTGGATGCTTCTGCGAAGGGATGACTG | TGGGCGAGTTCTCACTCAT |
| rs403075278 | 同义突变 Synonymous mutation | ACGTTGGATGTGCAGCAGGTTCTGTACTTG | ACGTTGGATGCAGGACTAAGAAGCCCATTG | TGGGGCGTGATCGGCCC |
Table 1 Primer information for SNP loci
| SNPs | 突变类型 Mutation type | 上游引物 Forward primer(5’→3’) | 下游引物 Reverse primer (5’→3’) | 延伸引物 Extended primer (5’→3’) |
|---|---|---|---|---|
| rs415006419 | 同义突变 Synonymous mutation | ACGTTGGATGGAAAGGGAGAAAGAGATAG | ACGTTGGATGCTTCTGCGAAGGGATGACTG | TGGGCGAGTTCTCACTCAT |
| rs403075278 | 同义突变 Synonymous mutation | ACGTTGGATGTGCAGCAGGTTCTGTACTTG | ACGTTGGATGCAGGACTAAGAAGCCCATTG | TGGGGCGTGATCGGCCC |
| 位点 Locus | 物理位置 Physical location | 突变频数Mutation frequency | 群体 Group | 基因型频率 Genotype frequency/% | 基因频率 Gene frequency/% | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| D | XH | T | ||||||||||||
| Het | Hom | Het | Hom | Het | Hom | CC | CT | TT | χ2 | C | T | |||
| rs415006419 | 77181965 | 4 | 26 | 8 | 21 | 13 | 17 | D | 0 | 13.30 | 86.70 | 10.30 | 6.70 | 93.30 |
| T | 0 | 43.30 | 56.70 | 21.70 | 78.30 | |||||||||
| XH | 6.50 | 25.80 | 67.70 | 19.40 | 80.60 | |||||||||
| rs403075278 | 77332591 | 8 | 17 | 13 | 16 | 18 | 12 | D | 16.70 | 26.70 | 56.70 | 10.80 | 30.00 | 70.00 |
| T | 0 | 60.00 | 40.00 | 30.00 | 70.00 | |||||||||
| XH | 6.50 | 41.90 | 51.60 | 27.40 | 72.60 | |||||||||
Table 2 Gene frequencies and genotype frequencies of two loci of GRM1 gene in three populations
| 位点 Locus | 物理位置 Physical location | 突变频数Mutation frequency | 群体 Group | 基因型频率 Genotype frequency/% | 基因频率 Gene frequency/% | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| D | XH | T | ||||||||||||
| Het | Hom | Het | Hom | Het | Hom | CC | CT | TT | χ2 | C | T | |||
| rs415006419 | 77181965 | 4 | 26 | 8 | 21 | 13 | 17 | D | 0 | 13.30 | 86.70 | 10.30 | 6.70 | 93.30 |
| T | 0 | 43.30 | 56.70 | 21.70 | 78.30 | |||||||||
| XH | 6.50 | 25.80 | 67.70 | 19.40 | 80.60 | |||||||||
| rs403075278 | 77332591 | 8 | 17 | 13 | 16 | 18 | 12 | D | 16.70 | 26.70 | 56.70 | 10.80 | 30.00 | 70.00 |
| T | 0 | 60.00 | 40.00 | 30.00 | 70.00 | |||||||||
| XH | 6.50 | 41.90 | 51.60 | 27.40 | 72.60 | |||||||||
| 位点 | 群体 | He | Ho | Ne | PIC | P |
|---|---|---|---|---|---|---|
| Locus | Group | |||||
| rs415006419 | D | 0.13 | 0.88 | 1.14 | 0.12 | 0.93 |
| T | 0.42 | 0.58 | 1.72 | 0.33 | 0.14 | |
| XH | 0.34 | 0.66 | 1.51 | 0.28 | 0.32 | |
| rs403075278 | D | 0.42 | 0.58 | 1.72 | 0.33 | 0.14 |
| T | 0.34 | 0.66 | 1.51 | 0.28 | 0.32 | |
| XH | 0.42 | 0.58 | 1.72 | 0.33 | 0.06 |
Table 3 Population genetic analysis of SNP locus of GRM1 gene
| 位点 | 群体 | He | Ho | Ne | PIC | P |
|---|---|---|---|---|---|---|
| Locus | Group | |||||
| rs415006419 | D | 0.13 | 0.88 | 1.14 | 0.12 | 0.93 |
| T | 0.42 | 0.58 | 1.72 | 0.33 | 0.14 | |
| XH | 0.34 | 0.66 | 1.51 | 0.28 | 0.32 | |
| rs403075278 | D | 0.42 | 0.58 | 1.72 | 0.33 | 0.14 |
| T | 0.34 | 0.66 | 1.51 | 0.28 | 0.32 | |
| XH | 0.42 | 0.58 | 1.72 | 0.33 | 0.06 |
