Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (3): 575-581.DOI: 10.3969/j.issn.1004-1524.2023.03.10
• Animal Science • Previous Articles Next Articles
ZHANG Yuhao1(), MA Weihua2, LIU Jinjia1, MA Xiumei1, JIANG Yusuo1,*(
)
Received:
2021-09-06
Online:
2023-03-25
Published:
2023-04-07
CLC Number:
ZHANG Yuhao, MA Weihua, LIU Jinjia, MA Xiumei, JIANG Yusuo. Effects of sublethal doses of dinotefuran on genes expression and enzymes activities related to immune and detoxification in foragers of Apis mellifera ligustica[J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 575-581.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2023.03.10
基因名称 Gene name | 上游引物 Forward primer (5'→3') | 下游引物 Reverse primer (5'→3') |
---|---|---|
Abaecin | ATCTTCGCACTACTCGCCAC | CTGACCAGGAAACGTTGGAA |
Apidaecin | AGATTGTCGATCGGTCCACG | TCTGGTTCGAGCATGCTACC |
Defensin-1 | GTTGAGGATGAATTCGAGCC | TTAACCGAAACGTTTGTCCC |
Hymenoptaecin | ATATCCCGACTCGTTTCCGA | TCCCAAACTCGAATCCTGCA |
AChE-2 | GACGCGAAGACCATATCCGT | TCTGTGTCCTTGAAGTCCGC |
PPO | ATGTGGATGGCCGCAACATA | CGCCATATTTCCGGTGAGGA |
GST | TGCATATGCTGGCATTGATT | TCCTCGCCAAGTATCTTGCT |
Cyp450 | CAAAATGGTGTTCTCCTTACCG | ATGGCAACCCATCACTGC |
β-actin | ATGCCAACACTGTCCTTTCTGG | GACCCACCAATCCATACGGA |
Table 1 Sequence information of primer pairs used in this experiment
基因名称 Gene name | 上游引物 Forward primer (5'→3') | 下游引物 Reverse primer (5'→3') |
---|---|---|
Abaecin | ATCTTCGCACTACTCGCCAC | CTGACCAGGAAACGTTGGAA |
Apidaecin | AGATTGTCGATCGGTCCACG | TCTGGTTCGAGCATGCTACC |
Defensin-1 | GTTGAGGATGAATTCGAGCC | TTAACCGAAACGTTTGTCCC |
Hymenoptaecin | ATATCCCGACTCGTTTCCGA | TCCCAAACTCGAATCCTGCA |
AChE-2 | GACGCGAAGACCATATCCGT | TCTGTGTCCTTGAAGTCCGC |
PPO | ATGTGGATGGCCGCAACATA | CGCCATATTTCCGGTGAGGA |
GST | TGCATATGCTGGCATTGATT | TCCTCGCCAAGTATCTTGCT |
Cyp450 | CAAAATGGTGTTCTCCTTACCG | ATGGCAACCCATCACTGC |
β-actin | ATGCCAACACTGTCCTTTCTGG | GACCCACCAATCCATACGGA |
Fig.1 Toxicity regression curve of dinotefuran acute toxicity to Apis mellifera ligustica y, Common logarithm value of dinotefuran concentration; x, Probit value to mortality.
Fig.2 Expression patterns of Hymenoptaecin, Abaecin, Apidaecin, Defensin-1, AChE-2,PPO,GST and Cyp450 mRNA in different concentrations of dinotefuran on Apis mellifera ligustica CK, 50% sucrose solution; LC20, 0.458 mg·L-1 dinotefuran sucrose solution; LC50, 0.988 mg·L-1 dinotefuran sucrose solution. The same as below. Bars marked without the same letters indicate significant (P<0.05) difference within treatments under the same gene.
Fig.3 Immune and detoxification enzyme activity in foragers of Apis mellifera ligustica after LC20 and LC50 dinotefuran stress Bars marked without the same letters indicate significant (P<0.05) difference within treatments.
[1] |
POTTS S G, BIESMEIJER J C, KREMEN C, et al. Global pollinator declines: trends, impacts and drivers[J]. Trends in Ecology & Evolution, 2010, 25(6): 345-353.
DOI URL |
[2] |
FAROOQUI T. A potential link among biogenic amines-based pesticides, learning and memory, and colony collapse disorder: a unique hypothesis[J]. Neurochemistry International, 2013, 62(1): 122-136.
