Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (9): 2012-2020.DOI: 10.3969/j.issn.1004-1524.20240431
• Review • Previous Articles
PEI Huimin1(
), WU Mingming2, ZHAI Rongrong2, YE Jing2, JIN Yue1, ZHU Yi1, HOU Jianjun1, ZHU Guofu2, YE Shenghai2,*(
)
Received:2024-05-14
Online:2025-09-25
Published:2025-10-15
Contact:
YE Shenghai
CLC Number:
PEI Huimin, WU Mingming, ZHAI Rongrong, YE Jing, JIN Yue, ZHU Yi, HOU Jianjun, ZHU Guofu, YE Shenghai. Research progress on gene function and breeding of low-cadmium rice cultivars[J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 2012-2020.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240431
| 基因 Gene | 基因号 GenBank No. | 编码蛋白 Encoded protein | 功能 Function | 参考文献 References |
|---|---|---|---|---|
| OsNramp1 | LOC_Os07g15460 | 天然抗性相关巨噬细胞蛋白 Natural resistance-associated macrophage protein | Cd吸收 Cd absorption | [ |
| OsNramp2 | LOC_Os03g11010 | 天然抗性相关巨噬细胞蛋白 Natural resistance-associated macrophage protein | Cd外排 Cd emission | [ |
| OsNramp5 | LOC_Os07g15370 | 天然抗性相关巨噬细胞蛋白 Natural resistance-associated macrophage protein | Cd吸收 Cd absorption | [ |
| OsZIP1 | LOC_Os01g74110 | 锌铁调控转运蛋白ZRT- and IRT-like protein | Cd外排Cd emission | [ |
| OsZIP5 | LOC_Os05g39560 | 锌铁调控转运蛋白ZRT- and IRT-like protein | Cd吸收Cd absorption | [ |
| OsZIP7 | LOC_Os05g10940 | 锌铁调控转运蛋白ZRT- and IRT-like protein | Cd转运Cd transport | [ |
| OsZIP9 | LOC_Os05g39540 | 锌铁调控转运蛋白ZRT- and IRT-like protein | Cd吸收Cd absorption | [ |
| OsIRT1 | LOC_Os03g46470 | 铁调控转运蛋白Iron-regulated metal transporter | Cd吸收Cd absorption | [ |
| OsIRT2 | LOC_Os03g46454 | 铁调控转运蛋白Iron-regulated metal transporter | Cd吸收Cd absorption | [ |
| OsABCG36 | LOC_Os01g42380 | ABCG亚家族转运蛋白ATP Binding Cassette G36 | Cd隔离Cd segregation | [ |
| OsABCG43 | LOC_Os07g33780 | ABCG亚家族转运蛋白ATP Binding Cassette G43 | Cd隔离Cd segregation | [ |
| OsCd1 | LOC_Os03g02380 | MFS超家族转运蛋白 Major facilitator superfamily domain-containing protein | Cd吸收 Cd absorption | [ |
| OsHMA3 | LOC_Os07g12900 | 重金属ATP酶Heavy-metal ATPase | Cd转运Cd transport | [ |
| OsHMA2 | LOC_Os06g48720 | 重金属ATP酶Heavy-metal ATPase | Cd转运Cd transport | [ |
| OsFWL4 | LOC_Os03g61440 | 果重同源基因Fruit-weight 2.2-like 4 | Cd转运Cd transport | [ |
| OsCCX2 | LOC_Os03g45370 | 钙离子/阳离子交换蛋白Calcium/cation exchanger | Cd转运Cd transport | [ |
| OsLCT1 | LOC_Os06g38120 | 低亲和性阳离子转运蛋白Low-affinity cation transporter | Cd转运Cd transport | [ |
| OsLCT2 | EEC79340.1/MW757982 | 低亲和性阳离子转运蛋白Low-affinity cation transporter | Cd转运Cd transport | [ |
| OsMTP1 | LOC_Os05g03780 | 锌转运蛋白Zn transporter 1 | Cd转运Cd transport | [ |
| LCD | LOC_Os01g72670 | 低镉Low cadmium | Cd转运Cd transport | [ |
| CAL1 | LOC_Os02g41904 | 防御素类蛋白 Defensin-like protein | Cd外排/Cd螯合 Cd emissions/Cd chelation | [ |
| OsPCS1 | LOC_Os05g34290 | 螯合肽合酶基因Phytochelatin synthase gene | Cd螯合Cd chelation | [ |
| OsPCS2 | LOC_Os06g01260 | 螯合肽合酶基因Phytochelatin synthase gene | Cd螯合Cd chelation | [ |
| OsCADT1 | LOC_Os01g65410 | 丝氨酸羟甲基转移酶Serine hydroxymethyltransferase | Cd螯合Cd chelation | [ |
Table 1 Cloned genes related to cadmium uptake and translocation in rice
| 基因 Gene | 基因号 GenBank No. | 编码蛋白 Encoded protein | 功能 Function | 参考文献 References |
|---|---|---|---|---|
| OsNramp1 | LOC_Os07g15460 | 天然抗性相关巨噬细胞蛋白 Natural resistance-associated macrophage protein | Cd吸收 Cd absorption | [ |
| OsNramp2 | LOC_Os03g11010 | 天然抗性相关巨噬细胞蛋白 Natural resistance-associated macrophage protein | Cd外排 Cd emission | [ |
| OsNramp5 | LOC_Os07g15370 | 天然抗性相关巨噬细胞蛋白 Natural resistance-associated macrophage protein | Cd吸收 Cd absorption | [ |
| OsZIP1 | LOC_Os01g74110 | 锌铁调控转运蛋白ZRT- and IRT-like protein | Cd外排Cd emission | [ |
| OsZIP5 | LOC_Os05g39560 | 锌铁调控转运蛋白ZRT- and IRT-like protein | Cd吸收Cd absorption | [ |