| 位点 Locus | 群体 Group | 基因型数量Genotype number | ||
|---|---|---|---|---|
| CC | CT | TT | ||
| rs403075278 | D | 1 | 2 | 4 |
| DTH | 0 | 6 | 2 | |
| T | 0 | 3 | 5 | |
| XH | 0 | 3 | 4 | |
| rs415006419 | D | 0 | 1 | 6 |
| DTH | 0 | 1 | 7 | |
| T | 0 | 0 | 8 | |
| XH | 1 | 6 | 0 | |
Table 4 Population typing results for rs403075278 locus and rs415006419 locus of GRM1 gene
| 位点 Locus | 群体 Group | 基因型数量Genotype number | ||
|---|---|---|---|---|
| CC | CT | TT | ||
| rs403075278 | D | 1 | 2 | 4 |
| DTH | 0 | 6 | 2 | |
| T | 0 | 3 | 5 | |
| XH | 0 | 3 | 4 | |
| rs415006419 | D | 0 | 1 | 6 |
| DTH | 0 | 1 | 7 | |
| T | 0 | 0 | 8 | |
| XH | 1 | 6 | 0 | |
| 位点 Locus | 基因型 Genotype | 宰前活重 Live weight/ kg | GR值 GR value/ cm | 胴体重 Carcass weight/ kg | 背膘厚 Back fat/ cm | 屠宰率 Slaughter rate/% | 净肉重 Net meat weight/ kg | 净肉率 Net meat rate/ % | 十二指肠 长度 Duodenal length/ cm | 质量 Weight/kg | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 心 Heart | 肝 Liver | 脾 Spleen | 肺 Lung | 肾 Kidney | 全骨 Total bone | |||||||||||
| rs415006419 | CT | 26.69 ±6.20 | 0.75 ±0.27 | 12.75 ±3.90 | 0.37 ±0.18 | 47.25 ±5.25 | 9.64 ±3.52 | 35.37 ±5.87 | 17.00 ±3.31 | 0.12 ±0.02 | 0.37 ±0.09 | 0.06 ±0.03 | 0.35 ±0.13 | 0.22 ±0.11 a | 3.11 ±0.53 | |
| TT | 27.68 ±5.49 | 0.81 ±0.31 | 12.38 ±2.88 | 0.31 ±0.13 | 44.65 ±4.81 | 9.21 ±2.64 | 33.13 ±5.69 | 16.79 ±2.61 | 0.13 ±0.02 | 0.39 ±0.10 | 0.05 ±0.02 | 0.42 ±0.15 | 0.14 ±0.08 b | 3.16 ±0.81 | ||
| rs403075278 | CT | 23.53 ±4.39 Bb | 0.63 ±0.19 | 10.21 ±2.26 Bb | 0.23 ±0.06 b | 43.19 ±3.00 | 7.14 ±1.73 Bb | 30.22 ±4.05 b | 15.06 ±2.19 Bb | 0.11± 0.02 Bb | 0.33 ±0.08 | 0.04 ±0.02 b | 0.27± 0.11 Bb | 0.09± 0.07 Bb | 3.07 ±0.96 | |
| TT | 29.42 ±5.32 Aa | 0.86 ±0.30 | 13.97 ±3.36 Aa | 0.37 ±0.17 a | 47.32 ±5.71 | 10.71 ±3.02 Aa | 36.16 ±5.86 a | 17.82 ±2.83 Aa | 0.13± 0.02 Aa | 0.42 ±0.11 | 0.06 ±0.02 a | 0.45± 0.12 Aa | 0.22± 0.08 Aa | 3.26 ±0.61 | ||
Table 5 Slaughter performance of each genotype at different loci of GRM1 gene in sheep
| 位点 Locus | 基因型 Genotype | 宰前活重 Live weight/ kg | GR值 GR value/ cm | 胴体重 Carcass weight/ kg | 背膘厚 Back fat/ cm | 屠宰率 Slaughter rate/% | 净肉重 Net meat weight/ kg | 净肉率 Net meat rate/ % | 十二指肠 长度 Duodenal length/ cm | 质量 Weight/kg | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 心 Heart | 肝 Liver | 脾 Spleen | 肺 Lung | 肾 Kidney | 全骨 Total bone | |||||||||||
| rs415006419 | CT | 26.69 ±6.20 | 0.75 ±0.27 | 12.75 ±3.90 | 0.37 ±0.18 | 47.25 ±5.25 | 9.64 ±3.52 | 35.37 ±5.87 | 17.00 ±3.31 | 0.12 ±0.02 | 0.37 ±0.09 | 0.06 ±0.03 | 0.35 ±0.13 | 0.22 ±0.11 a | 3.11 ±0.53 | |
| TT | 27.68 ±5.49 | 0.81 ±0.31 | 12.38 ±2.88 | 0.31 ±0.13 | 44.65 ±4.81 | 9.21 ±2.64 | 33.13 ±5.69 | 16.79 ±2.61 | 0.13 ±0.02 | 0.39 ±0.10 | 0.05 ±0.02 | 0.42 ±0.15 | 0.14 ±0.08 b | 3.16 ±0.81 | ||
| rs403075278 | CT | 23.53 ±4.39 Bb | 0.63 ±0.19 | 10.21 ±2.26 Bb | 0.23 ±0.06 b | 43.19 ±3.00 | 7.14 ±1.73 Bb | 30.22 ±4.05 b | 15.06 ±2.19 Bb | 0.11± 0.02 Bb | 0.33 ±0.08 | 0.04 ±0.02 b | 0.27± 0.11 Bb | 0.09± 0.07 Bb | 3.07 ±0.96 | |
