Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (6): 1301-1308.DOI: 10.3969/j.issn.1004-1524.20241073
• Environmental Science • Previous Articles Next Articles
ZHANG Zhi1(), HE Haohao1, YU Miao1, XU Jianfeng2
Received:
2024-12-09
Online:
2025-06-25
Published:
2025-07-08
CLC Number:
ZHANG Zhi, HE Haohao, YU Miao, XU Jianfeng. Effects of chemical fertilizer reduction combined with soil conditioner on soil acidity, soil nutrients and rice yield[J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1301-1308.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20241073
处理 Treatment | pH值 pH value | 交换性H+含量 Exchangeable H+ content/ (cmol·kg-1) | 交换性Al3+含量 Exchangeable Al3+ content/ (cmol·kg-1) | 交换性酸总量 Exchangeable acidity/ (cmol·kg-1) |
---|---|---|---|---|
CK | 4.81±0.15 d | 0.48±0.06 a | 1.29±0.16 a | 1.77±0.22 a |
CF | 4.70±0.13 d | 0.45±0.08 a | 1.37±0.20 a | 1.82±0.28 a |
RF | 4.75±0.15 d | 0.47±0.09 a | 1.36±0.19 a | 1.83±0.25 a |
T1 | 5.14±0.16 c | 0.35±0.04 b | 0.91±0.07 b | 1.26±0.11 b |
T2 | 6.09±0.22 a | 0.30±0.03 b | 0.42±0.06 d | 0.72±0.08 d |
T3 | 5.22±0.16 c | 0.33±0.03 b | 0.92±0.08 b | 1.25±0.09 b |
T4 | 5.31±0.15 c | 0.32±0.03 b | 0.89±0.07 b | 1.22±0.09 b |
T5 | 5.80±0.26 b | 0.34±0.04 b | 0.74±0.08 bc | 1.08±0.05 bc |
T6 | 5.58±0.28 b | 0.27±0.03 b | 0.55±0.03 cd | 0.83±0.03 cd |
Table 1 Soil pH value, exchangeable H+ and Al3+content and exchangeable acidity under treatments
处理 Treatment | pH值 pH value | 交换性H+含量 Exchangeable H+ content/ (cmol·kg-1) | 交换性Al3+含量 Exchangeable Al3+ content/ (cmol·kg-1) | 交换性酸总量 Exchangeable acidity/ (cmol·kg-1) |
---|---|---|---|---|
CK | 4.81±0.15 d | 0.48±0.06 a | 1.29±0.16 a | 1.77±0.22 a |
CF | 4.70±0.13 d | 0.45±0.08 a | 1.37±0.20 a | 1.82±0.28 a |
RF | 4.75±0.15 d | 0.47±0.09 a | 1.36±0.19 a | 1.83±0.25 a |
T1 | 5.14±0.16 c | 0.35±0.04 b | 0.91±0.07 b | 1.26±0.11 b |
T2 | 6.09±0.22 a | 0.30±0.03 b | 0.42±0.06 d | 0.72±0.08 d |
T3 | 5.22±0.16 c | 0.33±0.03 b | 0.92±0.08 b | 1.25±0.09 b |
T4 | 5.31±0.15 c | 0.32±0.03 b | 0.89±0.07 b | 1.22±0.09 b |
T5 | 5.80±0.26 b | 0.34±0.04 b | 0.74±0.08 bc | 1.08±0.05 bc |
T6 | 5.58±0.28 b | 0.27±0.03 b | 0.55±0.03 cd | 0.83±0.03 cd |
处理 Treatment | 交换性Ca2+含量 Exchangeable Ca2+ content/ (cmol·kg-1) | 交换性Mg2+含量 Exchangeable Mg2+ content/ (cmol·kg-1) | 交换性K+含量 Exchangeable K+ content/ (cmol·kg-1) | 交换性Na+含量 Exchangeable Na+ content/ (cmol·kg-1) | 交换性盐基 离子总量 Base-exchangeable ions content/ (cmol·kg-1) | CEC/ (cmol·kg-1) | 盐基饱和度 Base saturation/% |
---|---|---|---|---|---|---|---|
CK | 2.62±0.28 bc | 0.87±0.14 d | 0.09±0.01 d | 0.11±0.01 a | 3.69±0.15 c | 6.89±0.41 cd | 53.78±5.25 c |
CF | 1.94±0.33 d | 0.73±0.08 d | 0.12±0.02 c | 0.12±0.02 a | 2.91±0.23 d | 6.66±0.26 d | 42.85±5.15 d |
RF | 2.38±0.17 cd | 0.69±0.07 d | 0.12±0.01 c | 0.11±0.01 a | 3.30±0.12 cd | 6.79±0.22 d | 48.69±3.00 cd |
T1 | 3.17±0.11 b | 1.12±0.07 bc | 0.15±0.02 b | 0.12±0.01 a | 4.56±0.07 b | 7.31±0.35 bc | 62.38±2.29 b |
