Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (6): 1309-1318.DOI: 10.3969/j.issn.1004-1524.20240456
• Environmental Science • Previous Articles Next Articles
LIN Xiaobing1,2(), LI Jiang3, CHENG Yanhong1,*(
), WANG Binqiang1, HE Shaolang1,2, HUANG Shangshu1, HUANG Qianru1
Received:
2024-05-23
Online:
2025-06-25
Published:
2025-07-08
CLC Number:
LIN Xiaobing, LI Jiang, CHENG Yanhong, WANG Binqiang, HE Shaolang, HUANG Shangshu, HUANG Qianru. Effects of organic materials on soil microbial biomass, mineral nitrogen content and rice yield[J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1309-1318.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240456
有机物料 Organic materials | pH值 pH value | 有机质含量 Organic matter content/(g·kg-1) | 全氮含量 Total nitrogen content/% | 全磷含量 Total phosphorus content/% | 全钾含量 Total potassium content/% |
---|---|---|---|---|---|
秸秆生物质炭Straw biochar | 9.27 | 603.4 | 0.51 | 0.70 | 1.70 |
牛粪蚯蚓堆肥Vermicompost of cow dung | 8.04 | 380.2 | 0.90 | 0.60 | 0.81 |
葛渣堆肥Radix puerariae residues compost | 8.53 | 494.0 | 2.41 | 0.43 | 0.77 |
葛渣生物质炭堆肥 | 9.40 | 504.6 | 1.63 | 0.50 | 0.93 |
Compost of Radix puerariae residues and biochar | |||||
葛渣蚯蚓堆肥Vermicompost of Radix puerariae residues | 8.97 | 382.5 | 0.95 | 0.50 | 0.80 |
Table 1 Basic properties of different organic materials
有机物料 Organic materials | pH值 pH value | 有机质含量 Organic matter content/(g·kg-1) | 全氮含量 Total nitrogen content/% | 全磷含量 Total phosphorus content/% | 全钾含量 Total potassium content/% |
---|---|---|---|---|---|
秸秆生物质炭Straw biochar | 9.27 | 603.4 | 0.51 | 0.70 | 1.70 |
牛粪蚯蚓堆肥Vermicompost of cow dung | 8.04 | 380.2 | 0.90 | 0.60 | 0.81 |
葛渣堆肥Radix puerariae residues compost | 8.53 | 494.0 | 2.41 | 0.43 | 0.77 |
葛渣生物质炭堆肥 | 9.40 | 504.6 | 1.63 | 0.50 | 0.93 |
Compost of Radix puerariae residues and biochar | |||||
葛渣蚯蚓堆肥Vermicompost of Radix puerariae residues | 8.97 | 382.5 | 0.95 | 0.50 | 0.80 |
处理 Treatment | 基肥种类及其施用量 Application rate of basal fertilizers | 追肥种类及其施用量 Application rate of topdressing | |||
---|---|---|---|---|---|
有机物料 Organic materials | 尿素 Urea | 钙镁磷肥 Calcium magnesium phosphate | 氯化钾 Potassium chloride | 尿素 Urea | |
CK | 0 | 212.50 | 718.75 | 200.00 | 140.62 |
BC | 3 000 | 192.33 | 335.28 | 97.59 | 128.22 |
VC | 3 000 | 177.30 | 390.24 | 151.20 | 118.20 |
PC | 3 000 | 119.11 | 483.67 | 153.61 | 79.41 |
PBCC | 3 000 | 149.16 | 445.20 | 143.98 | 99.44 |
PVCC | 3 000 | 175.38 | 445.20 | 151.81 | 116.92 |
Table 2 Fertilizer management of treatments kg·hm-2
处理 Treatment | 基肥种类及其施用量 Application rate of basal fertilizers | 追肥种类及其施用量 Application rate of topdressing | |||
---|---|---|---|---|---|
有机物料 Organic materials | 尿素 Urea | 钙镁磷肥 Calcium magnesium phosphate | 氯化钾 Potassium chloride | 尿素 Urea | |
CK | 0 | 212.50 | 718.75 | 200.00 | 140.62 |
BC | 3 000 | 192.33 | 335.28 | 97.59 | 128.22 |
VC | 3 000 | 177.30 | 390.24 | 151.20 | 118.20 |
PC | 3 000 | 119.11 | 483.67 | 153.61 | 79.41 |
PBCC | 3 000 | 149.16 | 445.20 | 143.98 | 99.44 |
PVCC | 3 000 | 175.38 | 445.20 | 151.81 | 116.92 |
Fig.1 Effects of treatments on content of soil microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) Bars marked without the same letters indicate significant difference within treatments at P<0.05 at the same growth stage. The same as below.