| TT | 29.42 ±5.32 Aa | 0.86 ±0.30 | 13.97 ±3.36 Aa | 0.37 ±0.17 a | 47.32 ±5.71 | 10.71 ±3.02 Aa | 36.16 ±5.86 a | 17.82 ±2.83 Aa | 0.13± 0.02 Aa | 0.42 ±0.11 | 0.06 ±0.02 a | 0.45± 0.12 Aa | 0.22± 0.08 Aa | 3.26 ±0.61 | ||
| 位点 Locus | 基因型 Genotype | 肌纤维直径 Muscle fiber diameter/μm | 肌纤维密度 Muscle fiber density/mm-2 | pH值 pH value | 剪切力 Shear force | 熟肉率 Cooked meat rate/% | 失水率 Water loss rate/% |
|---|---|---|---|---|---|---|---|
| rs415006419 | CT | 28.90±3.75 | 789.41±182.77 | 5.58±0.47 | 25.70±13.32 | 62.75±5.65 | 34.06±6.45 |
| TT | 32.87±8.96 | 724.96±240.98 | 5.62±0.50 | 31.14±12.73 | 60.4±5.57 | 37.13±5.85 | |
| rs403075278 | CT | 32.22±3.66 | 734.56±172.22 | 6.08±0.45 Aa | 42.67±14.53 Aa | 61.17±7.26 | 40.76±5.06 Aa |
| TT | 31.05±7.92 | 738.68±228.79 | 5.44±0.40 Bb | 21.92±13.21 Bb | 62.75±5.64 | 33.44±5.27 Bb |
Table 6 Meat quality of each genotype at different loci of GRM1 gene in sheep
| 位点 Locus | 基因型 Genotype | 肌纤维直径 Muscle fiber diameter/μm | 肌纤维密度 Muscle fiber density/mm-2 | pH值 pH value | 剪切力 Shear force | 熟肉率 Cooked meat rate/% | 失水率 Water loss rate/% |
|---|---|---|---|---|---|---|---|
| rs415006419 | CT | 28.90±3.75 | 789.41±182.77 | 5.58±0.47 | 25.70±13.32 | 62.75±5.65 | 34.06±6.45 |
| TT | 32.87±8.96 | 724.96±240.98 | 5.62±0.50 | 31.14±12.73 | 60.4±5.57 | 37.13±5.85 | |
| rs403075278 | CT | 32.22±3.66 | 734.56±172.22 | 6.08±0.45 Aa | 42.67±14.53 Aa | 61.17±7.26 | 40.76±5.06 Aa |
| TT | 31.05±7.92 | 738.68±228.79 | 5.44±0.40 Bb | 21.92±13.21 Bb | 62.75±5.64 | 33.44±5.27 Bb |
| 位点 Locus | 基因型 Genotype | 脂肪 Fat/% | 蛋白质 Protein/ % | 肌酐 Creat- inine/ (μg· g-1) | 肌苷酸 Creatinine acid/ (μg· g-1) | 胆固醇 Inosinic acid/ (μg· g-1) | 铜 Cu/ (mg· kg-1) | 锌 Zn/ (mg· kg-1) | 硒 Se/ (mg· kg-1) | 钙 Ca/ (mg· kg-1) | 铁 Fe/ (mg· kg-1) | 锰 Mn/ (mg· kg-1) | 天冬氨酸 Aspartic acid/ (mg· g-1) | 苏氨酸 Threonine/ (mg· g-1) | 丝氨酸 Serine/ (mg· g-1) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| rs415006419 | CT | 3.46 ±1.84 | 20.90 ±1.34 | 450.34 ±98.30 | 1838.03 ±339.12 | 307.59 ±64.54 | 1.62 ±0.39 | 24.38 ±2.80 | 221.86 ±91.32 | 139.74 ±13.68 | 23.11 ±4.19 | 291.01 ±42.07 | 1.72 ±0.23 | 0.92 ±0.11 | 0.82 ±0.12 |
| TT | 3.46 ±1.93 | 20.77 ±1.21 | 456.13 ±131.79 | 1978.06 ±350.81 | 313.07 ±56.14 | 1.42 ±0.47 | 25.75 ±3.83 | 195.03 ±82.99 | 142.94 ±31.95 | 23.25 ±4.17 | 285.15 ±27.30 | 1.86 ±0.39 | 0.99 ±0.19 | 0.86 ±0.17 | |
| rs403075278 | CT | 2.25 ±0.83 b | 20.30 ±1.22 | 547.64 ±86.89 | 2054.80 ±292.85 | 290.24 ±70.96 | 1.51 ±0.39 | 26.33 ±1.81 | 174.92 ±20.87 | 126.84 ±23.80 b | 24.27 ±3.90 | 283.74 ±18.41 | 1.73 ±0.42 | 0.94 ±0.20 | 0.80 ±0.18 |
| TT | 4.07 ±1.92 a | 21.22 ±1.21 | 437.73 ±160.29 | 1776.24 ±451.47 | 316.67 ±53.81 | 1.49 ±0.49 | 24.47 ±3.85 | 220.26 ±98.90 | 147.04 ±22.84 a | 22.97 ±4.38 | 287.76 ±39.57 | 1.83 ±0.29 | 0.97 ±0.14 | 0.87 ±0.13 | |
