Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (10): 2425-2435.DOI: 10.3969/j.issn.1004-1524.20220879
• Environmental Science • Previous Articles Next Articles
GAO Feng1(), WEN Shizhi1, WEI Shuoxing2,*(
), OU Hanbiao2, WANG Zhihui2
Received:
2022-06-13
Online:
2023-10-25
Published:
2023-10-31
CLC Number:
GAO Feng, WEN Shizhi, WEI Shuoxing, OU Hanbiao, WANG Zhihui. Effet of vegetation restoration models on soil physiochemical properties, enzymes activities and fungal diversity in rocky desertification area of northwest Guangxi, China[J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2425-2435.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20220879
指标 Index | 自然封育林 Enclosure forest | 落叶阔叶林 Deciduous broad- leaved forest | 落叶常绿阔叶混交林 Evergreen deciduous broad-leaved forest | 常绿阔叶林 Evergreen broad- leaved forest |
---|---|---|---|---|
海拔Elevation/m | 291~339 | 287~337 | 288~337 | 286~337 |
坡度Slope/(°) | 33 | 24 | 24 | 24 |
坡向Aspect | 东南Southeast | 东南Southeast | 东南Southeast | 东南Southeast |
土壤类型Soil type | 钙质土Calcareous soil | 钙质土Calcareous soil | 钙质土Calcareous soil | 钙质土Calcareous soil |
恢复时间Recovery time/a | 13 | 13 | 13 | 13 |
平均树高Mean height of trees/m | — | 12.1 | 9.2 | 9.1 |
平均胸径 | — | 13.2 | 8.9 | 8.4 |
Average diameter at breast height of trees/cm | ||||
郁闭度Canopy density/% | — | 80 | 85 | 90 |
腐殖质层厚度 | 4~6 | 8~10 | 6~8 | 3~5 |
Thickness of humus layer/cm | ||||
土壤厚度Thickness of soil/cm | 50~70 | 40~60 | 40~60 | 40~60 |
物种组成Species composition | VN、MB、JN、RC | ZI、CA、LL、RC、VN | CA、DT、ZI、CP、VN、MB | QG、RC、JN、FT |
Table 1 Basic information of sample areas
指标 Index | 自然封育林 Enclosure forest | 落叶阔叶林 Deciduous broad- leaved forest | 落叶常绿阔叶混交林 Evergreen deciduous broad-leaved forest | 常绿阔叶林 Evergreen broad- leaved forest |
---|---|---|---|---|
海拔Elevation/m | 291~339 | 287~337 | 288~337 | 286~337 |
坡度Slope/(°) | 33 | 24 | 24 | 24 |
坡向Aspect | 东南Southeast | 东南Southeast | 东南Southeast | 东南Southeast |
土壤类型Soil type | 钙质土Calcareous soil | 钙质土Calcareous soil | 钙质土Calcareous soil | 钙质土Calcareous soil |
恢复时间Recovery time/a | 13 | 13 | 13 | 13 |
平均树高Mean height of trees/m | — | 12.1 | 9.2 | 9.1 |
平均胸径 | — | 13.2 | 8.9 | 8.4 |
Average diameter at breast height of trees/cm | ||||
郁闭度Canopy density/% | — | 80 | 85 | 90 |
腐殖质层厚度 | 4~6 | 8~10 | 6~8 | 3~5 |
Thickness of humus layer/cm | ||||
土壤厚度Thickness of soil/cm | 50~70 | 40~60 | 40~60 | 40~60 |
物种组成Species composition | VN、MB、JN、RC | ZI、CA、LL、RC、VN | CA、DT、ZI、CP、VN、MB | QG、RC、JN、FT |
植被类型 | SOC/(g·kg-1) | TN/(g·kg-1) | AK/(g·kg-1) | AN/(mg·kg-1) | AP/(mg·kg-1) | pH |
---|---|---|---|---|---|---|
Vegetation type | ||||||
DF | 90.39±0.12 a | 5.26±0.09 a | 243.33±2.50 a | 354.53±2.51 a | 6.79±0.20 b | 7.57±0.13 a |
EDF | 89.84±1.00 a | 5.11±0.11 a | 160.75±0.73 c | 274.13±1.97 b | 9.13±0.35 a | 6.66±0.17 b |
EF | 87.58±1.05 b | 5.10±0.06 a | 153.74±0.79 d | 256.33±4.59 d | 4.00±0.44 c | 6.59±0.06 b |
ENF | 86.61±0.93 b | 4.56±0.28 b | 167.48±1.35 b | 263.20±2.33 c | 3.36±0.17 d | 7.72±0.09 a |
Table 2 Soil physiochemical properties under vegetation restoration models
植被类型 | SOC/(g·kg-1) | TN/(g·kg-1) | AK/(g·kg-1) | AN/(mg·kg-1) | AP/(mg·kg-1) | pH |
---|---|---|---|---|---|---|
Vegetation type | ||||||
DF | 90.39±0.12 a | 5.26±0.09 a | 243.33±2.50 a | 354.53±2.51 a | 6.79±0.20 b | 7.57±0.13 a |
EDF | 89.84±1.00 a | 5.11±0.11 a | 160.75±0.73 c | 274.13±1.97 b | 9.13±0.35 a | 6.66±0.17 b |
EF | 87.58±1.05 b | 5.10±0.06 a | 153.74±0.79 d | 256.33±4.59 d | 4.00±0.44 c | 6.59±0.06 b |