T2 | 4.28±0.65 a | 1.19±0.12 ab | 0.12±0.01 c | 0.10±0.03 a | 5.69±0.79 a | 7.85±0.38 ab | 72.31±6.99 a |
T3 | 4.01±0.57 a | 0.87±0.19 d | 0.13±0.01 c | 0.11±0.02 a | 5.13±0.73 ab | 7.49±0.14 ab | 68.31±8.30 ab |
T4 | 3.85±0.36 a | 1.36±0.12 a | 0.17±0.02 ab | 0.11±0.01 a | 5.50±0.49 a | 7.90±0.30 a | 69.52±3.46 ab |
T5 | 4.10±0.27 a | 1.24±0.08 ab | 0.18±0.01 a | 0.10±0.03 a | 5.63±0.37 a | 7.70±0.30 ab | 73.03±1.94 a |
T6 | 4.12±0.45 a | 0.92±0.20 cd | 0.13±0.02 c | 0.11±0.02 a | 5.28±0.27 a | 7.51±0.23 ab | 70.26±2.41 ab |
Table 2 Soil cation exchange capacity (CEC), contents of base-exchangeable ions and base saturation under treatments
处理 Treatment | 交换性Ca2+含量 Exchangeable Ca2+ content/ (cmol·kg-1) | 交换性Mg2+含量 Exchangeable Mg2+ content/ (cmol·kg-1) | 交换性K+含量 Exchangeable K+ content/ (cmol·kg-1) | 交换性Na+含量 Exchangeable Na+ content/ (cmol·kg-1) | 交换性盐基 离子总量 Base-exchangeable ions content/ (cmol·kg-1) | CEC/ (cmol·kg-1) | 盐基饱和度 Base saturation/% |
---|---|---|---|---|---|---|---|
CK | 2.62±0.28 bc | 0.87±0.14 d | 0.09±0.01 d | 0.11±0.01 a | 3.69±0.15 c | 6.89±0.41 cd | 53.78±5.25 c |
CF | 1.94±0.33 d | 0.73±0.08 d | 0.12±0.02 c | 0.12±0.02 a | 2.91±0.23 d | 6.66±0.26 d | 42.85±5.15 d |
RF | 2.38±0.17 cd | 0.69±0.07 d | 0.12±0.01 c | 0.11±0.01 a | 3.30±0.12 cd | 6.79±0.22 d | 48.69±3.00 cd |
T1 | 3.17±0.11 b | 1.12±0.07 bc | 0.15±0.02 b | 0.12±0.01 a | 4.56±0.07 b | 7.31±0.35 bc | 62.38±2.29 b |
T2 | 4.28±0.65 a | 1.19±0.12 ab | 0.12±0.01 c | 0.10±0.03 a | 5.69±0.79 a | 7.85±0.38 ab | 72.31±6.99 a |
T3 | 4.01±0.57 a | 0.87±0.19 d | 0.13±0.01 c | 0.11±0.02 a | 5.13±0.73 ab | 7.49±0.14 ab | 68.31±8.30 ab |
T4 | 3.85±0.36 a | 1.36±0.12 a | 0.17±0.02 ab | 0.11±0.01 a | 5.50±0.49 a | 7.90±0.30 a | 69.52±3.46 ab |
T5 | 4.10±0.27 a | 1.24±0.08 ab | 0.18±0.01 a | 0.10±0.03 a | 5.63±0.37 a | 7.70±0.30 ab | 73.03±1.94 a |
T6 | 4.12±0.45 a | 0.92±0.20 cd | 0.13±0.02 c | 0.11±0.02 a | 5.28±0.27 a | 7.51±0.23 ab | 70.26±2.41 ab |
处理 Treatment | 有机质含量 Organic matter content/ (g·kg-1) | 全氮含量 Total N content/ (g·kg-1) | 碱解氮含量 Available N content/ (mg·kg-1) | 有效磷含量 Available P content/ (mg·kg-1) | 速效钾含量 Available K content/ (mg·kg-1) |
---|---|---|---|---|---|
CK | 15.2±0.6 de | 1.09±0.03 cd | 86.9±8.0 d | 43.6±3.4 f | 41.7±4.5 f |
CF | 16.7±1.0 c | 1.17±0.04 b | 92.7±0.9 cd | 84.4±1.8 a | 76.0±2.0 b |
RF | 16.8±0.8 c | 1.15±0.01 bc | 95.5±1.0 c | 65.1±1.4 c | 73.7±3.8 b |
T1 | 19.8±0.3 a | 1.25±0.06 a | 111.4±3.5 a | 84.2±0.3 a | 84.3±2.1 a |
T2 | 15.0±0.1 e | 1.03±0.04 d | 106.7±0.9 ab | 46.0±0.7 f | 37.3±2.3 g |
T3 | 18.4±0.6 b | 1.17±0.02 b | 101.5±3.6 b | 64.8±2.8 cd | 58.0±1.0 d |
T4 | 18.0±0.7 b | 1.18±0.06 b | 104.8±5.5 b | 72.2±0.8 b | 68.7±2.3 c |
T5 | 18.5±0.4 b | 1.15±0.02 bc | 103.7±2.2 b | 61.7±1.0 d | 53.3±3.2 e |
T6 | 16.3±0.6 cd | 1.11±0.04 bc | 105.1±0.9 b | 55.5±1.0 e | 56.0±4.0 de |
Table 3 Soil nutrients content under treatments