| 位点 Locus | 基因型 Genotype | 谷氨酸 Gluta- mate/ (mg· g-1) | 甘氨酸 Glycine/ (mg· g-1) | 丙氨酸 Alanine/ (mg· g-1) | 半胱氨酸 Cysteine/ (mg· g-1) | 缬氨酸 Valine/ (mg· g-1) | 甲硫氨酸 Methionine/ (mg· g-1) | 异亮氨酸 Isole- ucine/ (mg· g-1) | 亮氨酸 Leucine/ (mg· g-1) | 酪氨酸 Tyrosine/ (mg· g-1) | 苯丙氨酸 Phenyla- lanine/ (mg· g-1) | 赖氨酸 Lysine/ (mg· g-1) | 组氨酸 Histidine/ (mg· g-1) | 精氨酸 Argin- ine/ (mg· g-1) | 脯氨酸 Proline/ (mg· g-1) |
| rs415006419 | CT | 2.90 ±0.37 | 0.83 ±0.11 | 1.27 ±0.23 | 0.03 ±0.06 | 1.00 ±0.17 | 0.49 ±0.13 | 0.96 ±0.13 | 1.68 ±0.18 | 0.67 ±0.14 b | 1.26 ±0.21 | 1.95 ±0.29 | 0.88 ±0.20 | 1.16 ±0.11 | 1.10 ±0.22 |
| TT | 3.17 ±0.65 | 0.90 ±0.17 | 1.30 ±0.26 | 0.05 ±0.08 | 1.13 ±0.35 | 0.62 ±0.35 | 1.08 ±0.31 | 1.87 ±0.42 | 0.83 ±0.23 a | 1.32 ±0.27 | 2.07 ±0.37 | 0.90 ±0.21 | 1.30 ±0.24 | 1.02 ±0.31 | |
| rs403075278 | CT | 2.98 ±0.73 | 0.84 ±0.21 | 1.17 ±0.34 | 0.04 ±0.02 | 1.03 ±0.43 | 0.59 ±0.38 | 1.07 ±0.38 | 1.81 ±0.47 | 0.84 ±0.25 | 1.13 ±0.30 b | 1.90 ±0.48 | 0.76 ±0.16 b | 1.29 ±0.29 | 1.18 ±0.36 |
| TT | 3.07 ±0.47 | 0.89 ±0.12 | 1.35 ±0.18 | 0.04 ±0.08 | 1.10 ±0.20 | 0.55 ±0.22 | 1.01 ±0.19 | 1.77 ±0.28 | 0.71 ±0.18 | 1.35 ±0.19 a | 2.07 ±0.25 | 0.95 ±0.19 a | 1.21 ±0.16 | 1.01 ±0.22 |
Table 7 Nutrient composition in sheep muscle of each genotype at different loci of GRM1 gene
| 位点 Locus | 基因型 Genotype | 脂肪 Fat/% | 蛋白质 Protein/ % | 肌酐 Creat- inine/ (μg· g-1) | 肌苷酸 Creatinine acid/ (μg· g-1) | 胆固醇 Inosinic acid/ (μg· g-1) | 铜 Cu/ (mg· kg-1) | 锌 Zn/ (mg· kg-1) | 硒 Se/ (mg· kg-1) | 钙 Ca/ (mg· kg-1) | 铁 Fe/ (mg· kg-1) | 锰 Mn/ (mg· kg-1) | 天冬氨酸 Aspartic acid/ (mg· g-1) | 苏氨酸 Threonine/ (mg· g-1) | 丝氨酸 Serine/ (mg· g-1) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| rs415006419 | CT | 3.46 ±1.84 | 20.90 ±1.34 | 450.34 ±98.30 | 1838.03 ±339.12 | 307.59 ±64.54 | 1.62 ±0.39 | 24.38 ±2.80 | 221.86 ±91.32 | 139.74 ±13.68 | 23.11 ±4.19 | 291.01 ±42.07 | 1.72 ±0.23 | 0.92 ±0.11 | 0.82 ±0.12 |
| TT | 3.46 ±1.93 | 20.77 ±1.21 | 456.13 ±131.79 | 1978.06 ±350.81 | 313.07 ±56.14 | 1.42 ±0.47 | 25.75 ±3.83 | 195.03 ±82.99 | 142.94 ±31.95 | 23.25 ±4.17 | 285.15 ±27.30 | 1.86 ±0.39 | 0.99 ±0.19 | 0.86 ±0.17 | |
| rs403075278 | CT | 2.25 ±0.83 b | 20.30 ±1.22 | 547.64 ±86.89 | 2054.80 ±292.85 | 290.24 ±70.96 | 1.51 ±0.39 | 26.33 ±1.81 | 174.92 ±20.87 | 126.84 ±23.80 b | 24.27 ±3.90 | 283.74 ±18.41 | 1.73 ±0.42 | 0.94 ±0.20 | 0.80 ±0.18 |
| TT | 4.07 ±1.92 a | 21.22 ±1.21 | 437.73 ±160.29 | 1776.24 ±451.47 | 316.67 ±53.81 | 1.49 ±0.49 | 24.47 ±3.85 | 220.26 ±98.90 | 147.04 ±22.84 a | 22.97 ±4.38 | 287.76 ±39.57 | 1.83 ±0.29 | 0.97 ±0.14 | 0.87 ±0.13 | |
| 位点 Locus | 基因型 Genotype | 谷氨酸 Gluta- mate/ (mg· g-1) | 甘氨酸 Glycine/ (mg· g-1) | 丙氨酸 Alanine/ (mg· g-1) | 半胱氨酸 Cysteine/ (mg· g-1) | 缬氨酸 Valine/ (mg· g-1) | 甲硫氨酸 Methionine/ (mg· g-1) | 异亮氨酸 Isole- ucine/ (mg· g-1) | 亮氨酸 Leucine/ (mg· g-1) | 酪氨酸 Tyrosine/ (mg· g-1) | 苯丙氨酸 Phenyla- lanine/ (mg· g-1) | 赖氨酸 Lysine/ (mg· g-1) | 组氨酸 Histidine/ (mg· g-1) | 精氨酸 Argin- ine/ (mg· g-1) | 脯氨酸 Proline/ (mg· g-1) |
