Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (4): 808-819.DOI: 10.3969/j.issn.1004-1524.20240596
• Horticultural Science • Previous Articles Next Articles
DI Yancui(
), JI Zelin, WANG Yuanyuan, LOU Shihao, ZHANG Tao, GUO Zhixin, SHEN Shunshan, PIAO Fengzhi, DU Nanshan, DONG Xiaoxing, DONG Han*(
)
Received:2024-07-04
Online:2025-04-25
Published:2025-05-09
CLC Number:
DI Yancui, JI Zelin, WANG Yuanyuan, LOU Shihao, ZHANG Tao, GUO Zhixin, SHEN Shunshan, PIAO Fengzhi, DU Nanshan, DONG Xiaoxing, DONG Han. Identification, subcellular localization and expression analysis of tomato SlMYB52 gene[J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 808-819.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240596
| 引物名称 Primer name | 引物序列 Primer sequence(5'→3') | 注释 Annotation |
|---|---|---|
| RT-SlMYB52-F | GCAGAAAGGTACGAGCATGG | qRT-PCR |
| RT-SlMYB52-R | GTTCTTGAAAGCCCTGCGAA | |
| RT-ACTIN2-F | TGTCCCTATTTACGAGGGTTATGC | |
| RT-ACTIN2-R | CAGTTAAATCACGACCAGCAAGAT | |
| RT-UBI3-F | GCCGACTACAACATCCAGAAGG | |
| RT-UBI3-R | TGCAACACAGCGAGCTTAACC | |
| GFP-SlMYB52-F | ctctcgagctttcgc gagctcATGCCAAGGGTACAACAACAGC | 融合绿色荧光蛋白Fused with GFP |
| GFP-SlMYB52-R | gcccttgctcaccat ggatccGATATTTCCAAGTACATCAATCCAGAA |
Table 1 Primer sequences
| 引物名称 Primer name | 引物序列 Primer sequence(5'→3') | 注释 Annotation |
|---|---|---|
| RT-SlMYB52-F | GCAGAAAGGTACGAGCATGG | qRT-PCR |
| RT-SlMYB52-R | GTTCTTGAAAGCCCTGCGAA | |
| RT-ACTIN2-F | TGTCCCTATTTACGAGGGTTATGC | |
| RT-ACTIN2-R | CAGTTAAATCACGACCAGCAAGAT | |
| RT-UBI3-F | GCCGACTACAACATCCAGAAGG | |
| RT-UBI3-R | TGCAACACAGCGAGCTTAACC | |
| GFP-SlMYB52-F | ctctcgagctttcgc gagctcATGCCAAGGGTACAACAACAGC | 融合绿色荧光蛋白Fused with GFP |
| GFP-SlMYB52-R | gcccttgctcaccat ggatccGATATTTCCAAGTACATCAATCCAGAA |
| 名称 Name | 序列 Sequence | 功能 Function | 数目 Amount |
|---|---|---|---|
| TGA-element | AACGAC | 生长素响应元件Auxin-responsive element | 1 |
| TC-rich repeats | ATTCTCTAAC | 参与防御和应激反应的顺式作用因子 | 1 |
| cis-acting element involved in defense and stress responsiveness | |||
| ACE | CTAACGTATT | 与光响应性有关的顺式作用元件cis-acting element involved in light responsiveness | 1 |
| TCA-element | CCATCTTTTT | 参与水杨酸反应的顺式作用元件 | 1 |
| cis-acting element involved in salicylic acid responsiveness | |||
| ABRE | ACGTG | 参与脱落酸反应的顺式元件 | 2 |
| AACCCGG | cis-acting element involved in the abscisic acid responsiveness | 1 | |
| ARE | AAACCA | 对厌氧诱导必不可少的顺式调节元件 | 2 |
| cis-acting regulatory element essential for the anaerobic induction | |||
| AuxRR-core | GGTCCAT | 参与生长素反应性的顺式调控元件 | 1 |
| cis-acting regulatory element involved in auxin responsiveness | |||
| G-box | TACGTG | 参与光响应的顺式调节元件 | 2 |
| cis-acting regulatory element involved in light responsiveness | |||
| TGACG-motif | CGTCA | 参与MeJA反应的顺式作用调控元件 | 3 |
| TGACG | cis-acting regulatory element involved in the MeJA-responsiveness | 3 | |
| CAAT-box | CAAAT | 启动子和增强子区域中常见的顺式作用元件 | 14 |
| CCAAT | Common cis-acting element in promoter and enhancer regions | 7 | |
