Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (4): 780-788.DOI: 10.3969/j.issn.1004-1524.2023.04.05
• Crop Science • Previous Articles Next Articles
ZHANG Bin(), FENG Xiaoqing, ZHENG Qian, CHEN Wen, TENG Jie
Received:
2022-05-12
Online:
2023-04-25
Published:
2023-05-05
CLC Number:
ZHANG Bin, FENG Xiaoqing, ZHENG Qian, CHEN Wen, TENG Jie. OsPUT5 silencing reduced low temperature resistance in rice[J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 780-788.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2023.04.05
多胺转运蛋白 基因名称 Name of polyamine transporter gene | 多胺转运蛋白 基因编号 Locus of polyamine transporter gene | 物种 Species |
---|---|---|
OsPUT1 | Os02g0700500 | 水稻 Oryza sativa L. |
OsPUT2 | Os03g0374900 | 水稻 Oryza sativa L. |
OsPUT3 | Os03g0375300 | 水稻 Oryza sativa L. |
OsPUT4 | Os03g0375966 | 水稻 Oryza sativa L. |
OsPUT5 | Os03g0576900 | 水稻 Oryza sativa L. |
OsPUT6 | Os12g0580400 | 水稻 Oryza sativa L. |
ATPUT1 | AT1G31820 | 拟南芥 Arabidopsis thaliana |
ATPUT2 | AT1G31830 | 拟南芥 Arabidopsis thaliana |
ATPUT3 | AT5G05630 | 拟南芥 Arabidopsis thaliana |
ATPUT4 | AT3G13620 | 拟南芥 Arabidopsis thaliana |
ATPUT5 | AT3G19553 | 拟南芥 Arabidopsis thaliana |
Table 1 Gene information
多胺转运蛋白 基因名称 Name of polyamine transporter gene | 多胺转运蛋白 基因编号 Locus of polyamine transporter gene | 物种 Species |
---|---|---|
OsPUT1 | Os02g0700500 | 水稻 Oryza sativa L. |
OsPUT2 | Os03g0374900 | 水稻 Oryza sativa L. |
OsPUT3 | Os03g0375300 | 水稻 Oryza sativa L. |
OsPUT4 | Os03g0375966 | 水稻 Oryza sativa L. |
OsPUT5 | Os03g0576900 | 水稻 Oryza sativa L. |
OsPUT6 | Os12g0580400 | 水稻 Oryza sativa L. |
ATPUT1 | AT1G31820 | 拟南芥 Arabidopsis thaliana |
ATPUT2 | AT1G31830 | 拟南芥 Arabidopsis thaliana |
ATPUT3 | AT5G05630 | 拟南芥 Arabidopsis thaliana |
ATPUT4 | AT3G13620 | 拟南芥 Arabidopsis thaliana |
ATPUT5 | AT3G19553 | 拟南芥 Arabidopsis thaliana |
Fig.1 Bioinformatics analysis of OsPUT5 protein A, Phylogenetic tree of PUT family protein in rice and other plants; B, A cartoon representation showing the 10 transmembrane domains in the OsPUT5 protein with both C-and N-termini in the cytoplasmic side; C, Domains conserved in the OsPUT5 protein. The black bar shows the length of the amino acid sequence.
Fig.2 Identification of transgenic seedlings and detection of gene expression level A, DNA level detection of RNAi lines, 1-6 were resistant plantlets, 7 was pFGC5941-OsPUT5-RNAi plasmid; B, DNA level detection of OE lines, 1-4 were resistant plantlets, 5 was pCAM1390-OsPUT5 plasmid; C, RNA level detection in OE lines and RNAi lines; D, OsPUT5 expression pattern. Different lowercase letters indicated significant difference at P <0.05, the error bars represented the standard deviation. The same as below.
Fig.3 Comparison of cold tolerance of seedlings of OE lines, Nip lines and RNAi lines G, Phenotype of plant after 10 days of normal culture after low temperature treatment; H, The survival rate of plants after 10 days of normal culture after low temperature treatment.