Fig.6 Correlation of soil physiochemical indexes and rice yield NO 3 --N, Soil nitrate nitrogen content; NH 4 +-N, Soil ammonium nitrogen content; MBC, Soil microbial biomass carbon content; MBN, Soil microbial biomass nitrogen content; DOC, Soil dissolved organic carbon content; TRS, Soil total reducing substances content; Y, Rice yield. “*” “**” and “***” indicate significant correlations at P<0.05, P<0.01 and P<0.001 level, respectively.
[1] | TIAN S H, SUN X C, XIAO H, et al. Evaluation of rice straw and its transformation products on norfloxacin degradation and antibiotic resistome attenuation during soil incorporation[J]. Chemosphere, 2023, 313: 137451. |
[2] | 杜为研, 唐杉, 汪洪. 我国有机肥资源及产业发展现状[J]. 中国土壤与肥料, 2020(3): 210-219. |
DU W Y, TANG S, WANG H. The status of organic fertilizer industry and organic fertilizer resources in China[J]. Soil and Fertilizer Sciences in China, 2020(3): 210-219. (in Chinese with English abstract) | |
[3] | 武淑霞, 刘宏斌, 黄宏坤, 等. 我国畜禽养殖粪污产生量及其资源化分析[J]. 中国工程科学, 2018, 20(5): 103-111. |
WU S X, LIU H B, HUANG H K, et al. Analysis on the amount and utilization of manure in livestock and poultry breeding in China[J]. Strategic Study of CAE, 2018, 20(5): 103-111. (in Chinese with English abstract) | |
[4] | QIAN X, GU J, SUN W, et al. Diversity, abundance, and persistence of antibiotic resistance genes in various types of animal manure following industrial composting[J]. Journal of Hazardous Materials, 2018, 344: 716-722. |
[5] | SINGH G, GUPTA M K, CHAURASIYA S, et al. Rice straw burning: a review on its global prevalence and the sustainable alternatives for its effective mitigation[J]. Environmental Science and Pollution Research, 2021, 28(25): 32125-32155. |
[6] | ZHOU G X, XU X F, QIU X W, et al. Biochar influences the succession of microbial communities and the metabolic functions during rice straw composting with pig manure[J]. Bioresource Technology, 2019, 272: 10-18. |
[7] | 衣淑娟, 邵浩宸, 沈玉君, 等. 牛粪和玉米秸秆混合好氧堆肥过程分层规律[J]. 农业工程学报, 2023, 39(3): 180-189. |
YI S J, SHAO H C, SHEN Y J, et al. Stratification law of the mixed aerobic composting process of cow manure and maize stovers[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(3): 180-189. (in Chinese with English abstract) | |
[8] | WAQAS M, HASHIM S, HUMPHRIES U W, et al. Composting processes for agricultural waste management: a comprehensive review[J]. Processes, 2023, 11(3): 731. |
[9] | 袁京, 刘燕, 唐若兰, 等. 畜禽粪便堆肥过程中碳氮损失及温室气体排放综述[J]. 农业环境科学学报, 2021, 40(11): 2428-2438. |
YUAN J, LIU Y, TANG R L, et al. A review of carbon and nitrogen losses and greenhouse gas emissions during livestock manure composting[J]. Journal of Agro-Environment Science, 2021, 40(11): 2428-2438. (in Chinese with English abstract) | |
[10] | 姜继韶, 侯睿, 崔慧林, 等. 基于Meta分析的蚯蚓堆肥对堆肥质量和重金属的影响效应[J]. 环境科学, 2024, 45(5): 3047-3058. |
JIANG J S, HOU R, CUI H L, et al. Effects of vermicomposting on compost quality and heavy metals: a meta-analysis[J]. Environmental Science, 2024, 45(5): 3047-3058. (in Chinese with English abstract) | |
[11] | 孙青, 王志葵, 张洪生, 等. 农业有机废弃物生物多效堆肥资源化利用技术规程[J]. 新农业, 2022(18): 4-6. |
SUN Q, WANG Z K, ZHANG H S, et al. Technical specification for multi-effect resource utilization of agricultural organic waste by biological composting[J]. Xin Nongye, 2022(18): 4-6. (in Chinese) | |
[12] | SMITH P. Carbon sequestration in croplands: the potential in Europe and the global context[J]. European Journal of Agronomy, 2004, 20(3): 229-236. |
[13] | 宋鹏慧, 方玉凤, 王晓燕, 等. 不同有机物料育秧基质对水稻秧苗生长及养分积累的影响[J]. 中国土壤与肥料, 2015(2): 98-102. |
SONG P H, FANG Y F, WANG X Y, et al. Effect of different organic materials substrate on rice seedling growth and nutrients accumulation[J]. Soil and Fertilizer Sciences in China, 2015(2): 98-102. (in Chinese with English abstract) | |