| rs415006419 | CT | 2.90 ±0.37 | 0.83 ±0.11 | 1.27 ±0.23 | 0.03 ±0.06 | 1.00 ±0.17 | 0.49 ±0.13 | 0.96 ±0.13 | 1.68 ±0.18 | 0.67 ±0.14 b | 1.26 ±0.21 | 1.95 ±0.29 | 0.88 ±0.20 | 1.16 ±0.11 | 1.10 ±0.22 |
| TT | 3.17 ±0.65 | 0.90 ±0.17 | 1.30 ±0.26 | 0.05 ±0.08 | 1.13 ±0.35 | 0.62 ±0.35 | 1.08 ±0.31 | 1.87 ±0.42 | 0.83 ±0.23 a | 1.32 ±0.27 | 2.07 ±0.37 | 0.90 ±0.21 | 1.30 ±0.24 | 1.02 ±0.31 | |
| rs403075278 | CT | 2.98 ±0.73 | 0.84 ±0.21 | 1.17 ±0.34 | 0.04 ±0.02 | 1.03 ±0.43 | 0.59 ±0.38 | 1.07 ±0.38 | 1.81 ±0.47 | 0.84 ±0.25 | 1.13 ±0.30 b | 1.90 ±0.48 | 0.76 ±0.16 b | 1.29 ±0.29 | 1.18 ±0.36 |
| TT | 3.07 ±0.47 | 0.89 ±0.12 | 1.35 ±0.18 | 0.04 ±0.08 | 1.10 ±0.20 | 0.55 ±0.22 | 1.01 ±0.19 | 1.77 ±0.28 | 0.71 ±0.18 | 1.35 ±0.19 a | 2.07 ±0.25 | 0.95 ±0.19 a | 1.21 ±0.16 | 1.01 ±0.22 |
| [1] | 周颖, 刘维平, 陈西风. 滩羊肉品质营养调控研究进展[J]. 畜牧与饲料科学, 2021, 42(5): 51-54. |
| ZHOU Y, LIU W P, CHEN X F. Research advances on nutritional regulation of Tan sheep mutton quality[J]. Animal Husbandry and Feed Science, 2021, 42(5): 51-54. (in Chinese with English abstract) | |
| [2] | 张志恒, 王玉琴, 任国艳, 等. 舍饲条件下波尔山羊与河南淮山羊杂交羊生长发育、屠宰性能及肉品质特性研究[J]. 中国畜牧兽医, 2020, 47(8): 2518-2527. |
| ZHANG Z H, WANG Y Q, REN G Y, et al. Study on growth and development, slaughter performance and meat quality characteristics of crossbreed goat from Boer and Henan Huai goat under the condition of house feeding[J]. China Animal Husbandry & Veterinary Medicine, 2020, 47(8): 2518-2527. (in Chinese with English abstract) | |
| [3] | 杨雪, 覃圣, 王慧, 等. 藏羊与小尾寒羊不同部位脂肪组织特性对比[J]. 现代畜牧兽医, 2022(2): 32-35. |
| YANG X, QIN S, WANG H, et al. Comparison of adipose tissue characteristics in different parts of Tibetan sheep and Small-Tailed Han sheep[J]. Modern Journal of Animal Husbandry and Veterinary Medicine, 2022(2): 32-35. (in Chinese with English abstract) | |
| [4] | 孟科, 荣轩, 梁鹏, 等. 绵羊BMP2、BMP4和BMP7基因多态性与产羔数的关联分析[J]. 中国畜牧杂志, 2022, 58(5): 113-118, 123. |
| MENG K, RONG X, LIANG P, et al. Polymorphism of sheep BMP2, BMP4 and BMP7 genes and its association with litter size[J]. Chinese Journal of Animal Science, 2022, 58(5): 113-118, 123. (in Chinese with English abstract) | |
| [5] | BRENNAN-MINNELLA A M, SHEN Y, EL-BENNA J, et al. Phosphoinositide 3-kinase couples NMDA receptors to superoxide release in excitotoxic neuronal death[J]. Cell Death & Disease, 2013, 4(4): e580. |
| [6] | 杨叔媛, 宋璐, 吴娜, 等. Ⅰ组代谢型谷氨酸受体在帕金森病大鼠模型中的表达变化[J]. 中国神经免疫学和神经病学杂志, 2021, 28(6): 469-474. |
| YANG S Y, SONG L, WU N, et al. Changes in expression of group Ⅰ mGluRs in a 6-OHDA model of Parkinson’s disease[J]. Chinese Journal of Neuroimmunology and Neurology, 2021, 28(6): 469-474. (in Chinese with English abstract) | |
| [7] |
HUANG H, QING X Y, LI H D. Isoflurane preconditioning protects the myocardium against ischemia and reperfusion injury by upregulating GRM1 expression[J]. Current Neurovascular Research, 2020, 17(2): 171-176.