株系 Line | 株高 Plant height/cm | 穗长 Ear length/cm | 每穗粒数 Seed numbers per panicle | 初级枝梗数 Primary branch number | 每穗实粒数 Plump grains per panicle | 千粒重 1 000-grain weight/g | 结实率 Seed setting rate/% |
---|---|---|---|---|---|---|---|
OE株系OE lines | 81.2±5.8 a | 19.9±2.4 a | 103.1±23.3 a | 10.2±0.9 a | 83.1±18.4 a | 24.5±0.45 a | 80.6±8.2 a |
Nip株系Nipponbare lines | 81.7±4.6 a | 20.3±2.1 a | 102.8±20.5 a | 10.4±0.7 a | 84.4±19.7 a | 24.3±0.47 a | 82.1±9.0 a |
RNAi株系RNAi lines | 79.8±6.2 a | 19.7±1.8 a | 101.9±21.6 a | 10.1±0.7 a | 83.6±18.2 a | 24.1±0.33 a | 82.0±10.2 a |
Table 2 Comparison of main agronomic characters of OE lines, Nip lines and RNAi lines
株系 Line | 株高 Plant height/cm | 穗长 Ear length/cm | 每穗粒数 Seed numbers per panicle | 初级枝梗数 Primary branch number | 每穗实粒数 Plump grains per panicle | 千粒重 1 000-grain weight/g | 结实率 Seed setting rate/% |
---|---|---|---|---|---|---|---|
OE株系OE lines | 81.2±5.8 a | 19.9±2.4 a | 103.1±23.3 a | 10.2±0.9 a | 83.1±18.4 a | 24.5±0.45 a | 80.6±8.2 a |
Nip株系Nipponbare lines | 81.7±4.6 a | 20.3±2.1 a | 102.8±20.5 a | 10.4±0.7 a | 84.4±19.7 a | 24.3±0.47 a | 82.1±9.0 a |
RNAi株系RNAi lines | 79.8±6.2 a | 19.7±1.8 a | 101.9±21.6 a | 10.1±0.7 a | 83.6±18.2 a | 24.1±0.33 a | 82.0±10.2 a |
[1] |
IGARASHI K, KASHIWAGI K. Functional roles of polyamines and their metabolite acrolein in eukaryotic cells[J]. Amino Acids, 2021, 53(10): 1473-1492.
DOI PMID |
[2] |
YU J, WANG B A, FAN W Q, et al. Polyamines involved in regulating self-incompatibility in apple[J]. Genes, 2021, 12(11): 1797.
DOI URL |
[3] |
DAS K C, MISRA H P. Hydroxyl radical scavenging and singlet oxygen quenching properties of polyamines[J]. Molecular and Cellular Biochemistry, 2004, 262(1): 127-133.
DOI URL |
[4] |
ZARZA X, SHABALA L, FUJITA M, et al. Extracellular spermine triggers a rapid intracellular phosphatidic acid response in Arabidopsis, involving PLDδ activation and stimulating ion flux[J]. Frontiers in Plant Science, 2019, 10: 601.
DOI URL |
[5] |
SODA K. Overview of polyamines as nutrients for human healthy long life and effect of increased polyamine intake on DNA methylation[J]. Cells, 2022, 11(1): 164.
DOI URL |
[6] |
CHEN D D, SHAO Q S, YIN L H, et al. Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses[J]. Frontiers in Plant Science, 2018, 9: 1945.
DOI PMID |
[7] |
TAKÁCS Z, POÓR P, TARI I. Interaction between polyamines and ethylene in the response to salicylic acid under normal photoperiod and prolonged darkness[J]. Plant Physiology and Biochemistry, 2021, 167: 470-480.
DOI PMID |
[8] |
GERLIN L, BAROUKH C, GENIN S. Polyamines: double agents in disease and plant immunity[J]. Trends in Plant Science, 2021, 26(10): 1061-1071.
DOI PMID |
[9] | 何超, 沈登荣, 花蕾, 等. 梨小食心虫滞育过程中多胺代谢的变化[J]. 浙江农业学报, 2015, 27(11): 1960-1964. |
HE C, SHEN D R, HUA L, et al. Changes of polyamine metabolism in larvae of oriental fruit moth, Grapholita molesta, during diapause development[J]. Acta Agriculturae Zhejiangensis, 2015, 27(11): 1960-1964. (in Chinese with English abstract) | |
[10] | 胡俊杰, 张古文, 胡齐赞, 等. 低温胁迫对菜用大豆生长、叶片活性氧及多胺代谢的影响[J]. 浙江农业学报, 2011, 23(6): 1113-1118. |
HU J J, ZHANG G W, HU Q Z, et al. Effects of chilling stress on growth, metabolism of reactive oxygen species and polyamines in vegetable soybean seedlings[J]. Acta Agriculturae Zhejiangensis, 2011, 23(6): 1113-1118. (in Chinese with English abstract) | |
[11] |
JIMÉNEZ-BREMONT J F, CHÁVEZ-MARTÍNEZ A I, ORTEGA-AMARO M A, et al. Translational and post-translational regulation of polyamine metabolic enzymes in plants[J]. Journal of Biotechnology, 2022, 344: 1-10.
DOI URL |
[12] | KHAZAAL S, AL SAFADI R, OSMAN D, et al. Investigation of the polyamine biosynthetic and transport capability of Streptococcus agalactiae: the non-essential PotABCD transporter[J]. Microbiology (Reading, England), 2021, 167(12): 001124. |
[13] | FUJITA M, FUJITA Y, IUCHI S, et al. Natural variation in a polyamine transporter determines paraquat tolerance in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): 6343-6347. |
[14] |
CHAI H X, GUO J F, ZHONG Y L, et al. The plasma-membrane polyamine transporter PUT3 is regulated by the Na(+)/H(+) antiporter SOS1 and protein kinase SOS2[J]. The New Phytologist, 2020, 226(3): 785-797.