处理 Treatment | 有机质含量 Organic matter content/ (g·kg-1) | 全氮含量 Total N content/ (g·kg-1) | 碱解氮含量 Available N content/ (mg·kg-1) | 有效磷含量 Available P content/ (mg·kg-1) | 速效钾含量 Available K content/ (mg·kg-1) |
---|---|---|---|---|---|
CK | 15.2±0.6 de | 1.09±0.03 cd | 86.9±8.0 d | 43.6±3.4 f | 41.7±4.5 f |
CF | 16.7±1.0 c | 1.17±0.04 b | 92.7±0.9 cd | 84.4±1.8 a | 76.0±2.0 b |
RF | 16.8±0.8 c | 1.15±0.01 bc | 95.5±1.0 c | 65.1±1.4 c | 73.7±3.8 b |
T1 | 19.8±0.3 a | 1.25±0.06 a | 111.4±3.5 a | 84.2±0.3 a | 84.3±2.1 a |
T2 | 15.0±0.1 e | 1.03±0.04 d | 106.7±0.9 ab | 46.0±0.7 f | 37.3±2.3 g |
T3 | 18.4±0.6 b | 1.17±0.02 b | 101.5±3.6 b | 64.8±2.8 cd | 58.0±1.0 d |
T4 | 18.0±0.7 b | 1.18±0.06 b | 104.8±5.5 b | 72.2±0.8 b | 68.7±2.3 c |
T5 | 18.5±0.4 b | 1.15±0.02 bc | 103.7±2.2 b | 61.7±1.0 d | 53.3±3.2 e |
T6 | 16.3±0.6 cd | 1.11±0.04 bc | 105.1±0.9 b | 55.5±1.0 e | 56.0±4.0 de |
处理 Treatment | 有效穗数 Effective panicles/ (104 hm-2) | 每穗粒数 Spikelets per panicle | 结实率 Seed setting rate/% | 千粒重 1 000-grain weight/g | 产量 Yield/ (kg·hm-2) |
---|---|---|---|---|---|
CK | 257.95±10.39 b | 84.44±0.84 c | 83.31±0.43 a | 26.07±0.91 a | 4 740±128 f |
CF | 296.22±23.06 a | 100.17±13.07 abc | 82.24±2.79 a | 25.77±0.45 a | 5 742±697 de |
RF | 286.24±23.06 ab | 102.95±13.44 ab | 81.84±1.75 a | 25.87±0.40 a | 5 781±522 de |
T1 | 299.55±13.21 a | 116.33±0.89 a | 80.30±1.17 a | 25.83±0.60 a | 6 918±321 a |
T2 | 284.57±19.97 ab | 115.41±3.87 a | 80.32±1.63 a | 25.53±0.70 a | 6 126±419 cd |
T3 | 281.24±16.05 ab | 97.87±6.17 bc | 80.42±0.74 a | 25.80±1.66 a | 5 642±480 e |
T4 | 276.25±20.18 ab | 114.13±19.34 ab | 82.98±1.40 a | 25.87±0.55 a | 6 699±510 ab |
T5 | 272.92±17.53 ab | 108.21±8.32 ab | 82.43±2.24 a | 26.00±1.32 a | 6 309±476 bc |
T6 | 281.24±7.63 ab | 106.48±4.75 ab | 83.01±2.59 a | 25.73±0.25 a | 5 976±303 cde |
Table 4 Rice yield and yield components under treatments
处理 Treatment | 有效穗数 Effective panicles/ (104 hm-2) | 每穗粒数 Spikelets per panicle | 结实率 Seed setting rate/% | 千粒重 1 000-grain weight/g | 产量 Yield/ (kg·hm-2) |
---|---|---|---|---|---|
CK | 257.95±10.39 b | 84.44±0.84 c | 83.31±0.43 a | 26.07±0.91 a | 4 740±128 f |
CF | 296.22±23.06 a | 100.17±13.07 abc | 82.24±2.79 a | 25.77±0.45 a | 5 742±697 de |
RF | 286.24±23.06 ab | 102.95±13.44 ab | 81.84±1.75 a | 25.87±0.40 a | 5 781±522 de |
T1 | 299.55±13.21 a | 116.33±0.89 a | 80.30±1.17 a | 25.83±0.60 a | 6 918±321 a |
T2 | 284.57±19.97 ab | 115.41±3.87 a | 80.32±1.63 a | 25.53±0.70 a | 6 126±419 cd |
T3 | 281.24±16.05 ab | 97.87±6.17 bc | 80.42±0.74 a | 25.80±1.66 a | 5 642±480 e |
T4 | 276.25±20.18 ab | 114.13±19.34 ab | 82.98±1.40 a | 25.87±0.55 a | 6 699±510 ab |
T5 | 272.92±17.53 ab | 108.21±8.32 ab | 82.43±2.24 a | 26.00±1.32 a | 6 309±476 bc |
T6 | 281.24±7.63 ab | 106.48±4.75 ab | 83.01±2.59 a | 25.73±0.25 a | 5 976±303 cde |
[1] | MENG C, TIAN D S, ZENG H, et al. Global soil acidification impacts on belowground processes[J]. Environmental Research Letters, 2019, 14(7): 074003. |