| TATA-box | ATATAA | 核心启动子元件在转录开始的-30左右 | 3 |
| ATATAT | Core promoter element around -30 of transcription start-30左右 | 3 | |
| ATTATA | 6 | ||
| TACAAAA | 2 | ||
| TATA | 20 | ||
| TATAA | 6 | ||
| TATAAA | 1 | ||
| TATAAAT | 1 | ||
| TATAAATA | 1 | ||
| TATACA | 3 | ||
| TATATA | 3 | ||
| TATATAA | 2 | ||
| taTATAAAtc | 1 | ||
| TATATTTATATTT | 1 | ||
| TATTTAAA | 1 | ||
| GT1-motif | GGTTAA | 光响应元件Light responsive element | 2 |
| MRE | AACCTAA | MYB结合位点参与光响应性MYB binding site involved in light esponsiveness | 2 |
| Box 4 | ATTAAT | 与光反应有关的保守DNA模块的一部分 | 5 |
| Part of a conserved DNA module involved in light responsiveness | |||
| TCT-motif | TCTTAC | 光响应元件的一部分Part of a light responsive element | 1 |
| GATA-motif | GATAGGA | 光响应元件的一部分Part of a light responsive element | 1 |
| TGA-box | TGACGTAA | 生长素反应元件的一部分Part of an auxin-responsive element | 1 |
Table 2 Analysis of cis-acting elements of SlMYB52 gene promoter
| 名称 Name | 序列 Sequence | 功能 Function | 数目 Amount |
|---|---|---|---|
| TGA-element | AACGAC | 生长素响应元件Auxin-responsive element | 1 |
| TC-rich repeats | ATTCTCTAAC | 参与防御和应激反应的顺式作用因子 | 1 |
| cis-acting element involved in defense and stress responsiveness | |||
| ACE | CTAACGTATT | 与光响应性有关的顺式作用元件cis-acting element involved in light responsiveness | 1 |
| TCA-element | CCATCTTTTT | 参与水杨酸反应的顺式作用元件 | 1 |
| cis-acting element involved in salicylic acid responsiveness | |||
| ABRE | ACGTG | 参与脱落酸反应的顺式元件 | 2 |
| AACCCGG | cis-acting element involved in the abscisic acid responsiveness | 1 | |
| ARE | AAACCA | 对厌氧诱导必不可少的顺式调节元件 | 2 |
| cis-acting regulatory element essential for the anaerobic induction | |||
| AuxRR-core | GGTCCAT | 参与生长素反应性的顺式调控元件 | 1 |
| cis-acting regulatory element involved in auxin responsiveness | |||
| G-box | TACGTG | 参与光响应的顺式调节元件 | 2 |
| cis-acting regulatory element involved in light responsiveness | |||
| TGACG-motif | CGTCA | 参与MeJA反应的顺式作用调控元件 | 3 |
| TGACG | cis-acting regulatory element involved in the MeJA-responsiveness | 3 | |
| CAAT-box | CAAAT | 启动子和增强子区域中常见的顺式作用元件 | 14 |
| CCAAT | Common cis-acting element in promoter and enhancer regions | 7 | |
| TATA-box | ATATAA | 核心启动子元件在转录开始的-30左右 | 3 |
| ATATAT | Core promoter element around -30 of transcription start-30左右 | 3 | |
| ATTATA | 6 | ||
| TACAAAA | 2 | ||
| TATA | 20 | ||
| TATAA | 6 | ||
| TATAAA | 1 | ||
| TATAAAT | 1 | ||
| TATAAATA | 1 | ||
| TATACA | 3 | ||
| TATATA | 3 | ||
| TATATAA | 2 | ||
| taTATAAAtc | 1 | ||
| TATATTTATATTT | 1 | ||
| TATTTAAA | 1 | ||
| GT1-motif | GGTTAA | 光响应元件Light responsive element | 2 |
| MRE | AACCTAA | MYB结合位点参与光响应性MYB binding site involved in light esponsiveness | 2 |
| Box 4 | ATTAAT | 与光反应有关的保守DNA模块的一部分 | 5 |
| Part of a conserved DNA module involved in light responsiveness | |||
| TCT-motif | TCTTAC | 光响应元件的一部分Part of a light responsive element | 1 |
| GATA-motif | GATAGGA | 光响应元件的一部分Part of a light responsive element | 1 |
| TGA-box | TGACGTAA | 生长素反应元件的一部分Part of an auxin-responsive element | 1 |