DOI URL |
[15] |
MULANGI V, CHIBUCOS M C, PHUNTUMART V, et al. Kinetic and phylogenetic analysis of plant polyamine uptake transporters[J]. Planta, 2012, 236(4): 1261-1273.
DOI PMID |
[16] |
WIPF D, LUDEWIG U, TEGEDER M, et al. Conservation of amino acid transporters in fungi, plants and animals[J]. Trends in Biochemical Sciences, 2002, 27(3): 139-147.
PMID |
[17] |
OKUMOTO S, PILOT G. Amino acid export in plants: a missing link in nitrogen cycling[J]. Molecular Plant, 2011, 4(3): 453-463.
DOI PMID |
[18] |
BEGAM R A, GOOD A G. The Arabidopsis paraquat resistant1 mutant accumulates leucine upon dark treatment[J]. Botany, 2017, 95(7): 751-761.
DOI URL |
[19] |
DONG S C, HU H Z, WANG Y M, et al. A pqr2 mutant encodes a defective polyamine transporter and is negatively affected by ABA for paraquat resistance in Arabidopsis thaliana[J]. Journal of Plant Research, 2016, 129(5): 899-907.
DOI URL |
[20] |
SAGOR G H M, BERBERICH T, KOJIMA S, et al. Spermine modulates the expression of two probable polyamine transporter genes and determines growth responses to cadaverine in Arabidopsis[J]. Plant Cell Reports, 2016, 35(6): 1247-1257.
DOI URL |
[21] |
MARTINIS J, GAS-PASCUAL E, SZYDLOWSKI N, et al. Long-distance transport of thiamine (vitamin B1) is concomitant with that of polyamines[J]. Plant Physiology, 2016, 171(1): 542-553.
DOI PMID |
[22] |
SHEN Y, RUAN Q X, CHAI H X, et al. The Arabidopsis polyamine transporter LHR1/PUT3 modulates heat responsive gene expression by enhancing mRNA stability[J]. The Plant Journal, 2016, 88(6): 1006-1021.
DOI URL |
[23] |
AHMED S, ARIYARATNE M, PATEL J, et al. Altered expression of polyamine transporters reveals a role for spermidine in the timing of flowering and other developmental response pathways[J]. Plant Science, 2017, 258: 146-155.
DOI PMID |
[24] |
LI J Y, MU J Y, BAI J T, et al. PARAQUAT RESISTANT1, a golgi-localized putative transporter protein, is involved in intracellular transport of paraquat[J]. Plant Physiology, 2013, 162(1): 470-483.
DOI PMID |
[25] | 张斌, 刘询, 耿雅楠, 等. 水稻多胺转运蛋白OsPUT1基因RNAi载体的构建及遗传转化[J]. 分子植物育种, 2016, 14(10): 2653-2658. |
ZHANG B, LIU X, GENG Y N, et al. Construction and genetic transformation of RNAi vector for OsPUT1 gene in rice[J]. Molecular Plant Breeding, 2016, 14(10): 2653-2658. (in Chinese with English abstract) | |
[26] | 张斌, 阮颖. 水稻多胺转运蛋白OsPUT1基因过表达载体构建及遗传转化[J]. 基因组学与应用生物学, 2018, 37(1): 386-392. |
ZHANG B, RUAN Y. Construction of overexpression vector and genetic transformation of polyamine transporter OsPUT1 gene in rice[J]. Genomics and Applied Biology, 2018, 37(1): 386-392. (in Chinese with English abstract) | |
[27] |
王长龙, 张力, 罗立新, 等. 水稻NAL11基因对苗期非生物逆境的响应分析[J]. 华北农学报, 2020, 35(4): 120-128.
DOI |
WANG C L, ZHANG L, LUO L X, et al. Response analysis of rice gene NAL11 to abiotic stresses at the stage of seedling[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(4): 120-128. (in Chinese with English abstract) | |
[28] | 张斌, 黄亚玲, 彭英姿, 等. 拟南芥突变体atput3过表达水稻OsPUT1基因对百草枯敏感性的研究[J]. 农业生物技术学报, 2023, 30(2): 242-249. |
ZHANG B, HUANG Y L, PENG Y Z, et al. Study on the sensitivity of Arabidopsis thaliana mutant atput3 which overexpressing rice(Oryza sativa) OsPUT1 gene to paraquat[J]. Journal of Agricultural Biotechnology, 2023, 30(2): 242-249. (in Chinese with English abstract) | |
[29] |
ZHAO H M, MA H L, YU L, et al. Genome-wide survey and expression analysis of amino acid transporter gene family in rice (Oryza sativa L.)[J]. PLoS One, 2012, 7(11): e49210.