DOI URL |
| [8] |
BOLDYREV A A, KAZEY V I, LEINSOO T A, et al. Rodent lymphocytes express functionally active glutamate receptors[J]. Biochemical and Biophysical Research Communications, 2004, 324(1): 133-139.
PMID |
| [9] | 朱萍, 冯吉, 杨荟敏, 等. 血清通过调节mGluR1介导的信号通路调控细胞的生长与凋亡[J]. 中国生物化学与分子生物学报, 2010, 26(4): 332-340. |
| ZHU P, FENG J, YANG H M, et al. Serum regulates cell growth and apoptosis viam GluR1-mediated signaling pathways[J]. Chinese Journal of Biochemistry and Molecular Biology, 2010, 26(4): 332-340. (in Chinese with English abstract) | |
| [10] |
AYOUB M A, ANGELICHEVA D, VILE D, et al. Deleterious GRM1 mutations in schizophrenia[J]. PLoS One, 2012, 7(3): e32849.
DOI URL |
| [11] |
RONDARD P, PIN J P. Dynamics and modulation of metabotropic glutamate receptors[J]. Current Opinion in Pharmacology, 2015, 20: 95-101.
DOI PMID |
| [12] |
BHARDWAJ S K, RYAN R T, WONG T P, et al. Loss of dysbindin-1, a risk gene for schizophrenia, leads to impaired group 1 metabotropic glutamate receptor function in mice[J]. Frontiers in Behavioral Neuroscience, 2015, 9: 72.
DOI PMID |
| [13] |
DIRADDO J O, PSHENICHKIN S, GELB T, et al. Two newly identified exons in human GRM1 express a novel splice variant of metabotropic glutamate 1 receptor[J]. Gene, 2013, 519(2): 367-373.
DOI URL |
| [14] |
BRUZIK K S, TSAI M D. Toward the mechanism of phosphoinositide-specific phospholipases C[J]. Bioorganic & Medicinal Chemistry, 1994, 2(2): 49-72.
DOI URL |
| [15] |
HUANG X J, LIU G H, GUO J, et al. The PI3K/AKT pathway in obesity and type 2 diabetes[J]. International Journal of Biological Sciences, 2018, 14(11): 1483-1496.
DOI PMID |
| [16] |
ROY N K, MONISHA J, PADMAVATHI G, et al. Isoform-specific role of Akt in oral squamous cell carcinoma[J]. Biomolecules, 2019, 9(7): 253.
DOI URL |
| [17] |
ZHANG L, LIU J S, ZHAO F P, et al. Genome-wide association studies for growth and meat production traits in sheep[J]. PLoS One, 2013, 8(6): e66569.
DOI URL |
| [18] | CAVANAGH C R, JONAS E, HOBBS M, et al. Mapping quantitative trait loci (QTL) in sheep. III. QTL for carcass composition traits derived from CT scans and aligned with a meta-assembly for sheep and cattle carcass QTL[J]. Genetics, Selection, Evolution, 2010, 42(1): 36. |
| [19] | 特日格勒, 何辉杰, 何小龙, 等. 杜蒙羊肉用性能活体检测及屠宰性能对比分析[J]. 畜牧与饲料科学, 2022, 43(1): 104-109. |
| TERIGELE, HE H J, HE X L, et al. Evaluation of live meat performance and slaughter performance of Dumeng mutton sheep[J]. Animal Husbandry and Feed Science, 2022, 43(1): 104-109. (in Chinese with English abstract) | |
| [20] |
AZIMU W, MANATBAY B, LI Y, et al. Genetic diversity and population structure analysis of eight local chicken breeds of Southern Xinjiang[J]. British Poultry Science, 2018, 59(6): 629-635.
DOI PMID |
| [21] |
SANTOS C P, AGUIAR A F, GIOMETTI I C, et al. High final energy of Gallium arsenide laser increases MyoD gene expression during the intermediate phase of muscle regeneration after cryoinjury in rats[J]. Lasers in Medical Science, 2018, 33(4): 843-850.
DOI |
| [22] |
CENDRON F, MASTRANGELO S, TOLONE M, et al. Genome-wide analysis reveals the patterns of genetic diversity and population structure of 8 Italian local chicken breeds[J]. Poultry Science, 2021, 100(2): 441-451.