DOI PMID |
[3] |
STONER K A, EITZER B D. Movement of soil-applied imidacloprid and thiamethoxam into nectar and pollen of squash (Cucurbita pepo)[J]. PLoS One, 2012, 7(6): e39114.
DOI URL |
[4] |
KRUPKE C H, HUNT G J, EITZER B D, et al. Multiple routes of pesticide exposure for honey bees living near agricultural fields[J]. PLoS One, 2012, 7(1): e29268.
DOI URL |
[5] |
CATAE A F, DA SILVA MENEGASSO A R, PRATAVIEIRA M, et al. MALDI-imaging analyses of honeybee brains exposed to a neonicotinoid insecticide[J]. Pest Management Science, 2019, 75(3): 607-615.
DOI PMID |
[6] | LÄMSÄ J, KUUSELA E, TUOMI J H, et al. Low dose of neonicotinoid insecticide reduces foraging motivation of bumblebees[J]. Proceedings Biological Sciences, 2018, 285(1883): 20180506. |
[7] |
RADER R, BARTOMEUS I, GARIBALDI L A, et al. Non-bee insects are important contributors to global crop pollination[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(1): 146-151.
DOI PMID |
[8] | STANLEY D A, SMITH K E, RAINE N E. Bumblebee learning and memory is impaired by chronic exposure to a neonicotinoid pesticide[J]. Scientific Reports, 2015, 5(1): 1-10. |
[9] |
WOODCOCK B A, BULLOCK J M, SHORE R F, et al. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees[J]. Science, 2017, 356(6345): 1393-1395.
DOI PMID |
[10] |
BLACQUIÈRE T, SMAGGHE G, VAN GESTEL C A M, et al. Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment[J]. Ecotoxicology, 2012, 21(4): 973-992.
DOI PMID |
[11] | 谭丽超, 程燕, 朱昱璇, 等. 新烟碱类杀虫剂呋虫胺对意大利蜜蜂的安全性评价[J]. 生态毒理学报, 2017, 12(4): 227-233. |
TAN L C, CHENG Y, ZHU Y X, et al. Safety evaluation of nicotinic insecticide dinotefuran on honeybee(Apis mellifera L.)[J]. Asian Journal of Ecotoxicology, 2017, 12(4): 227-233. (in Chinese with English abstract) | |
[12] | HUANG M J, DONG J, GUO H K, et al. Effects of dinotefuran on brain miRNA expression profiles in young adult honey bees (Hymenopptera: Apidae)[J]. Journal of Insect Science, 2021, 21(1): 3. |
[13] |
SMITH P K, KROHN R I, HERMANSON G T, et al. Measurement of protein using bicinchoninic acid[J]. Analytical Biochemistry, 1985, 150(1): 76-85.
DOI PMID |
[14] | BOTÍAS C, DAVID A, HILL E M, et al. Contamination of wild plants near neonicotinoid seed-treated crops, and implications for non-target insects[J]. Science of the Total Environment, 2016, 566: 269-278. |
[15] | CUTLER G C, GUEDES R N C. Occurrence and significance of insecticide-induced hormesis in insects[M]//ACS Symposium Series. Washington, DC: American Chemical Society, 2017: 101-119. |
[16] |
DESNEUX N, DECOURTYE A, DELPUECH J M. The sublethal effects of pesticides on beneficial arthropods[J]. Annual Review of Entomology, 2007, 52: 81-106.
PMID |
[17] |
RAHMANI S, BANDANI A R. Sublethal concentrations of thiamethoxam adversely affect life table parameters of the aphid predator, Hippodamia variegata(Goeze) (Coleoptera: Coccinellidae)[J]. Crop Protection, 2013, 54: 168-175.
DOI URL |
[18] |
GUO L, DESNEUX N, SONODA S, et al. Sublethal and transgenerational effects of chlorantraniliprole on biological traits of the diamondback moth, Plutella xylostella L[J]. Crop Protection, 2013, 48: 29-34.
DOI URL |
[19] |
SHI T F, WANG Y F, LIU F, et al. Sublethal effects of the neonicotinoid insecticide thiamethoxam on the transcriptome of the honey bees (Hymenoptera: Apidae)[J]. Journal of Economic Entomology, 2017, 110(6): 2283-2289.