[14] | 李孟婵, 张鹤, 杨慧珍, 等. 不同原料好氧堆肥过程中碳转化特征及腐殖质组分的变化[J]. 干旱地区农业研究, 2019, 37(2): 81-87. |
LI M C, ZHANG H, YANG H Z, et al. Effects of different compost materials on carbon transformation and the change of humus during composting process[J]. Agricultural Research in the Arid Areas, 2019, 37(2): 81-87. (in Chinese with English abstract) | |
[15] | 孙桂阳, 张国言, 董元杰. 不同来源农业废弃物堆肥进程与产品肥效研究[J]. 水土保持学报, 2021, 35(4): 349-360. |
SUN G Y, ZHANG G Y, DONG Y J. Composting process of agricultural wastes from different sources and fertilizer efficiency of their products[J]. Journal of Soil and Water Conservation, 2021, 35(4): 349-360. (in Chinese with English abstract) | |
[16] | 陈慧, 何绍浪, 王馨悦, 等. 葛渣综合利用研究进展[J]. 江西农业学报, 2023, 35(9): 162-168. |
CHEN H, HE S L, WANG X Y, et al. Research progress in comprehensive utilization of Radix pueraria residues[J]. Acta Agriculturae Jiangxi, 2023, 35(9): 162-168. (in Chinese with English abstract) | |
[17] | 黄秋连, 谢璐欣, 杨碧穗, 等. 粉葛农艺性状与品质的相关性研究[J]. 中药材, 2021, 44(7): 1563-1568. |
HUANG Q L, XIE L X, YANG B S, et al. Correlation between agronomic traits and quality of Pueraria lobata[J]. Journal of Chinese Medicinal Materials, 2021, 44(7): 1563-1568. (in Chinese) | |
[18] | 朱卫丰, 李佳莉, 孟晓伟, 等. 葛属植物的化学成分及药理活性研究进展[J]. 中国中药杂志, 2021, 46(6): 1311-1331. |
ZHU W F, LI J L, MENG X W, et al. Research advances in chemical constituents and pharmacological activities of Pueraria genus[J]. China Journal of Chinese Materia Medica, 2021, 46(6): 1311-1331. (in Chinese with English abstract) | |
[19] | 王馨悦, 成艳红, 何绍浪, 等. 基于葛渣肥料化利用的蚯蚓转化技术研究[J]. 农业资源与环境学报, 2022, 39(1): 201-208. |
WANG X Y, CHENG Y H, HE S L, et al. Study on earthworm transformation technology based on fertilizer utilization of Pueraria root residue[J]. Journal of Agricultural Resources and Environment, 2022, 39(1): 201-208. (in Chinese with English abstract) | |
[20] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
[21] | LI L J, HAN X Z. Changes of soil properties and carbon fractions after long-term application of organic amendments in Mollisols[J]. CATENA, 2016, 143: 140-144. |
[22] | 石思博, 王旭东, 叶正钱, 等. 菌渣化肥配施对稻田土壤微生物量碳氮和可溶性碳氮的影响[J]. 生态学报, 2018, 38(23): 8612-8620. |
SHI S B, WANG X D, YE Z Q, et al. Effects of the combination of fungal residue and chemical fertilizer on soil microbial biomass carbon and nitrogen and dissolved organic carbon and nitrogen in paddy soil[J]. Acta Ecologica Sinica, 2018, 38(23): 8612-8620. (in Chinese with English abstract) | |
[23] | 陈安强, 付斌, 鲁耀, 等. 有机物料输入稻田提高土壤微生物碳氮及可溶性有机碳氮[J]. 农业工程学报, 2015, 31(21): 160-167. |
CHEN A Q, FU B, LU Y, et al. Exogenous organic materials applied to paddy field improving soil microbial biomass C, N and dissolved organic C, N[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(21): 160-167. (in Chinese with English abstract) | |
[24] | 谷月, 吴景贵. 有机物料还田土壤碳、氮及微生物量动态影响研究[J]. 中国农业科技导报, 2022, 24(4): 126-133. |
GU Y, WU J G. Study on dynamic effects of organic materials on soil carbon, nitrogen and microbial biomass[J]. Journal of Agricultural Science and Technology, 2022, 24(4): 126-133. (in Chinese with English abstract) | |
[25] | 何瑞成, 吴景贵. 有机物料对原生盐碱地土壤生物学性质的影响[J]. 土壤学报, 2018, 55(3): 774-782. |
HE R C, WU J G. Effect of amendment of organic materials on soil biological property in primary saline alkali soil[J]. Acta Pedologica Sinica, 2018, 55(3): 774-782. (in Chinese with English abstract) | |
[26] | 刘猷红, 孟英, 唐傲, 等. 化肥配施有机物料对盐碱地水稻产量和品质的影响[J]. 黑龙江农业科学, 2022(8): 19-24. |