ENF | 86.61±0.93 b | 4.56±0.28 b | 167.48±1.35 b | 263.20±2.33 c | 3.36±0.17 d | 7.72±0.09 a |
Fig.1 Soil enzymes activities under vegetation restoration models CAT, Catalase; SAC, Saccharase; URE, Urease; ALP, Alkaline phosphatase. ENF, Enclosure forest; DF, Deciduous broad-leaved forest; EDF, Evergreen deciduous broad-leaved forest; EF, Evergreen broad-leaved forest. The same as below. Bars marked without the same letters indicate significant difference at P<0.05.
Fig.3 Similarity analysis box diagram (left) and principal coordinate analysis diagram (right) PC1, Principle component 1; PC2, Principle component 2.
Fig.5 Network analysis of soil nutrients, enzymes activities and fungal communities SOC, Soil organic carbon; TN, Total nitrogen; AK, Available potassium; AN, Available nitrogen; AP, Available phosphorus. The green dots in the figure represent the dominant species of fungi. The size of the dots indicates the relative abundance of the dominant species. The red dots represent the indicators of soil enzymes activities, and the grey dots represent the indicators of soil nutrients. The blue lines indicate significant (P<0.05) positive correlations, and the red lines indicate significant (P<0.05) negative correlations, and the redder or bluer indicates higher correlation coefficients.
[1] | REYNOLDS J F, SMITH D S, LAMBIN E F, et al. Global desertification: building a science for dryland development[J]. Science, 2007, 316(5826): 847-851. |
[2] | XU E Q, ZHANG H Q, LI M X. Mining spatial information to investigate the evolution of Karst rocky desertification and its human driving forces in Changshun, China[J]. Science of the Total Environment, 2013, 458/459/460: 419-426. |
[3] | BEIMFORDE C, FELDBERG K, NYLINDER S, et al. Estimating the Phanerozoic history of the Ascomycota lineages: combining fossil and molecular data[J]. Molecular Phylogenetics and Evolution, 2014, 78: 386-398. |
[4] | 解雪峰, 濮励杰, 王琪琪, 等. 滨海滩涂围垦区不同围垦年限土壤酶活性变化及其与理化性质关系[J]. 环境科学, 2018, 39(3): 1404-1412. |
XIE X F, PU L J, WANG Q Q, et al. Response of soil enzyme activities and their relationships with physicochemical properties to different aged coastal reclamation areas, Eastern China[J]. Environmental Science, 2018, 39(3): 1404-1412. (in Chinese with English abstract) | |
[5] | 杨万勤, 王开运. 森林土壤酶的研究进展[J]. 林业科学, 2004, 40(2): 152-159. |
YANG W Q, WANG K Y. Advances in forest soil enzymology[J]. Scientia Silvae Sinicae, 2004, 40(2): 152-159. (in Chinese with English abstract) | |
[6] | 吴丽芳, 王紫泉, 王妍, 等. 喀斯特高原不同石漠化程度土壤C、N、P化学计量特征和酶活性的关系[J]. 生态环境学报, 2019, 28(12): 2332-2340. |
WU L F, WANG Z Q, WANG Y, et al. Relationship between soil C, N, P stoichiometric characteristics and enzyme activity in Karst Plateau soils with different degree of rocky desertification[J]. Ecology and Environmental Sciences, 2019, 28(12): 2332-2340. (in Chinese with English abstract) | |
[7] | 潘复静, 王克林, 张伟, 等. 喀斯特不同恢复阶段植物根际土养分和酶活性的季节性变化和根际效应[J]. 桂林理工大学学报, 2020, 40(1): 209-217. |
PAN F J, WANG K L, ZHANG W, et al. Seasonal changes and rhizosphere effects of soil nutrients and enzymatic activities in two vegetation successions of Karst ecosystem[J]. Journal of Guilin University of Technology, 2020, 40(1): 209-217. (in Chinese with English abstract) | |
[8] | ANDERSON C R, CONDRON L M, CLOUGH T J, et al. Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus[J]. Pedobiologia-International Journal of Soil Biology, 2011, 54(5): 309-320. |
[9] | 薛飞. 茂兰喀斯特森林凋落物特性及对土壤的影响[D]. 贵阳: 贵州师范大学, 2021. |
