Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (7): 1617-1625.DOI: 10.3969/j.issn.1004-1524.20220862
• Horticultural Science • Previous Articles Next Articles
ZHANG Xiaobin1(
), ZHU Yihang1, ZHAO Yiying1, CHEN Miaojin2, SUN Qinan2, XIE Baoliang1, FENG Shaoran3, GU Qing1,*(
)
Received:2022-06-10
Online:2023-07-25
Published:2023-08-17
Contact:
GU Qing
CLC Number:
ZHANG Xiaobin, ZHU Yihang, ZHAO Yiying, CHEN Miaojin, SUN Qinan, XIE Baoliang, FENG Shaoran, GU Qing. Optimization of nondestructive testing method for soluble solid content of peach based on visible/near infrared spectroscopy[J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1617-1625.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20220862
| 模型Model | 品种Variety | RMSE | R2 |
|---|---|---|---|
| 单品种模型Model of single variety | 白丽Baili | 0.34 | 0.92 |
| 新玉Xinyu | 0.22 | 0.98 | |
| 湖景蜜露Hujingmilu | 0.33 | 0.96 | |
| 两品种混合模型Mixed model of two varieties | 白丽+新玉Baili+Xinyu | 0.45 | 0.90 |
| 湖景蜜露+新玉Hujingmilu+Xinyu | 0.39 | 0.95 | |
| 白丽+湖景蜜露Baili+Hujingmilu | 0.43 | 0.93 | |
| 三品种混合模型Mixed model of three varieties | 白丽+新玉+湖景蜜露Baili+Xinyu+ Hujingmilu | 0.42 | 0.92 |
Table 1 Analysis of various models of H100 detector
| 模型Model | 品种Variety | RMSE | R2 |
|---|---|---|---|
| 单品种模型Model of single variety | 白丽Baili | 0.34 | 0.92 |
| 新玉Xinyu | 0.22 | 0.98 | |
| 湖景蜜露Hujingmilu | 0.33 | 0.96 | |
| 两品种混合模型Mixed model of two varieties | 白丽+新玉Baili+Xinyu | 0.45 | 0.90 |
| 湖景蜜露+新玉Hujingmilu+Xinyu | 0.39 | 0.95 | |
| 白丽+湖景蜜露Baili+Hujingmilu | 0.43 | 0.93 | |
| 三品种混合模型Mixed model of three varieties | 白丽+新玉+湖景蜜露Baili+Xinyu+ Hujingmilu | 0.42 | 0.92 |
| 模型 Model | 品种 Variety | 白丽 Baili | 新玉 Xinyu | 湖景蜜露 Hujingmilu | 平均值 Average |
|---|---|---|---|---|---|
| 单品种模型 | 白丽Baili | 0.91 | 0.94 | 0.86 | 0.90 |
| Model of single variety | 新玉Xinyu | 0.84 | 0.99 | 0.81 | 0.88 |
| 湖景蜜露Hujingmilu | 0.84 | 0.84 | 0.97 | 0.88 | |
| 两品种混合模型 | 白丽+新玉Baili+Xinyu | 0.87 | 0.97 | 0.88 | 0.91 |
| Mixed model of two varieties | 湖景蜜露+新玉Hujingmilu+Xinyu | 0.87 | 0.98 | 0.87 | 0.91 |
| 白丽+湖景蜜露Baili+Hujingmilu | 0.89 | 0.95 | 0.88 | 0.91 | |
| 三品种混合模型 | 白丽+新玉+湖景蜜露Baili+Xinyu+ Hujingmilu | 0.91 | 0.96 | 0.89 | 0.92 |
| Mixed model of three varieties |
Table 2 Comparison of the test value of sugar content obtained by the model analysis of H100 detector and the test value of destructive sugar content
| 模型 Model | 品种 Variety | 白丽 Baili | 新玉 Xinyu | 湖景蜜露 Hujingmilu | 平均值 Average |
|---|---|---|---|---|---|
| 单品种模型 | 白丽Baili | 0.91 | 0.94 | 0.86 | 0.90 |
| Model of single variety | 新玉Xinyu | 0.84 | 0.99 | 0.81 | 0.88 |
| 湖景蜜露Hujingmilu | 0.84 | 0.84 | 0.97 | 0.88 | |
| 两品种混合模型 | 白丽+新玉Baili+Xinyu | 0.87 | 0.97 | 0.88 | 0.91 |
| Mixed model of two varieties | 湖景蜜露+新玉Hujingmilu+Xinyu | 0.87 | 0.98 | 0.87 | 0.91 |
| 白丽+湖景蜜露Baili+Hujingmilu | 0.89 | 0.95 | 0.88 | 0.91 | |
| 三品种混合模型 | 白丽+新玉+湖景蜜露Baili+Xinyu+ Hujingmilu | 0.91 | 0.96 | 0.89 | 0.92 |
| Mixed model of three varieties |
| 品类 Type | 平均值 Average value | 最大值 Maximum value | 最小值 Minimum value | 标准差 Standard deviation |
|---|---|---|---|---|
| 新玉(生) Xinyu (raw) | 5.02 | 10.01 | 1.95 | 1.93 |
| 新玉(熟) Xinyu (ripe) | 2.70 | 5.25 | 1.36 | 0.91 |
| 湖景蜜露(生) Hujingmilu (raw) | 5.25 | 11.20 | 3.20 | 1.89 |
| 湖景蜜露(熟) Hujingmilu (ripe) | 2.25 | 6.20 | 1.22 | 1.08 |
Table 3 Hardness parameters of peaches
| 品类 Type | 平均值 Average value | 最大值 Maximum value | 最小值 Minimum value | 标准差 Standard deviation |
|---|---|---|---|---|
| 新玉(生) Xinyu (raw) | 5.02 | 10.01 | 1.95 | 1.93 |
| 新玉(熟) Xinyu (ripe) | 2.70 | 5.25 | 1.36 | 0.91 |
| 湖景蜜露(生) Hujingmilu (raw) | 5.25 | 11.20 | 3.20 | 1.89 |
| 湖景蜜露(熟) Hujingmilu (ripe) | 2.25 | 6.20 | 1.22 | 1.08 |