Fig.7 Subcellular localization of SlMYB52 protein GFP stands for GFP fluorescence, Nucleus stands for nuclear localization, Bright stands for bright field, Merged stands for superposition.
Fig.8 Expression of SlMYB52 in different tissues of tomato The bars with different lowercase letters indicate significant difference(P<0.05). The same as below.
Fig.9 Expression of SlMYB52 under high salt (A), low temperature (B), drought (C) and Phytophthora capsici-infected (D) stress * indicates significant difference at P<0.05.
| [1] | KAJAL, OJHA R, LOHANI P, et al. Engineering the transcriptional regulatory network to improve abiotic stress tolerance in crop plants: taming the tough time[J]. Journal of Plant Growth Regulation, 2024, 43(1): 25-37. |
| [2] | NAKANO T, SUZUKI K, FUJIMURA T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiology, 2006, 140(2): 411-432. |
| [3] | 胡若琳, 袁超, 牛义, 等. 植物MYB转录因子在花药发育中的调控作用[J]. 生物工程学报, 2020, 36(11): 2277-2286. |
| HU R L, YUAN C, NIU Y, et al. Regulation of plant MYB transcription factors in anther development[J]. Chinese Journal of Biotechnology, 2020, 36(11): 2277-2286. (in Chinese with English abstract) | |
| [4] | GATICA-ARIAS A, FARAG M A, STANKE M, et al. Flavonoid production in transgenic hop (Humulus lupulus L.) altered by PAP1/MYB75 from Arabidopsis thaliana L.[J]. Plant Cell Reports, 2012, 31: 111-119. |
| [5] | 张振, 徐志璇, 王丽娜, 等. 过表达SlMYB75对番茄幼苗、果实及种子的影响[J]. 山东农业大学学报(自然科学版), 2019, 50(6): 937-943. |
| ZHANG Z, XU Z X, WANG L N, et al. Effects of overexpression of SlMYB75 on tomato seedlings, fruits and seeds[J]. Journal of Shandong Agricultural University(Natural Science Edition), 2019, 50(6): 937-943. (in Chinese with English abstract) | |
| [6] | 邱文怡, 王诗雨, 李晓芳, 等. MYB转录因子参与植物非生物胁迫响应与植物激素应答的研究进展[J]. 浙江农业学报, 2020, 32(7): 1317-1328. |
| QIU W Y, WANG S Y, LI X F, et al. Functions of plant MYB transcription factors in response to abiotic stress and plant hormones[J]. Acta Agriculturae Zhejiangensis, 2020, 32(7): 1317-1328. (in Chinese with English abstract) | |
| [7] | 江舟, 韩丽君. 茄科植物转录因子MYB基因家族研究现状[J]. 现代园艺, 2023, 46(18): 187-189. |
| JIANG Z, HAN L J. Research status of MYB gene family of transcription factors in Solanaceae plants[J]. Contemporary Horticulture, 2023, 46(18): 187-189. (in Chinese) | |
| [8] | OGATA K, MORIKAWA S, NAKAMURA H, et al. Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices[J]. Cell, 1994, 79(4): 639-648. |
| [9] | MA D W, PETER CONSTABEL C. MYB repressors as regulators of phenylpropanoid metabolism in plants[J]. Trends in Plant Science, 2019, 24(3): 275-289. |
| [10] | 艾佳琦, 庞鸿涛, 胡天华, 等. 茄果类蔬菜MYB转录因子研究进展[J]. 中国蔬菜, 2023(6): 23-33. |
| AI J Q, PANG H T, HU T H, et al. Research progress on MYB transcription factors of solanaceous fruit vegetable[J]. China Vegetables, 2023(6): 23-33. (in Chinese with English abstract) | |
| [11] | 位欣欣, 兰海燕. 植物MYB转录因子调控次生代谢及逆境响应的研究进展[J]. 生物技术通报, 2022, 38(8): 12-23. |