XUE F. Characteristics of litter in Maolan Karst forest and its influence on soil[D]. Guiyang: Guizhou Normal University, 2021. (in Chinese with English abstract) | |
[10] | 裴广廷, 孙建飞, 贺同鑫, 等. 长期人为干扰对桂西北喀斯特草地土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2021, 45(1): 74-84. |
PEI G T, SUN J F, HE T X, et al. Effects of long-term human disturbances on soil microbial diversity and community structure in a Karst grassland ecosystem of northwestern Guangxi, China[J]. Chinese Journal of Plant Ecology, 2021, 45(1): 74-84. (in Chinese with English abstract) | |
[11] | 陈惠君, 莫雅芳, 封红梅, 等. 喀斯特峰丛洼地不同森林类型土壤真菌群落结构及影响因素[J]. 农业现代化研究, 2021, 42(6): 1146-1157. |
CHEN H J, MO Y F, FENG H M, et al. Soil fungal community structure and influencing factors of different forest types in Karst peak-cluster depression[J]. Research of Agricultural Modernization, 2021, 42(6): 1146-1157. (in Chinese with English abstract) | |
[12] | 曾庆飞, 陈莹, 杨春燕, 等. 贵州高原石漠化灌丛草地土壤真菌群落结构及多样性研究[J]. 中国草地学报, 2015, 37(5): 96-102. |
ZENG Q F, CHEN Y, YANG C Y, et al. Community structure and genetic diversity analysis of soil fungi in shrubby grasslands in Guizhou Plateau[J]. Chinese Journal of Grassland, 2015, 37(5): 96-102. (in Chinese with English abstract) | |
[13] | LU Z X, WANG P, OU H B, et al. Effects of different vegetation restoration on soil nutrients, enzyme activities, and microbial communities in degraded Karst landscapes in southwest China[J]. Forest Ecology and Management, 2022, 508: 120002. |
[14] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
[15] | HUANG C B, ZENG Y X, WANG L C, et al. Responses of soil nutrients to vegetation restoration in China[J]. Regional Environmental Change, 2020, 20(3): 82. |
[16] | TABATABAI M A. Soil enzymes[M]// MILLERR H, KEENEYD.R. Methods of soil analysis: part 2: chemical and microbiological properties. Madison: Soil Science Society of America, 1982: 903-947. |
[17] | 陈彩虹, 叶道碧. 4种人工林土壤酶活性与养分的相关性研究[J]. 中南林业科技大学学报, 2010, 30(6): 64-68. |
CHEN C H, YE D B. Study on the relationship between soil enzymes and nutrient of four artificial forests in Changsha urban-rural fringe[J]. Journal of Central South University of Forestry & Technology, 2010, 30(6): 64-68. (in Chinese with English abstract) | |
[18] | 陈堆全. 木荷凋落物分解及对土壤作用规律的研究[J]. 福建林业科技, 2001, 28(2): 35-38. |
CHEN D Q. Studies on the decomposition of Schima superba litter and on the law of it on the soil effect[J]. Journal of Fujian Forestry Science and Technology, 2001, 28(2): 35-38. (in Chinese with English abstract) | |
[19] | 姜雪薇, 马大龙, 臧淑英, 等. 高通量测序分析大兴安岭典型森林土壤细菌和真菌群落特征[J]. 微生物学通报, 2021, 48(4): 1093-1105. |
JIANG X W, MA D L, ZANG S Y, et al. Characteristics of soil bacterial and fungal community of typical forest in the Greater Khingan Mountains based on high-throughput sequencing[J]. Microbiology China, 2021, 48(4): 1093-1105. (in Chinese with English abstract) | |
[20] | SUI X, ZHANG R T, FREY B, et al. Soil physicochemical properties drive the variation in soil microbial communities along a forest successional series in a degraded wetland in northeastern China[J]. Ecology and Evolution, 2021, 11(5): 2194-2208. |
[21] | 刘立玲, 周光益, 党鹏, 等. 湘西石漠化区3种造林模式土壤真菌群落结构差异[J]. 生态学报, 2022, 42(10): 4150-4159. |
LIU L L, ZHOU G Y, DANG P, et al. Differences of soil fungal community structure under three afforestation modes in rocky desertification region of Western Hunan Province[J]. Acta Ecologica Sinica, 2022, 42(10): 4150-4159. (in Chinese with English abstract) | |
[22] | 郭城. 石漠化地区不同植被恢复模式下土壤微生物群落结构研究[D]. 贵阳: 贵州师范大学, 2021. |