| [1] | BIRD J J, BARNES C M, MANSO L J, et al. Fruit quality and defect image classification with conditional GAN data augmentation[J]. Scientia Horticulturae, 2022, 293: 110684. |
| [2] | XIN M, LI C B, HE X M, et al. Integrated metabolomic and transcriptomic analyses of quality components and associated molecular regulation mechanisms during passion fruit ripening[J]. Postharvest Biology and Technology, 2021, 180: 111601. |
| [3] | POURDARBANI R, REZAEI B. Automatic detection of greenhouse plants pests by image analysis[J]. Journal of Agriculture Machinery Science, 2011, 7(2):171-174. |
| [4] | POURDARBANI R, SABZI S, KALANTARI D, et al. A computer vision system based on majority-voting ensemble neural network for the automatic classification of three chickpea varieties[J]. Foods, 2020, 9(2): 113. |
| [5] | MESA K R, SERRA S, MASIA A, et al. Seasonal trends of starch and soluble carbohydrates in fruits and leaves of ‘Abbé Fétel’ pear trees and their relationship to fruit quality parameters[J]. Scientia Horticulturae, 2016, 211: 60-69. |
| [6] | NAVARRO J M, BOTÍA P, PÉREZ-PÉREZ J G. Influence of deficit irrigation timing on the fruit quality of grapefruit (Citrus paradisi Mac.)[J]. Food Chemistry, 2015, 175: 329-336. |
| [7] | MISHRA P, PASSOS D. A synergistic use of chemometrics and deep learning improved the predictive performance of near-infrared spectroscopy models for dry matter prediction in mango fruit[J]. Chemometrics and Intelligent Laboratory Systems, 2021, 212: 104287. |
| [8] | THEANJUMPOL P, WONGZEEWASAKUN K, MUENMANEE N, et al. Non-destructive identification and estimation of granulation in ‘Sai Num Pung’ tangerine fruit using near infrared spectroscopy and chemometrics[J]. Postharvest Biology and Technology, 2019, 153: 13-20. |
| [9] | GUO Y, NI Y N, KOKOT S. Evaluation of chemical components and properties of the jujube fruit using near infrared spectroscopy and chemometrics[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2016, 153: 79-86. |
| [10] | MARTÍNEZ-VALDIVIESO D, FONT R, BLANCO-DÍAZ M T, et al. Application of near-infrared reflectance spectroscopy for predicting carotenoid content in summer squash fruit[J]. Computers and Electronics in Agriculture, 2014, 108: 71-79. |
| [11] | MISHRA P, WOLTERING E, BROUWER B, et al. Improving moisture and soluble solids content prediction in pear fruit using near-infrared spectroscopy with variable selection and model updating approach[J]. Postharvest Biology and Technology, 2021, 171: 111348. |
| [12] | LIU Y D, ZHANG Y, JIANG X G, et al. Detection of the quality of juicy peach during storage by visible/near infrared spectroscopy[J]. Vibrational Spectroscopy, 2020, 111: 103152. |
| [13] | MISHRA P, RUTLEDGE D N, ROGER J M, et al. Chemometric pre-processing can negatively affect the performance of near-infrared spectroscopy models for fruit quality prediction[J]. Talanta, 2021, 229: 122303. |
| [14] | MULISA BOBASA E, DAO THI PHAN A, MANOLIS C, et al. Effect of sample presentation on the near infrared spectra of wild harvest Kakadu plum fruits (Terminalia ferdinandiana)[J]. Infrared Physics & Technology, 2020, 111: 103560. |
| [15] | POURDARBANI R, SABZI S, KALANTARI D, et al. Non-destructive visible and short-wave near-infrared spectroscopic data estimation of various physicochemical properties of Fuji apple (Malus pumila) fruits at different maturation stages[J]. Chemometrics and Intelligent Laboratory Systems, 2020, 206: 104147. |
| [1] | ZHU Weijing, WU Jia, HONG Chunlai, ZHU Fengxiang, HONG Leidong, ZHANG Tao, ZHANG Shuo, ZHU Huifen. Effects of straw mulching on water, heat, fertility status of soil and yield and quality of flat peach [J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 1924-1932. |