[2] | YU Z P, CHEN H Y H, SEARLE E B, et al. Whole soil acidification and base cation reduction across subtropical China[J]. Geoderma, 2020, 361: 114107. |
[3] | BINKLEY D, DRISCOLL C T, ALLEN H L, et al. Acidic deposition and forest soils[M]. New York: Springer-Verlag, 1989. |
[4] | GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010. |
[5] | 王文娟, 杨知建, 徐华勤. 我国土壤酸化研究概述[J]. 安徽农业科学, 2015, 43(8): 54-56. |
WANG W J, YANG Z J, XU H Q. Overview of soil acidification research in China[J]. Journal of Anhui Agricultural Sciences, 2015, 43(8): 54-56. (in Chinese with English abstract) | |
[6] | 吴道铭, 傅友强, 于智卫, 等. 我国南方红壤酸化和铝毒现状及防治[J]. 土壤, 2013, 45(4): 577-584. |
WU D M, FU Y Q, YU Z W, et al. Status of red soil acidification and aluminum toxicity in south China and prevention[J]. Soils, 2013, 45(4): 577-584. (in Chinese with English abstract) | |
[7] | 何园球. 红壤质量演变与调控[M]. 北京: 科学出版社, 2008: 132-140. |
[8] | TIAN D S, NIU S L. A global analysis of soil acidification caused by nitrogen addition[J]. Environmental Research Letters, 2015, 10(2): 024019. |
[9] | ZHAO F J, MA Y B, ZHU Y G, et al. Soil contamination in China: current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49(2): 750-759. |
[10] | PUISSANT J, JONES B, GOODALL T, et al. The pH optimum of soil exoenzymes adapt to long term changes in soil pH[J]. Soil Biology and Biochemistry, 2019, 138: 107601. |
[11] | BRENNAN R F, BOLLAND M D A, BELL R W. Increased risk of zinc deficiency in wheat on soils limed to correct soil acidity[J]. Soil Research, 2005, 43(5): 647. |
[12] | 朱经伟, 张云贵, 刘青丽, 等. 石灰与腐植酸钾配施对新平整土地烤烟产量和品质的影响[J]. 腐植酸, 2017(1): 54. |
ZHU J W, ZHANG Y G, LIU Q L, et al. Effect of combined application of lime and potassium humate on yield and quality of flue-cured tobacco in newly leveled land[J]. Humic Acid, 2017(1): 54. (in Chinese) | |
[13] | 杜玉凤, 吕乐福, 何振全, 等. 矿物土壤改良剂对酸性红壤改良的影响[J]. 水土保持学报, 2016, 30(3): 351-354. |
DU Y F, LV L F, HE Z Q, et al. Effect of mineral conditioners on improvement of acid red soil[J]. Journal of Soil and Water Conservation, 2016, 30(3): 351-354. (in Chinese with English abstract) | |
[14] | 冀建华, 李絮花, 刘秀梅, 等. 硅钙钾镁肥对南方稻田土壤酸度的改良作用[J]. 土壤学报, 2019, 56(4): 895-906. |
JI J H, LI X H, LIU X M, et al. Effect of Si-Ca-K-Mg fertilizer remedying acid paddy soil in south China[J]. Acta Pedologica Sinica, 2019, 56(4): 895-906. (in Chinese with English abstract) | |
[15] | SHI R Y, LIU Z D, LI Y, et al. Mechanisms for increasing soil resistance to acidification by long-term manure application[J]. Soil and Tillage Research, 2019, 185: 77-84. |
[16] | 孟红旗, 吕家珑, 徐明岗, 等. 有机肥的碱度及其减缓土壤酸化的机制[J]. 植物营养与肥料学报, 2012, 18(5): 1153-1160. |
MENG H Q, LÜ J L, XU M G, et al. Alkalinity of organic manure and its mechanism for mitigating soil acidification[J]. Plant Nutrition and Fertilizer Science, 2012, 18(5): 1153-1160. (in Chinese with English abstract) | |
[17] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科学技术出版社, 2000: 12-204. |
[18] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000: 56-271. |