GUO C. Study on soil microbial community structure under different vegetation restoration models in rocky desertification area[D]. Guiyang: Guizhou Normal University, 2021. (in Chinese with English abstract) | |
[23] | 王涛, 郭洋, 苏建宇, 等. 贺兰山丁香对土壤理化性质、酶活性和微生物多样性的影响[J]. 北京林业大学学报, 2020, 42(4): 91-101. |
WANG T, GUO Y, SU J Y, et al. Effects of Syringa pinnatifolia var. alanshanica on soil physicochemical properties, enzyme activities and microbial diversity[J]. Journal of Beijing Forestry University, 2020, 42(4): 91-101. (in Chinese with English abstract) | |
[24] | 胡华英, 张燕林, 褚昭沛, 等. 红壤侵蚀区不同植被恢复阶段土壤酶活性和微生物多样性变化[J]. 应用与环境生物学报, 2021, 27(3): 734-741. |
HU H Y, ZHANG Y L, CHU Z P, et al. Changes in soil enzyme activity and microbial diversity at different vegetation restoration stages in eroded red soil[J]. Chinese Journal of Applied and Environmental Biology, 2021, 27(3): 734-741. (in Chinese with English abstract) | |
[25] | 张树萌, 黄懿梅, 倪银霞, 等. 宁南山区人工林草对土壤真菌群落的影响[J]. 中国环境科学, 2018, 38(4): 1449-1458. |
ZHANG S M, HUANG Y M, NI Y X, et al. Effects of artificial forest and grass on soil fungal community at southern Ningxia Mountain[J]. China Environmental Science, 2018, 38(4): 1449-1458. (in Chinese with English abstract) | |
[26] | 张旭升. 不同植被修复模式下土壤真菌的研究及纳米材料对土壤理化性质和酶活性的影响[D]. 太原: 山西大学, 2021. |
ZHANG X S. Study on soil fungi under different vegetation restoration patterns and the effect of nanomaterials on soil physical and chemical properties and enzyme activities[D]. Taiyuan: Shanxi University, 2021. (in Chinese with English abstract) | |
[27] | 彭辉, 周红敏, 张弓乔, 等. 不同林龄红豆树土壤真菌群落组成和多样性[J]. 中南林业科技大学学报, 2021, 41(11): 129-135. |
PENG H, ZHOU H M, ZHANG G Q, et al. Composition structure and diversity of soil fungi community in Ormosia hosiei plantations at different ages[J]. Journal of Central South University of Forestry & Technology, 2021, 41(11): 129-135. (in Chinese with English abstract) | |
[28] | CHESWORTH W. Chemical equilibria in soils[J]. Geochimica et Cosmochimica Acta, 1980, 44(9): 1394-1395. |
[29] | 蔡芸霜, 张建兵, 钟丽雯, 等. 桂西北峰丛洼地农作区土壤真菌多样性对不同耕作模式的响应[J]. 生态学报, 2021, 41(12): 4886-4899. |
CAI Y S, ZHANG J B, ZHONG L W, et al. Response of the fungal diversity to different tillage modes in the farming areas of Karst peak-cluster depressions, southwest China[J]. Acta Ecologica Sinica, 2021, 41(12): 4886-4899. (in Chinese with English abstract) | |
[30] | WANG J C, RHODES G, HUANG Q W, et al. Plant growth stages and fertilization regimes drive soil fungal community compositions in a wheat-rice rotation system[J]. Biology and Fertility of Soils, 2018, 54(6): 731-742. |
[31] | 李鹏飞, 张兴昌, 郝明德, 等. 植被恢复对黄土高原矿区重构土壤理化性质、酶活性以及真菌群落的影响[J]. 水土保持通报, 2019, 39(5): 1-7. |
LI P F, ZHANG X C, HAO M D, et al. Effects of vegetation restoration on soil physicochemical properties, enzyme activities, and fungal community of reconstructed soil in a mining area on Loess Plateau[J]. Bulletin of Soil and Water Conservation, 2019, 39(5): 1-7. (in Chinese with English abstract) |
[1] | YUE Zongwei, LI Jiaxiao, SUN Xiangyang, LIU Guoliang, LI Suyan, WANG Chenchen, ZHA Guichao, WEI Ningxian. Effects of chemical fertilizer combined with organic fertilizer on soil properties, cherry fruit quality and yield [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2192-2201. |
[2] | WU Chuanmei, HE Ji, WU Wenshan, CAI Jun, XIANG Yangzhou. Effects of intercropping on stoichiometric characteristics and nutrients contribution rate of soil aggregates in Rosa roxbunghii Tratt. orchard [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1132-1143. |