DOI URL |
[30] |
IGARASHI K, KASHIWAGI K. Characteristics of cellular polyamine transport in prokaryotes and eukaryotes[J]. Plant Physiology and Biochemistry, 2010, 48(7): 506-512.
DOI PMID |
[31] |
ALHAG A, SONG J, DAHRO B, et al. Genome-wide identification and expression analysis of polyamine uptake transporter gene family in sweet orange (Citrus sinensis)[J]. Plant Biology (Stuttgart, Germany), 2021, 23(6): 1157-1166.
DOI PMID |
[32] |
LI M, WANG C H, SHI J L, et al. Abscisic acid and putrescine synergistically regulate the cold tolerance of melon seedlings[J]. Plant Physiology and Biochemistry, 2021, 166: 1054-1064.
DOI PMID |
[1] | ZHANG Chaozheng, ZHANG Xupeng, CHEN Danling. Does labor force aging and cultivated land fragmentation increase rice production cost?: based on microscopic investigation in southeast Hubei Province, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1211-1222. |
[2] | XIA Xiaodong, ZHANG Xiaobo, SHI Yongfeng, XU Rugen. Research progress in gene cloning and molecular mechanism of rice lethal mutants [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1223-1234. |
[3] | JIANG Yingying, ZHANG Hua, LEI Zhiwei, XU Heng, ZHANG Heng, ZHU Ying. OsMYC2, a key transcription factor in jasmonic acid signaling pathway, regulates the induction and differentiation of embryogenic callus in rice [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 973-982. |
[4] | MA Yihu, ZENG Xiaoyuan, HE Xianbiao, ZHOU Naidi, CHEN Jian. Response of grain yield and quality of high quality rice to climate factors at different sowing dates in southeastern Zhejiang Province, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 736-751. |
[5] | LI Yanan, YE Wenxing, ZHU Xiangde, CHEN Lin, XU Xiaofeng, ZHANG Lili. LC-MS/MS-based study on effect of rice straw instead of partial corn silage on plasma metabolites of dairy cows [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 266-274. |
[6] | WU Shaofu, NI Yuanjun, ZHAN Lichuan, PENG Lu, WU Yingjie. Effects of different soil amendments on safe production and iron and zinc contents of rice in cadmium and mercury compound polluted soil [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 417-424. |
[7] | FAN Chuang, ZHAO Zihao, ZHANG Xuesong, YANG Shenbin. Prediction model of one season rice development period based on BP neural network [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 434-444. |
[8] | YOU Cuicui, HE Yizhe, XU Peng, HUANG Yaru, WANG Hui, HE Haibing, KE Jian, WU Liquan. Injury effect of high temperature stress on growth and development of rice and its defense countermeasures [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 10-22. |
[9] | YANG Shengling, HUANG Xingcheng, LI Yu, LIU Yanling, ZHANG Yarong, ZHANG Yan, ZHANG Wen’an, JIANG Taiming. Effects of long-term organic and inorganic fertilizer application on growth, dry matter accumulation and yield of rice [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1815-1825. |
[10] | YANG Hailong, WANG Hui, LEI Jinchao, CAI Jinyang. Analysis and evaluation of phenotypic diversities of early indica rice germplasm resources in Zhejiang Province [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1571-1581. |
[11] | HUANG Feng, XING Jianping, FU Shaohuai, PAN Pan, WU Lin, LIU Beibei, CHEN Miao. Effects of different safe utilization technologies on cadmium reduction in rice-vegetable rotation system in northern Hainan, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1725-1733. |
[12] | HUANG Donghui, ZHONG Peng, WANG Jianli, HU Yunlong, WANG Zhigang. Effects of environmental conditions on biofilm formation of Bacillus altitudinis LZP02 [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1466-1473. |
[13] | LOU Fei, FU Tianling, DAI Liangyu, ZHOU Kai, LIN Dasong, HE Tengbing. Effects of soil conditioners on Cd translocation and accumulation and yield of rice in central Guizhou Province, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1493-1501. |
[14] | DONG Yuanyuan, XU Heng, ZHANG Hua, ZHANG Heng, WANG Fulin, GU Nana, ZHU Ying. Dynamic profile of genes related to seed dormancy under high humidity condition during late stage of rice grain filling [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1103-1113. |
[15] | TAI Yueying, HE Tengbing, CHEN Xiaoran, ZHANG Wang, HUANG Xiaoyun, LIU Hongyan, GAO Zhenran. Effects of foliar spraying inhibitor on uptake and translocation of cadmium in rice under flooded paddy field [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1248-1257. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||