[19] | 黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2000: 304-311. |
[20] | 王伯仁, 蔡泽江, 李冬初. 长期不同施肥对红壤旱地肥力的影响[J]. 水土保持学报, 2010, 24(3): 85-88. |
WANG B R, CAI Z J, LI D C. Effect of different long-term fertilization on the fertility of red upland soil[J]. Journal of Soil and Water Conservation, 2010, 24(3): 85-88. (in Chinese with English abstract) | |
[21] | CAI Z J, WANG B R, XU M G, et al. Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of southern China[J]. Journal of Soils and Sediments, 2015, 15(2): 260-270. |
[22] | 张永春, 汪吉东, 沈明星, 等. 长期不同施肥对太湖地区典型土壤酸化的影响[J]. 土壤学报, 2010, 47(3): 465-472. |
ZHANG Y C, WANG J D, SHEN M X, et al. Effects of long-term fertilization on soil acidification in Taihu Lake region, China[J]. Acta Pedologica Sinica, 2010, 47(3): 465-472. (in Chinese with English abstract) | |
[23] | 冀建华, 吕真真, 刘淑珍, 等. 长期施用化肥对南方稻田土壤酸化和盐基离子损失的影响[J]. 中国农业科学, 2024, 57(13): 2599-2611. |
JI J H, LÜ Z Z, LIU S Z, et al. Long-term application of chemical fertilizers induces soil acidification and soil exchangeable base cation loss on paddy in southern China[J]. Scientia Agricultura Sinica, 2024, 57(13): 2599-2611. (in Chinese with English abstract) | |
[24] | 明润廷, 万方, 那立苹, 等. 改良剂施用下的土壤降酸培肥效果: 基于中国酸性土壤改良研究的Meta分析[J]. 土壤学报, 2025, 62(2): 400-410. |
MING R T, WAN F, NA L P, et al. Effect of soil acid reduction and fertilizer cultivation under conditioner application: meta-analysis based on acid soil improvement studies in China[J]. Acta Pedologica Sinica, 2025, 62(2): 400-410. (in Chinese with English abstract) | |
[25] | WONG M T F, GIBBS P, NORTCLIFF S, et al. Measurement of the acid neutralizing capacity of agroforestry tree prunings added to tropical soils[J]. The Journal of Agricultural Science, 2000, 134(3): 269-276. |
[26] | TANG C, YU Q. Impact of chemical composition of legume residues and initial soil pH on pH change of a soil after residue incorporation[J]. Plant and Soil, 1999, 215(1): 29-38. |
[27] | 林志灵, 王静, 张杨珠. 不同施肥结构对稻田土壤CEC和土壤酸性的影响[J]. 土壤通报, 2011, 42(1): 42-45. |
LIN Z L, WANG J, ZHANG Y Z. Effects of different fertilization systems on soil CEC and soil acidity in paddy field[J]. Chinese Journal of Soil Science, 2011, 42(1): 42-45. (in Chinese with English abstract) | |
[28] | 鲁艳红, 廖育林, 聂军, 等. 长期施用氮磷钾肥和石灰对红壤性水稻土酸性特征的影响[J]. 土壤学报, 2016, 53(1): 202-212. |
LU Y H, LIAO Y L, NIE J, et al. Effect of long-term fertilization and lime application on soil acidity of reddish paddy soil[J]. Acta Pedologica Sinica, 2016, 53(1): 202-212. (in Chinese with English abstract) | |
[29] | BARAK P, JOBE B O, KRUEGER A R, et al. Effects of long-term soil acidification due to nitrogen fertilizer inputs in Wisconsin[J]. Plant and Soil, 1997, 197(1): 61-69. |
[30] | VIEIRA F C B, BAYER C, MIELNICZUK J, et al. Long-term acidification of a Brazilian Acrisol as affected by no till cropping systems and nitrogen fertiliser[J]. Soil Research, 2008, 46(1): 17. |