DOI URL |
[20] |
TAPPERT L, POKORNY T, HOFFERBERTH J, et al. Sublethal doses of imidacloprid disrupt sexual communication and host finding in a parasitoid wasp[J]. Scientific Reports, 2017, 7(1): 1-9.
DOI |
[21] |
YI H Y, CHOWDHURY M, HUANG Y D, et al. Insect antimicrobial peptides and their applications[J]. Applied Microbiology and Biotechnology, 2014, 98(13): 5807-5822.
DOI URL |
[22] |
YOON H J, SOHN M R, CHOO Y M, et al. Defensin gene sequences of three different bumblebees, Bombus spp[J]. Journal of Asia-Pacific Entomology, 2009, 12(1): 27-31.
DOI URL |
[23] |
CASTEELS P, AMPE C, JACOBS F, et al. Functional and chemical characterization of Hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera)[J]. Journal of Biological Chemistry, 1993, 268(10): 7044-7054.
PMID |
[24] |
CASTLE M, NAZARIAN A, YI S S, et al. Lethal effects of apidaecin on Escherichia coli involve sequential molecular interactions with diverse targets[J]. Journal of Biological Chemistry, 1999, 274(46): 32555-32564.
DOI URL |
[25] | KIM Y H, CHA D J, JUNG J W, et al. Molecular and kinetic properties of two acetylcholinesterases from the western honey bee, Apis mellifera[J]. PLoS One, 2012, 7(11): e48838. |
[26] |
MEYER W, SCHARDINEL J, SCHLESINGER C. Distribution of acetylcholinesterase in the central nervous system of harvestmen (Arachnida: Opilionida)[J]. Neuroscience Letters, 1998, 256(2): 97-100.
PMID |
[27] |
TESOVNIK T, ZORC M, GREGORC A, et al. Immune gene expression in developing honey bees (Apis mellifera L.) simultaneously exposed to imidacloprid and Varroa destructor in laboratory conditions[J]. Journal of Apicultural Research, 2019, 58(5): 730-739.
DOI URL |
[28] |
GUO Y Q, ZHANG X Y, WU H H, et al. Identification and functional analysis of a cytochrome P450 gene CYP9AQ2 involved in deltamethrin detoxification from Locusta migratoria[J]. Pesticide Biochemistry and Physiology, 2015, 122: 1-7.
DOI URL |
[29] | 靳三省, 孟丽峰, 刁青云. 吡虫啉对意大利蜜蜂乙酰胆碱酯酶的亚致死效应[J]. 应用昆虫学报, 2015, 52(2): 315-323. |
JIN S X, MENG L F, DIAO Q Y. Effect of sublethal doses of imidacloprid on acetylcholinesterase activity in Apis mellifera[J]. Chinese Journal of Applied Entomology, 2015, 52(2): 315-323. (in Chinese with English abstract) | |
[30] | 施腾飞, 王安然, 王恒达, 等. 噻虫嗪对意大利蜜蜂6种CYP6AS基因表达的影响[J]. 环境昆虫学报, 2019, 41(5): 1083-1088. |
SHI T F, WANG A R, WANG H D, et al. Effects of thiamethoxam on expression of cytochrome P6AS genes, in honeybees (Apis mellifera ligustica)[J]. Journal of Environmental Entomology, 2019, 41(5): 1083-1088. (in Chinese with English abstract) | |
[31] |
COLOVIĆ M B, KRSTIĆ D Z, LAZAREVIĆ-PAŠTI T D, et al. Acetylcholinesterase inhibitors: pharmacology and toxicology[J]. Current Neuropharmacology, 2013, 11(3): 315-335.