| WEI X X, LAN H Y. Advances in the regulation of plant MYB transcription factors in secondary metabolism and stress response[J]. Biotechnology Bulletin, 2022, 38(8): 12-23. (in Chinese with English abstract) | |
| [12] | GENG P, ZHANG S, LIU J Y, et al. MYB20, MYB42, MYB43, and MYB85 regulate phenylalanine and lignin biosynthesis during secondary cell wall formation[J]. Plant Physiology, 2020, 182(3): 1272-1283. |
| [13] | LIU X F, YIN X R, ALLAN A C, et al. The role of MrbHLH1 and MrMYB1 in regulating anthocyanin biosynthetic genes in tobacco and Chinese bayberry (Myrica rubra) during anthocyanin biosynthesis[J]. Plant Cell, Tissue and Organ Culture, 2013, 115: 285-298. |
| [14] | TYAGI K, SUNKUM A, RAI M, et al. Seeing the unseen: a trifoliate (MYB117) mutant allele fortifies folate and carotenoids in tomato fruits[J]. The Plant Journal, 2022, 112(1): 38-54. |
| [15] | WANG F B, KONG W L, WONG G, et al. AtMYB12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana[J]. Molecular Genetics and Genomics, 2016, 291(4): 1545-1559. |
| [16] | NAKABAYASHI R, YONEKURA-SAKAKIBARA K, URANO K, et al. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids[J]. The Plant Journal, 2014, 77(3): 367-379. |
| [17] | 赵盼盼. 番茄R2R3MYB转录因子家族鉴定及SlMYB41和SlMYB64基因功能研究[D]. 泰安: 山东农业大学, 2017. |
| ZHAO P P. Genome-wide identification of R2R3MYB gene family and functional analysis of SlMYB41 and SlMYB64 in tomato[J]. Taian: Shandong Agricultural University, 2017. (in Chinese with English abstract) | |
| [18] | ZHANG L Y, JIANG X C, LIU Q Y, et al. The HY5 and MYB15 transcription factors positively regulate cold tolerance in tomato via the CBF pathway[J]. Plant, Cell & Environment, 2020, 43(11): 2712-2726. |
| [19] | QI S M, ZHANG S J, ISLAM M M, et al. Natural resources resistance to tomato spotted wilt virus (TSWV) in tomato (Solanum lycopersicum)[J]. International Journal of Molecular Sciences, 2021, 22(20): 10978. |
| [20] | 倪红艳, 王庆芬, 张乐, 等. 设施番茄高效栽培技术应用与推广[J]. 新农民, 2024(11): 78-80. |
| NI H Y, WANG Q F, ZHANG L, et al. Application and promotion of efficient cultivation techniques for facility tomatoes[J]. New Farmers, 2024(11): 78-80. (in Chinese) | |
| [21] | 田永强, 高丽红. 设施番茄高品质栽培理论与技术[J]. 中国蔬菜, 2021(2): 30-40. |
| TIAN Y Q, GAO L H. Theory and technology for facility cultivation of high-quality tomato[J]. China Vegetables, 2021(2): 30-40. (in Chinese with English abstract) | |
| [22] | QUINET M, ANGOSTO T, YUSTE-LISBONA F J, et al. Tomato fruit development and metabolism[J]. Frontiers in Plant Science, 2019, 10: 1554. |
| [23] | STOLERU V, INCULET S C, MIHALACHE G, et al. Yield and nutritional response of greenhouse grown tomato cultivars to sustainable fertilization and irrigation management[J]. Plants, 2020, 9(8): 1053. |
| [24] | 苏常红, 寻雅雯, 宋子豪. CaCl2、甜菜碱、5-氨基乙酰丙酸提升番茄耐低温弱光研究[J]. 山西大学学报(自然科学版), 2023, 46(5): 1217-1226. |