[31] | BÄCKMAN J S K, HERMANSSON A, TEBBE C C, et al. Liming induces growth of a diverse flora of ammonia-oxidising bacteria in acid spruce forest soil as determined by SSCP and DGGE[J]. Soil Biology and Biochemistry, 2003, 35(10): 1337-1347. |
[32] | 闫志浩, 胡志华, 王士超, 等. 石灰用量对水稻油菜轮作区土壤酸度、土壤养分及作物生长的影响[J]. 中国农业科学, 2019, 52(23): 4285-4295. |
YAN Z H, HU Z H, WANG S C, et al. Effects of lime content on soil acidity, soil nutrients and crop growth in rice-rape rotation system[J]. Scientia Agricultura Sinica, 2019, 52(23): 4285-4295. (in Chinese with English abstract) | |
[33] | JOHNSON J P Jr, CARVER B F, BALIGAR V C. Productivity in Great Plains acid soils of wheat genotypes selected for aluminium tolerance[J]. Plant and Soil, 1997, 188(1): 101-106. |
[34] | 吕焕哲, 王凯荣, 谢小立, 等. 施用水稻秸秆对酸性红壤铝形态的动态影响[J]. 水土保持学报, 2006, 20(4): 110-112. |
LÜ H Z, WANG K R, XIE X L, et al. Dynamic effects of varying amount of rice straw on different aluminum form[J]. Journal of Soil and Water Conservation, 2006, 20(4): 110-112. (in Chinese with English abstract) | |
[35] | WANG L, BUTTERLY C R, TIAN W, et al. Effects of fertilization practices on aluminum fractions and species in a wheat soil[J]. Journal of Soils and Sediments, 2016, 16(7): 1933-1943. |
[36] | UCHIMIYA M, WARTELLE L H, KLASSON K T, et al. Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil[J]. Journal of Agricultural and Food Chemistry, 2011, 59(6): 2501-2510. |
[37] | CHEN D M, LAN Z C, BAI X, et al. Evidence that acidification-induced declines in plant diversity and productivity are mediated by changes in below-ground communities and soil properties in a semi-arid steppe[J]. Journal of Ecology, 2013, 101(5): 1322-1334. |
[38] | 易琼, 杨少海, 黄巧义, 等. 改良剂对反酸田土壤性质与水稻产量的影响[J]. 土壤学报, 2014, 51(1): 176-183. |
YI Q, YANG S H, HUANG Q Y, et al. Effect of soil ameliorants on soil properties and rice yield of acid sulfate paddy field[J]. Acta Pedologica Sinica, 2014, 51(1): 176-183. (in Chinese with English abstract) |
[1] | HUANG Pengwu, WU Qianqian, ZHAO Lifang, SHAO Dezhong, WU Lujie, ZHAO Miyang, TIAN Yu, LU Shenggao. Long-term effects of inorganic conditioner combined with organic manure in ameliorating acidified soil [J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 858-868. |
[2] | YING Yongfei, HAN Dongxuan, MENG Fang, YU Lin, SHEN Jialuan, WANG Kaiying. Effects of biogas slurry substituting chemical fertilizer on rice yield and quality and soil characteristics [J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 880-891. |
[3] | HU Tiejun. Effects of chemical fertilizer reduction combined with microbial fertilizer application on yield, quality, and soil properties of broccoli [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1657-1665. |
[4] | CHEN Yupei, SHAN Yingjie, LU Ruohui, ZHU Weifeng, KONG Haimin. Fertilization status and reduction potential for major crops in Zhejiang Province, China [J]. Acta Agriculturae Zhejiangensis, 2024, 36(11): 2566-2574. |