| [2] | LI Tao, JIANG Haiyan, ZHANG Yuanpeng, ZHAO Qin, WU Fang, ZHU Yanguang, LI Dandan, HE Yang. Potential geographical distribution of Cryptolestes turcicus (Grouville) in China based on MaxEnt model [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1107-1120. |
| [3] | CAO Mengjiao, BAI Shi, TANG Panpan, WANG Yeqing, XU Hongxing, ZHOU Guoxin. Evaluation of damage degree of Chilo suppressalis on early rice based on unmanned aerial vehicle multispectral remote sensing [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 603-611. |
| [4] | WANG Binbin, QI Keke, MEN Xiaoming, XU Ziwei. Application and perspect of genomic selection in pork quality breeding [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 726-735. |
| [5] | GUO Xiuming, WANG Dawei, LIU Shengping, ZHU Yeping, LIU Xiaohui, LIN Kejian, WANG Jiayu, LI Fei. Study on key problems for rat hole recognition and count near ground based on deep learning and its application [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2146-2154. |
| [6] | LI Xiaona, ZHANG Lin, BAI Qinfei, MA Siling, YANG Han, PAN Yinxixue, DENG Zhongjian. Impacts of climate change on the potential suitable area of Erigeron breviscapus in China [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1844-1855. |
| [7] | CHENG Jiayu, CHEN Miaojin, LI Tong, SUN Qinan, ZHANG Xiaobin, ZHAO Yiying, ZHU Yihang, GU Qing. Detection of peach trees in unmanned aerial vehicle (UAV) images based on improved Faster-RCNN network [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1909-1919. |
| [8] | PAN Zhijun, WU Xiaowen, WU Chenyang, CHENG Yu, CHEN Long, ZHANG Xiaohong, ZHANG Jinshan, ZHOU Bing, JIANG Bo, ZHANG Wenjing, CHE Zhao, SONG He. Analysis of yield and utilization of temperature and light resources of different types of ratoon rice varieties in central Anhui, China [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1492-1501. |
| [9] | CHENG Chen, DONG Chaoyang, ZHENG Shenghong, ZHOU Yubo, ZHONG Ning, LI Wenming, ZHU Yangchun, DING Fenghua, FENG Liping, LI Zhenfa. Comparison of simulation accuracy of leaf age models for horticultural crops driven by light and temperature factors [J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1368-1378. |
| [10] | MAO Erye, ZHANG Xiaodan, XIE Jianming, MA Ning, CHANG Youlin, HU Shilian. Simulation of thermal processes and optimization of parameters for active heat storage and discharge system in solar greenhouse [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 671-680. |
| [11] | LIU Yuhong, JIN Jiansheng, CHEN Liping, SUN Caixia. Residue dynamics and risk assessment of four pesticides in yellow peach [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 432-440. |
| [12] | ZHAO Han, XIANG Kexin, LIU Chunju, LI Bin, LI Dajing, LI Yue, NIU Liying, YU Rui. Relationship between chemical composition, microstructure and texture of different varieties of peach fruits [J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2705-2718. |
| [13] | LI Qiao, ZHANG Huadong, SUN Sanmin, YIN Caiyun. Water demand prediction of jujube tree based on TCN-Attention-GRU model [J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2823-2831. |
| [14] | ZHOU Lili, FENG Haikuan, NIE Chenwei, XU Xiaobin, LIU Yuan, MENG Lin, XUE Beibei, MING Bo, LIANG Qiyun, SU Tao, JIN Xiuliang. Influence of unmanned aerial vehicle observation time on estimation of canopy chlorophyll density of maize [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 18-31. |
| [15] | WANG Yu, WANG Hong, XIAO Jiujun, LI Kexiang, XING Dan, ZHANG Yongliang, CHEN Yang, ZHANG Lanyue. Numerical estimation of chlorophyll in pepper leaves based on optimized vegetation index combination [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2109-2120. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||