| SU C H, XUN Y W, SONG Z H. Study of the chilling and low light tolerance of tomato improved by CaCl2, Glycine betaine, and 5-aminolevulinic acid[J]. Journal of Shanxi University(Natural Science Edition), 2023, 46(5): 1217-1226. (in Chinese with English abstract) | |
| [25] | MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651-681. |
| [26] | LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method[J]. Methods, 2001, 25(4): 402-408. |
| [27] | 许玲, 王元琮, 何晓兰, 等. 大豆转录因子GmMYB52的克隆、表达及结合功能分析[J]. 作物学报, 2017, 43(10): 1458-1467. |
| XU L, WANG Y C, HE X L, et al. Isolation, expression and binding function analysis of the transcription factor GmMYB52 in soybean[J]. Acta Agronomica Sinica, 2017, 43(10): 1458-1467. (in Chinese with English abstract) | |
| [28] | 张群华, 方玉占, 杜建科, 等. 园艺植物R2R3-MYB转录因子研究现状[J]. 分子植物育种, 2024, 22(1): 85-96. |
| ZHANG Q H, FANG Y Z, DU J K, et al. Research status of R2R3-MYB transcription factors in horticultural plants[J]. Molecular Plant Breeding, 2024, 22(1): 85-96. (in Chinese with English abstract) | |
| [29] | LUO Q, LIU R X, ZENG L G, et al. Isolation and molecular characterization of NtMYB4a, a putative transcription activation factor involved in anthocyanin synthesis in tobacco[J]. Gene, 2020, 760: 144990. |
| [30] | DE ZELICOURT A, COLCOMBET J, HIRT H. The role of MAPK modules and ABA during abiotic stress signaling[J]. Trends in Plant Science, 2016, 21(8): 677-685. |
| [31] | YOSHIDA T, FUJITA Y, SAYAMA H, et al. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation[J]. The Plant Journal, 2010, 61(4): 672-685. |
| [32] | XIANG Y, TANG N, DU H, et al. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice[J]. Plant Physiology, 2008, 148(4): 1938-1952. |
| [33] | 吴小亲. SlMYB64参与番茄植株生长及花粉萌发的初步研究[D]. 泰安: 山东农业大学, 2016. |
| WU X Q. Preliminary study on SlMYB64 involved in plant growth and pollen germination in tomato[D]. Taian: Shandong Agricultural University 2016. (in Chinese with English abstract) | |
| [34] | 沈峰屹. 番茄SLMYB14基因响应非生物胁迫的功能分析[D]. 哈尔滨: 东北农业大学, 2021. |
| SHEN F Y. Functional analysis of SLMYB14 gene of tomato in response to abiotic stess[D]. Harbin: Northeast Agricultural University, 2021. (in Chinese with English abstract) | |
| [35] | CUI J, JIANG N, ZHOU X X, et al. Tomato MYB49 enhances resistance to Phytophthora infestans and tolerance to water deficit and salt stress[J]. Planta, 2018, 248(6): 1487-1503. |
| [1] | HU Yingjie, DU Chenqi, WANG Liufan, SHOU Jianxin, WANG Chao, XU Mei, YAN Xu. Research progress of vesicle trafficking in plant response to salt stress [J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 2003-2011. |
| [2] | GUAN Xiusheng, LIU Tieshan, WANG Juan, ZHANG Maolin, LIU Chunxiao, DONG Rui, GUAN Haiying, LIU Qiang, XU Yang, HE Chunmei. Bioinformatics analysis and cloning of NF-YA family genes in maize(Zea mays) [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1605-1614. |
| [3] | WANG Xiaohui, JIA Sainan, FENG Jiayu, YIN Xinyue, LIU Zixuan, LIU Wenjie, ZHAO Shuaiying, WANG Shujing, TANG Yuehui. Cloning and function analysis of JcMBY27 gene from Jatropha curcas [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1658-1665. |