DOI PMID |
| [23] | 赵金艳, 权凯, 张子军, 等. 黄淮肉羊肉用性能的研究[J]. 内蒙古农业大学学报(自然科学版), 2021, 42(5): 59-64. |
| ZHAO J Y, QUAN K, ZHANG Z J, et al. Mutton performance of Huang-Huai sheep[J]. Journal of Inner Mongolia Agricultural University(Natural Science Edition), 2021, 42(5): 59-64. (in Chinese with English abstract) | |
| [24] | 王秀娟, 高翰, 李海鹏, 等. 郏县红牛生长和肉用性能指标测定分析[J]. 中国牛业科学, 2021, 47(5): 12-16. |
| WANG X J, GAO H, LI H P, et al. Analysis of growth and meat performance in Jiaxian red cattle[J]. China Cattle Science, 2021, 47(5): 12-16. (in Chinese with English abstract) | |
| [25] | 彭珍, 张维旭, 周炼, 等. 恩施黑猪胴体与肉质性状测定及性状间相关分析[J]. 猪业科学, 2015, 32(9): 126-130. |
| PENG Z, ZHANG W X, ZHOU L, et al. Determination of carcass and meat quality traits of Enshi black pig and correlation analysis between them[J]. Swine Industry Science, 2015, 32(9): 126-130. (in Chinese) | |
| [26] |
殷雨洋, 蒋永清, 黄杰, 等. 青贮饲用油菜对湖羊生长性能、屠宰性能、瘤胃发酵及器官发育的影响[J]. 动物营养学报, 2021, 33(2): 1153-1162.
DOI |
| YIN Y Y, JIANG Y Q, HUANG J, et al. Effects of silage feeding rape on growth performance, slaughter performance, rumen fermentation and organ development of Hu sheep[J]. Chinese Journal of Animal Nutrition, 2021, 33(2): 1153-1162. (in Chinese with English abstract) | |
| [27] | 闵凡贵, 潘金春, 王希龙, 等. 影响五指山小型猪主要脏器重量及脏器系数的因素分析[J]. 中国畜牧兽医, 2012, 39(10): 218-222. |
| MIN F G, PAN J C, WANG X L, et al. Analysis of the effect factors on organ weight and organ coefficients of Wuzhishan mini-pigs[J]. China Animal Husbandry & Veterinary Medicine, 2012, 39(10): 218-222. (in Chinese with English abstract) | |
| [28] | 王国森, 李寒妹, 秦学波, 等. 肉用绵羊杂交一代CLPG基因遗传效应研究[C]//2018年全国养羊生产与学术研讨会论文集. 蚌埠, 2018: 151. |
| [29] | 王勇, 李忠德. 不同水平的益生菌发酵酒糟添加对育肥牛生长性能、屠宰性能及肉品质影响[J]. 中国饲料, 2020(11): 117-120. |
| WANG Y, LI Z D. Effects of different levels of probiotic fermented distiller’s grains on growth performance, slaughter performance and meat quality of fattening cattle[J]. China Feed, 2020(11): 117-120. (in Chinese with English abstract) | |
| [30] | 马吉锋, 张建勇, 黄金涛, 等. 日粮中添加不同水平25-羟基胆钙化醇对羔羊生长性能、肉品质及钙磷代谢的影响[J]. 饲料研究, 2020, 43(11): 10-13. |
| MA J F, ZHANG J Y, HUANG J T, et al. Effects of different levels of 25-hydroxycholecalciferol on growth performance, meat quality and calcium and phosphorus metabolism of lambs[J]. Feed Research, 2020, 43(11): 10-13. (in Chinese) | |
| [31] | 曹亮, 赵文昌, 李德宏, 等. 青贮玉米不同处理方式对肉羊生长性能、屠宰性能、肉品质及抗氧化能力影响[J]. 饲料研究, 2022, 45(6): 14-17. |
| CAO L, ZHAO W C, LI D H, et al. Effect of different treatment methods of silage corn on growth performance, slaughter performance, meat quality and antioxidant capacity of mutton sheep[J]. Feed Research, 2022, 45(6): 14-17. (in Chinese with English abstract) | |
| [32] | 李武峰, 关家伟, 邱丽霞, 等. 基于转录组学和代谢组学研究调控驴背最长肌嫩度的分子机制[J]. 畜牧兽医学报, 2022, 53(3): 743-754. |
| LI W F, GUAN J W, QIU L X, et al. Study on the molecular mechanism of regulating tenderness of longissimus dorsi muscle of donkey based on transcriptomics and metabolomics[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(3): 743-754. (in Chinese with English abstract) | |
| [33] |
ROWE L J, MADDOCK K R, LONERGAN S M, et al. Oxidative environments decrease tenderization of beef steaks through inactivation of μ-calpain[J]. Journal of Animal Science, 2004, 82(11): 3254-3266.