DOI PMID |
[32] | SHERRATT P J, HAYES J D. Glutathione s-transferases[M]//Enzyme systems that metabolise drugs and other xenobiotics. Chichester, UK: John Wiley & Sons. Ltd, 2002: 319-352. |
[33] | 徐广增, 刘守柱. 昆虫酚氧化酶研究综述[J]. 聊城大学学报(自然科学版), 2015, 28(1): 62-66. |
XU G Z, LIU S Z. Research review of phenoloxidase in insects[J]. Journal of Liaocheng University(Natural Science Edition), 2015, 28(1): 62-66. (in Chinese with English abstract) |
[1] | RUAN Zebin, WANG Lange, LAN Wangkaining, XU Yan, CHEN Junhui, LIU Dan. Effects of nitrogen reduction and biochar on nitrogen uptake by rice and soil physiochemical properties [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 394-402. |
[2] | YAN Mei, YAO Yandong, MOU Kaiping, DAN Yuanyuan, LI Weitai, LIAO Weibiao. Involvement of abscisic acid in hydrogen gas-enhanced drought resistance by improving antioxidant enzyme activity and gene expression in tomato seedlings [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1901-1910. |
[3] | JIN Houding, ZHENG Chunying, HUA Bin, YU Chenliang, LI Keyu, YU Weiwu. Rooting anatomy and physiological enzyme activity of Torreya grandis cuttings [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1955-1966. |
[4] | GAO Zhiyuan, YANG Shuna, WANG Zhaoli, WANG Zhihao, XI Xinyan, HE Juan, JIA Huijuan. Effects of different fumigation on continuous cropping soil in peach orchard [J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2251-2258. |
[5] | FAN Linjuan, LIU Zirong, XU Xueliang, WANG Fenshan, PENG Deliang, YAO Yingjuan. Effects of six kinds of nematicides on soil microbial population, enzymes activities and nutrients in replanted Chinese yam field [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 506-515. |
[6] | JIANG Tao, WANG Liguo, SUN Fangfang, CHENG Jianbo, HE Tengbing, QIN Song, FAN Chengwu, YIN Wenfang. Effects of solid-digestate biochar application on soil nitrogen leaching and cabbage yield with liquid-digestate irrigation in karst-mountainous region of southwest China [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2104-2115. |
[7] | DONG Yufei, LYU Xiangzhang, ZHANG Zikun, HE Hongjun, YU Jingquan, ZHOU Yanhong. Effects of different cultivation patterns on soil microbial community and enzyme activity in continuous cropped pepper field [J]. , 2019, 31(9): 1485-1492. |
[8] | FANG Fang, HE Xuchen, ZHANG Zhihao, ZHANG Qin, GUAN Yajing, HU Jin, HU Weimin. Response mechanism and stress resistance of maize inbred lines to high temperature stress at seedling stage [J]. , 2019, 31(7): 1045-1056. |
[9] | GUAN Qinzhuang, CHENG Yongxu, LI Cong, WANG Haifeng, CHEN Huangen, LI Jiayao. Changes of soil organic carbon and relationships with soil properties in rice-crayfish coculture system [J]. , 2019, 31(1): 113-120. |
[10] | LI Yang, LIU Kai, WEI Jipeng, ZHANG Lan, LI Xin, HAN Wenyan, LI Qingyun. Effects of various concentrations of EGCG on seed germination and resistance in cucumber under NaCl stress [J]. , 2018, 30(7): 1160-1167. |
[11] | SA Rula, YANG Hengshan, GAO Julin, FAN Fu, ZHANG Ruifu, LIU Jing, WU Shuai. Effects of maize straw returning modes on soil fertility and maize yield [J]. , 2018, 30(2): 268-274. |
[12] | MEI Yingxue, WEI Wei, ZHANG Shiwan, ZHANG Yunlu, WANG Jinyuan, WANG Qian, SU Xin, MA Lianju*. Effect of PEG pretreatment on antioxidant enzymes activity under salt stress in root of rice seedling [J]. , 2016, 28(8): 1304-. |
[13] | XU Chun\|ping1, SUN Si\|wen1, HAO Hui2, WANG Mo\|ran2, MA Yu\|ping2,*. Optimization of degradation of pectin in tobacco stem by pectinase produced from Aspergillus niger and thermal analysis of pyrolysis products [J]. , 2015, 27(4): 657-. |
[14] | DU Liang1,HUANG Fang2,WANG Fei\|fei2,LU Yao\|bin1,2,*. The sensitivity of Aenasius bambawalei to chlorpyrifos and imidacloprid and its detoxification enzyme activities [J]. , 2015, 27(3): 387-. |
[15] | QIN Chen\|liang1,2, DING Ling1, DAI Hong\|jun1,2,*. Relationship between phenolic substance content and related enzymes activities during the development of Cabernet Sauvignon grape berries [J]. , 2015, 27(11): 1922-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||