LIU Y H, MENG Y, TANG A, et al. Effects of chemical fertilizer and organic materials on yield and quality of rice in saline-alkali soil[J]. Heilongjiang Agricultural Sciences, 2022(8): 19-24. (in Chinese with English abstract) | |
[27] | 徐明岗, 于荣, 王伯仁. 土壤活性有机质的研究进展[J]. 土壤肥料, 2000(6): 3-7. |
XU M G, YU R, WANG B R. Research progress of soil active organic matter[J]. Soils and Fertilizers, 2000(6): 3-7. (in Chinese) | |
[28] | 吴富强, 李英梅, 卫拯友, 等. 葛根菌糠生物有机肥在温室蔬菜上的应用效果研究[J]. 陕西农业科学, 2009, 55(6): 61-63. |
WU F Q, LI Y M, WEI Z Y, et al. Study on the application effect of Pueraria lobata mushroom bran bio-organic fertilizer on greenhouse vegetables[J]. Shaanxi Journal of Agricultural Sciences, 2009, 55(6): 61-63. (in Chinese) | |
[29] | CRUTCHIK D, RODRÍGUEZ-VALDECANTOS G, BUSTOS G, et al. Vermiproductivity, maturation and microbiological changes derived from the use of liquid anaerobic digestate during the vermicomposting of market waste[J]. Water Science and Technology, 2020, 82(9): 1781-1794. |
[30] | LUO G W, LI L, FRIMAN V P, et al. Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: a meta-analysis[J]. Soil Biology and Biochemistry, 2018, 124: 105-115. |
[31] | PRZEMIENIECKI S W, SKWIERCZ A, DAMSZEL M, et al. Ecology, biology and enzymatic activity of the rhizosphere planted with Larix decidua seedlings after addition of vermicompost[J]. Applied Soil Ecology, 2021, 168: 104101. |
[32] | 燕金锐, 律其鑫, 高增平, 等. 有机肥与生物炭对沙化土壤理化性质的影响[J]. 江苏农业科学, 2019, 47(9): 303-307. |
YAN J R, LU Q X, GAO Z P, et al. Effects of organic fertilizer and biochar on physicochemical properties of sandy soil[J]. Jiangsu Agricultural Sciences, 2019, 47(9): 303-307. (in Chinese with English abstract) | |
[33] | 常晓, 张云龙, 徐翎清, 等. 不同氮素形态配比对甜菜氮同化关键酶的影响[J]. 作物杂志, 2025(1): 235-242. |
CHANG X, ZHANG Y L, XU L Q, et al. Effects of different nitrogen form ratio on key enzymes of nitrogen assimilation in sugar beet[J/ON]. Crops, 2025(1): 235-242. (in Chinese with English abstract) | |
[34] | 王璐, 朱占玲, 刘照霞, 等. 多种有机物料混施对苹果幼苗生长、氮素利用及土壤特性的影响[J]. 水土保持学报, 2021, 35(5): 362-368. |
WANG L, ZHU Z L, LIU Z X, et al. Effects of mixtures of different organic materials on apple seedling growth, nitrogen utilization and soil properties[J]. Journal of Soil and Water Conservation, 2021, 35(5): 362-368. (in Chinese with English abstract) | |
[35] | 邓亚琴, 徐智, 张勇, 等. 土壤微生物生物量氮对不同腐熟度有机肥的响应及对土壤矿质氮的调控作用[J]. 应用生态学报, 2023, 34(1): 137-144. |
DENG Y Q, XU Z, ZHANG Y, et al. Responses of soil microbial biomass nitrogen to organic fertilizer with different degrees of maturity and regu-lation to soil mineral nitrogen[J]. Chinese Journal of Applied Ecology, 2023, 34(1): 137-144. (in Chinese with English abstract) | |
[36] | 李慕嵘, 李霞, 李赟, 等. 开花期渍水对不同施氮量条件下小麦产量及土壤矿质氮的影响[J]. 西南农业学报, 2024, 37(1): 75-83. |
LI M R, LI X, LI Y, et al. Effects of waterlogging during flowering on wheat yield and soil mineral nitrogen under different nitrogen application rates[J]. Southwest China Journal of Agricultural Sciences, 2024, 37(1): 75-83. (in Chinese with English abstract) | |
[37] | 左红娟. 基于高丰度15N的肥料氮去向及利用率研究[D]. 北京: 中国农业科学院, 2012. |
ZUO H J. Study of the fate and use efficiency of fertilizer nitrogen based on high abundance of 15N[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. (in Chinese with English abstract) | |
[38] | 曾科, 杨兰芳, 于婧, 等. 不同类型作物生长对土壤有效氮构成和氮肥转化利用的影响[J]. 河南农业科学, 2017, 46(1): 58-63. |
ZENG K, YANG L F, YU J, et al. Effects of growing of different types of crops on constitution of soil available nitrogen and transformation and utilization of nitrogen fertilizer[J]. Journal of Henan Agricultural Sciences, 2017, 46(1): 58-63. (in Chinese with English abstract) |