| [4] | LI Yujing, HUANG Qianru, ZHANG Aidong, WU Xuexia, ZHU Dongxing, XIAO Kai. Function of the SmMYB13 gene in drought stress response in eggplant (Solanum melongena L.) [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1666-1679. |
| [5] | LIU Yan, LIN Tianbao, LYU Zhiqiang. Research progress on the function of galactinol synthase gene family in plants [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1817-1824. |
| [6] | MIAO Bailing, CHEN Juanjuan, LI Liangjie, CHU Zongli, DONG Xiangxiang. The function of CchABCG5 gene in Camellia chekiangoleosa Hu [J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1407-1416. |
| [7] | ZHOU Danning, XU Jiao, BAI Jing, LIU Xiangnan, ZHU Yunhao. Endophytic fungal GG22 protein improves growth of Carthamus tinctorius L. seedling under stress conditions [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1193-1202. |
| [8] | ZHANG Yueyu, HUANG Meiqi, ZHANG Lin, QI Ying, LI Qiuling. Effects of bta-miR-146b on the signaling pathway of milk protein synthesis in heat-stressed bovine mammary epithelial cells [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1212-1220. |
| [9] | XIANG Ying, CONG Jianmin, PAN Danhong, TAO Yonggang. Comprehensive evaluation of the growth process of different tomato varieties under spring organic greenhouse planting [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1252-1261. |
| [10] | LIU Pengfei, ZHANG Shuhan, HONG Kai, SHAO Yue, LOU Binggan. Isolation and identification of the pathogen causing tomato canker in Zhejiang Province of China [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1293-1300. |
| [11] | HU Xinrou, WANG Mei, ZHANG Yafen, CAI Weiming, JIN Qunli. Effect of abiotic stress on growth development and response mechanism of Ganoderma [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1182-1190. |
| [12] | HE Guoxin, LI Sujuan, WANG Jian, TAO Xiaoyuan, YE Zihong, CHEN Guang, XU Shengchun. Screening and identification of soybean germplasm for low nitrogen tolerance during seedling stage [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 965-976. |
| [13] | ZHANG Meiying, MO Qian, QI Xiushuang, TONG Ningning, KONG Fan, LIU Zheng’an, LYU Changping, PENG Liping. Cloning and expression analysis of peony PoLPAT2 gene [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 321-328. |
| [14] | REN Yuanlong, MA Rong, WANG Xiaozhuo, ZHANG Xueyan. Mitigative effect of foliar spraying melatonin on drought stress of cabbage seedlings [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 338-348. |
| [15] | CUI Bowen, ZHANG Siyi, WANG Jialing, WANG Jinghong, LIN Jixiang, YANG Qingjie. Bioinformatics analysis and drought-tolerant gene mining of WRKY family members in Carex siderosticta [J]. Acta Agriculturae Zhejiangensis, 2025, 37(10): 2087-2103. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||