[3] | LU Shuai, LUO Xiaogang, LIU Quanwei, ZHANG Yi, MENG Yanghao, LI Jie, ZHANG Jinglai. Effect of organic-inorganic compound fertilizer on wheat growth, nutrients and heavy metal content of soil and wheat [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 922-930. |
[4] | ZHANG Yuhao, MA Weihua, LIU Jinjia, MA Xiumei, JIANG Yusuo. Effects of sublethal doses of dinotefuran on genes expression and enzymes activities related to immune and detoxification in foragers of Apis mellifera ligustica [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 575-581. |
[5] | RUAN Zebin, WANG Lange, LAN Wangkaining, XU Yan, CHEN Junhui, LIU Dan. Effects of nitrogen reduction and biochar on nitrogen uptake by rice and soil physiochemical properties [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 394-402. |
[6] | YANG Shengzhu, LI Xiang, LI Chaowen, CHEN Hainian, LIU Li, LU Yingang, CAO Zhuoyang. Characteristics of soil nutrients and enzyme activities in rhizosphere of tobacco affected by bacterial wilt in Guizhou Province, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 146-155. |
[7] | YAN Mei, YAO Yandong, MOU Kaiping, DAN Yuanyuan, LI Weitai, LIAO Weibiao. Involvement of abscisic acid in hydrogen gas-enhanced drought resistance by improving antioxidant enzyme activity and gene expression in tomato seedlings [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1901-1910. |
[8] | JIN Houding, ZHENG Chunying, HUA Bin, YU Chenliang, LI Keyu, YU Weiwu. Rooting anatomy and physiological enzyme activity of Torreya grandis cuttings [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1955-1966. |
[9] | SUN Wenyan, LIU Xiaogang, ZHANG Wenhui, LI Huiyong, WU Lang, YANG Qiliang, XIONG Guomei. Optimization of drip fertigation scheme for Coffea arabica based on soil quality index [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 566-573. |
[10] | ZHANG Jianli, WANG Zhenhua, CHEN Rui, WANG Dongwang, LIANG Yonghui, LIU Ruhua. Effect of water-fertilizer interaction on yield, quality and soil nutrients of drip irrigated jujube [J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2428-2437. |
[11] | GAO Zhiyuan, YANG Shuna, WANG Zhaoli, WANG Zhihao, XI Xinyan, HE Juan, JIA Huijuan. Effects of different fumigation on continuous cropping soil in peach orchard [J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2251-2258. |
[12] | SHI Houjun, LAN Anjun, YI Xingsong, ZHAI Xiang, LIAO Yanmei, ZHONG Jiusheng. Spatial differentiation characteristics and driving factors of abandoned cultivated land in Karst trough valley [J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 1049-1061. |
[13] | FAN Linjuan, LIU Zirong, XU Xueliang, WANG Fenshan, PENG Deliang, YAO Yingjuan. Effects of six kinds of nematicides on soil microbial population, enzymes activities and nutrients in replanted Chinese yam field [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 506-515. |
[14] | CHENG Jing, LIU Jiming, WANG Shu, WANG Deng, LI Lixia, XU Guorui, CHEN Meng, HUANG Luting. Plasticity of a karst endemic plant Juglans regia L. f. luodianense Liu et Xu in response to soil moisture [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 259-269. |
[15] | SUI Xiran, WANG Yan, LIU Yungen, ZHANG Yajie, WU Lifang. Responses of soil nutrients and microbial community to altitude in typical Pinus yunnanensis forest at rocky desertification region [J]. Acta Agriculturae Zhejiangensis, 2021, 33(12): 2348-2357. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||