[5] | YUE Zongwei, LI Jiaxiao, SUN Xiangyang, LIU Guoliang, LI Suyan, WANG Chenchen, ZHA Guichao, WEI Ningxian. Effects of chemical fertilizer combined with organic fertilizer on soil properties, cherry fruit quality and yield [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2192-2201. |
[6] | WU Chuanmei, HE Ji, WU Wenshan, CAI Jun, XIANG Yangzhou. Effects of intercropping on stoichiometric characteristics and nutrients contribution rate of soil aggregates in Rosa roxbunghii Tratt. orchard [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1132-1143. |
[7] | LU Shuai, LUO Xiaogang, LIU Quanwei, ZHANG Yi, MENG Yanghao, LI Jie, ZHANG Jinglai. Effect of organic-inorganic compound fertilizer on wheat growth, nutrients and heavy metal content of soil and wheat [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 922-930. |
[8] | GAO Feng, WEN Shizhi, WEI Shuoxing, OU Hanbiao, WANG Zhihui. Effet of vegetation restoration models on soil physiochemical properties, enzymes activities and fungal diversity in rocky desertification area of northwest Guangxi, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2425-2435. |
[9] | ZHU Yating, NI Yuanzhi, ZHANG Min, WANG Zhenqi, SHEN Genxiang, HUANG Na. Effects of straw returning amount on methane emission from paddy fields in Shanghai, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2436-2445. |
[10] | YANG Shengzhu, LI Xiang, LI Chaowen, CHEN Hainian, LIU Li, LU Yingang, CAO Zhuoyang. Characteristics of soil nutrients and enzyme activities in rhizosphere of tobacco affected by bacterial wilt in Guizhou Province, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 146-155. |
[11] | YAO Yanlai, ZHU Weijing, DING Jian, HONG Leidong, HONG Chunlai, WANG Weiping, ZHU Fengxiang, HE Weike, HONG Haiqing. Investigation and analysis of continuous cropping obstacle and soil environment in large-scale vegetable bases in Zhejiang Province, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1474-1484. |
[12] | LOU Fei, FU Tianling, DAI Liangyu, ZHOU Kai, LIN Dasong, HE Tengbing. Effects of soil conditioners on Cd translocation and accumulation and yield of rice in central Guizhou Province, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1493-1501. |
[13] | ZHU Ming, LIU Chen, LIN Yicheng, GUO Bin, LI Hua, FU Qinglin. Effects of conditioning agents on soil fertility, microbial community diversity and rice yield in red soil [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1258-1267. |
[14] | LI Bolin, YAN Li, WANG Jiyan, GAO Ruixue, GUO Liqing. Nitrogen application rate and reduction potential in northeast China in 1987-2018 [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 851-858. |
[15] | SUN Wenyan, LIU Xiaogang, ZHANG Wenhui, LI Huiyong, WU Lang, YANG Qiliang, XIONG Guomei. Optimization of drip fertigation scheme for Coffea arabica based on soil quality index [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 566-573. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||