[1] | ZHANG Zhi, HE Haohao, YU Miao, XU Jianfeng. Effects of chemical fertilizer reduction combined with soil conditioner on soil acidity, soil nutrients and rice yield [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1301-1308. |
[2] | SU Yang, SHANG Xiaolan, QIAN Zhongming, WU Lingen, HUANG Jiaqi, ZHUANG Haifeng, ZHAO Yufei, DANG Hongyang, XU Lijun. Effects of synergistic enhancement of straw returning to the field with decomposition agent and biochar on soil quality and rice growth [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1139-1148. |
[3] | ZHU Xiao, ZHU Ying, LI Hongjun, CHEN Shanfeng. Preparation and quality of oat chickpea compound rice by squeezing [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1149-1158. |
[4] | LIU Qihua, SUN Zhaowen, ZHENG Chongke. Effects of nitrogen management on absorption and allocation of microelements in above-ground parts of dry direct-sowing rice [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 987-997. |
[5] | DONG Zhichao, YUE Ningyan, LYU Wei, YU Xiaoyi, ZHENG Kaiwen, SONG Haixing, CHEN Haifei. Differential responses of yield, quality, and nitrogen use efficiency to nitrogen application rate in high- and low-oil content rapeseed varieties [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 998-1008. |
[6] | LI Yancui, LI Fuqiang, ZHOU Bo. Effects of deficit irrigation at different growth stages on photosynthetic characteristics, yield and quality of Astragalus membranaceus var. mongholicus [J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 779-789. |
[7] | QIN Yukun, CHEN Junying, WANG Yuping, ZHANG Lijuan. Effects of reducing nitrogen and increasing carbon on cotton production and nitrogen absorption and utilization in the Yangtze River Basin of China [J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 869-879. |
[8] | YING Yongfei, HAN Dongxuan, MENG Fang, YU Lin, SHEN Jialuan, WANG Kaiying. Effects of biogas slurry substituting chemical fertilizer on rice yield and quality and soil characteristics [J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 880-891. |
[9] | SONG Xinlu, FAN Shuhong, WU Guangqi, ZHAN Mengqi, HOU Qian, LI Mingyue, XU Yan. Effects of combined copper-phenanthrene pollution on physiological characteristics and pollutant accumulation of rice roots at tillering stage [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 521-529. |
[10] | LEI Zhiwei, LI Xinxin, XU Heng, ZHANG Heng, ZHU Ying, ZHANG Hua. Identification of QTLs for stem borer resistance using chromosome segment substitution lines in rice [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 530-537. |
[11] | XIE Changyan, JIN Yumeng, ZHANG Miao, DONG Qingjun, LI Qing, JI Li, ZHONG Ping, CHEN Chuan, ZHANG Ankang. Application effect of nutrient soil made from river sludge for machine-transplanted rice seedling [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 538-547. |
[12] | LI Guiping, XU Xiaomei, LU Lizhi. Rice-duck farming and its environmental effects [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 643-653. |
[13] | WU Jiaqi, ZHU Xueming, BAO Jiandong, WANG Caoyi, ZHOU Xiaoyu, LI Lin, LIN Fucheng. Research progress on biological control of rice blast [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 736-744. |
[14] | WAN Shaoyuan, LIU Xianbo, CAI Shuo, SHI Hong, CHENG Jie. Effect of irrigation and planting methods on the yield and quality of double-cropping rice [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 257-268. |
[15] | LAN Xuecheng, ZHAO Fengliang, ZHANG Guangxu, LI Yang, GUO Xiaohong. Effects of nano zinc oxide and nano silicon dioxide on rice seed germination [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 269-277. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||