DOI URL |
| [34] | 瞿彪. 组氨酸对生长中期草鱼肉质的影响和肠道、鳃损伤的保护作用研究[D]. 雅安: 四川农业大学, 2014. |
| QU B. Dietary histidine affects flesh quality and protects intestinal damage of young grass carp (Ctenopharyngodon idella)[D]. Ya’an: Sichuan Agricultural University, 2014. (in Chinese with English abstract) | |
| [35] | 李文. 苯丙氨酸对生长中期草鱼生长性能、肌肉品质和肠道黏膜免疫功能的影响研究[D]. 雅安: 四川农业大学, 2014. |
| LI W. The effect of dietary phenylalanine supplement on growth, flesh quality parameters, antioxidant capacity and intestine immune function of young grass carp (Ctenopharyngodon idellus)[D]. Ya’an: Sichuan Agricultural University, 2014. (in Chinese with English abstract) | |
| [36] | 曹艳芳, 张晨曦, 陶艺庆, 等. 不同水平酪氨酸对淅川乌骨鸡组织乌度及屠宰性状的影响[J]. 中国畜牧杂志, 2020, 56(12): 109-113. |
| CAO Y F, ZHANG C X, TAO Y Q, et al. Effects of dietary tyrosine levels on tissue brightness value and slaughter traits of Xichuan black-bone chicken[J]. Chinese Journal of Animal Science, 2020, 56(12): 109-113. (in Chinese with English abstract) |
| [1] | SHI Yangyang, LYU Lixia, TUO Dengfeng. Effects of AMF and PGPR on growth and nutrient absorption of Matthiola incana under low temperature and weak light stress [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1694-1705. |
| [2] | ZHANG Zhi, HE Haohao, YU Miao, XU Jianfeng. Effects of chemical fertilizer reduction combined with soil conditioner on soil acidity, soil nutrients and rice yield [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1301-1308. |
| [3] | CHEN Mengwei, LIANG Xu, ZHANG Chenglei, LIANG Jing, XU Yingzi, XIANG Dandan, YANG Zhaoqu, XIE Yongdong. Effects of microbial fertilizer on soil properties and leaf nutrition of Dongkui bayberry [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1130-1138. |
| [4] | XIE Changyan, JIN Yumeng, ZHANG Miao, DONG Qingjun, LI Qing, JI Li, ZHONG Ping, CHEN Chuan, ZHANG Ankang. Application effect of nutrient soil made from river sludge for machine-transplanted rice seedling [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 538-547. |
| [5] | ZHANG Shilin, JIA Dinghong, HE Xiaolan, DONG Qian, PENG Weihong, XU Yingyin. Evaluatution of nutritional components and amino acid nutritional value in different varieties of Auricularia cornea Ehrenb [J]. Acta Agriculturae Zhejiangensis, 2025, 37(10): 2190-2197. |
| [6] | LI Ziwei, ZHANG Yawen, SONG Bin, HOU Fengxiang, JIN Junjie, ZHAO Yan, LU Lizhi. Growth curve fitting and the optimal marketing age of Wenzhou Red chicken [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1741-1752. |
| [7] | LI Shuyan, JIAO Ting, QI Shuai, ZHANG Xia, WANG Huning, ZHAO Shengguo. In vitro study on effects of isochlorogenic acid supplementation in sheep diets on nutrient digestion and rumen fermentation [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1753-1763. |
| [8] | ZHU Yanyu, YU Wentao, GAO Shuilian, LYU Shuiyuan, WANG Pan, JIN Wanmin, GUI Wenjing, LIN Yi, YE Naixing. The diversity of tea germplasm resources and genetic relationship of ‘Tieguanyin’-derived varieties in Anxi, Fujian, China [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1591-1601. |
| [9] | YAN Hongyuan, YU Zheping, ZHANG Shuwen, NI Xiaopeng, LI Xiangnan, LIANG Senmiao. Analysis of the correlation between the occurrence of the flesh scallion disease of Myrica rubra and nutritional elements [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1626-1633. |
| [10] | HU Tiejun. Effects of chemical fertilizer reduction combined with microbial fertilizer application on yield, quality, and soil properties of broccoli [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1657-1665. |
| [11] | XIANG Jin, WANG Chunyuan, WU Yan, TAN Yuancheng, YANG Suan, ZHANG Yiyu. CRISP3 gene SNP identification and its impact on reproductive traits in Kela pigs [J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1270-1278. |
| [12] | MA Li’na, TIAN Jinyang, WANG Jin, ZHAO Zhengwei, MA Qing. Association of FGF5 and COQ9 gene polymorphism and growth traits in Tan sheep [J]. Acta Agriculturae Zhejiangensis, 2024, 36(5): 1015-1023. |
| [13] | DONG Biao, JI Rongchao, ZHANG Gansheng, WANG Jian. Study on correlation of polymorphism of A-FABP gene exon 2 with growth performance and meat quality in Muscovy duck [J]. Acta Agriculturae Zhejiangensis, 2024, 36(11): 2456-2464. |
| [14] | YANG Cunming, LIU Jing, ZHANG Menghua, ZHANG Xiaoxue, LIU Guifen, HE Junmin, MAO Jingyi, LI Xue, TANG Li, ZHANG Wenjing, PAN Linxiang, TIAN Kechuan, HUANG Xixia. Estimation of genetic parameters of body size and body weight at different growth stages of Luzhong mutton sheep [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 48-57. |
| [15] | YUAN Xiaochun, WANG Yifan, WANG Yayan, SUN Haoran, MENG Ke, LI Xinhai. Identification and analysis of alternative splicing events related to sheep hair follicle development based on RNA sequencing technology [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2056-2067. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||