| OsZIP7 | LOC_Os05g10940 | 锌铁调控转运蛋白ZRT- and IRT-like protein | Cd转运Cd transport | [ |
| OsZIP9 | LOC_Os05g39540 | 锌铁调控转运蛋白ZRT- and IRT-like protein | Cd吸收Cd absorption | [ |
| OsIRT1 | LOC_Os03g46470 | 铁调控转运蛋白Iron-regulated metal transporter | Cd吸收Cd absorption | [ |
| OsIRT2 | LOC_Os03g46454 | 铁调控转运蛋白Iron-regulated metal transporter | Cd吸收Cd absorption | [ |
| OsABCG36 | LOC_Os01g42380 | ABCG亚家族转运蛋白ATP Binding Cassette G36 | Cd隔离Cd segregation | [ |
| OsABCG43 | LOC_Os07g33780 | ABCG亚家族转运蛋白ATP Binding Cassette G43 | Cd隔离Cd segregation | [ |
| OsCd1 | LOC_Os03g02380 | MFS超家族转运蛋白 Major facilitator superfamily domain-containing protein | Cd吸收 Cd absorption | [ |
| OsHMA3 | LOC_Os07g12900 | 重金属ATP酶Heavy-metal ATPase | Cd转运Cd transport | [ |
| OsHMA2 | LOC_Os06g48720 | 重金属ATP酶Heavy-metal ATPase | Cd转运Cd transport | [ |
| OsFWL4 | LOC_Os03g61440 | 果重同源基因Fruit-weight 2.2-like 4 | Cd转运Cd transport | [ |
| OsCCX2 | LOC_Os03g45370 | 钙离子/阳离子交换蛋白Calcium/cation exchanger | Cd转运Cd transport | [ |
| OsLCT1 | LOC_Os06g38120 | 低亲和性阳离子转运蛋白Low-affinity cation transporter | Cd转运Cd transport | [ |
| OsLCT2 | EEC79340.1/MW757982 | 低亲和性阳离子转运蛋白Low-affinity cation transporter | Cd转运Cd transport | [ |
| OsMTP1 | LOC_Os05g03780 | 锌转运蛋白Zn transporter 1 | Cd转运Cd transport | [ |
| LCD | LOC_Os01g72670 | 低镉Low cadmium | Cd转运Cd transport | [ |
| CAL1 | LOC_Os02g41904 | 防御素类蛋白 Defensin-like protein | Cd外排/Cd螯合 Cd emissions/Cd chelation | [ |
| OsPCS1 | LOC_Os05g34290 | 螯合肽合酶基因Phytochelatin synthase gene | Cd螯合Cd chelation | [ |
| OsPCS2 | LOC_Os06g01260 | 螯合肽合酶基因Phytochelatin synthase gene | Cd螯合Cd chelation | [ |
| OsCADT1 | LOC_Os01g65410 | 丝氨酸羟甲基转移酶Serine hydroxymethyltransferase | Cd螯合Cd chelation | [ |
| [1] | TANAKA K, SUEDA K, ONOSAKA S, et al. Fate of 109Cd-labeled metallothionein in rats[J]. Toxicology and Applied Pharmacology, 1975, 33(2): 258-266. |
| [2] | 朱凯, 余恩源, 张群祥, 等. 网络时代农产品质量安全事件风险扩散的路径研究: 以镉大米事件为例[J]. 河北科技师范学院学报(社会科学版), 2023, 22(4): 61-68. |
| ZHU K, YU E Y, ZHANG Q X, et al. Research on the risk diffusion path of agricultural product quality and safety events in the network era: taking the cadmium rice incident as an example[J]. Journal of Hebei Normal University of Science & Technology(Social Sciences), 2023, 22(4): 61-68. (in Chinese with English abstract) | |
| [3] | URAGUCHI S, FUJIWARA T. Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation[J]. Rice, 2012, 5(1): 5. |
| [4] | 方波, 肖腾伟, 苏娜娜, 等. 水稻镉吸收及其在各器官间转运积累的研究进展[J]. 中国水稻科学, 2021, 35(3): 225-237. |
| FANG B, XIAO T W, SU N N, et al. Research progress on cadmium uptake and its transport and accumulation among organs in rice[J]. Chinese Journal of Rice Science, 2021, 35(3): 225-237. (in Chinese with English abstract) | |
| [5] | FUJIMAKI S, SUZUI N, ISHIOKA N S, et al. Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant[J]. Plant Physiology, 2010, 152(4): 1796-1806. |
| [6] | YANG M, ZHANG Y Y, ZHANG L J, et al. OsNRAMP5 contributes to manganese translocation and distribution in rice shoots[J]. Journal of Experimental Botany, 2014, 65(17): 4849-4861. |
| [7] | ISHIMARU Y, TAKAHASHI R, BASHIR K, et al. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport[J]. Scientific Reports, 2012, 2: 286. |
| [8] | SATORU ISHIKAWA Y I. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(47): 19166-19171. |
| [9] | YU E, WANG W G, YAMAJI N, et al. Duplication of a manganese/cadmium transporter gene reduces cadmium accumulation in rice grain[J]. Nature Food, 2022, 3(8): 597-607. |
| [10] | CHANG J D, HUANG S, YAMAJI N, et al. OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice[J]. Plant, Cell & Environment, 2020, 43(10): 2476-2491. |
| [11] | YANG W, CHEN L, MA Y M, et al. OsNRAMP2 facilitates Cd efflux from vacuoles and contributes to the difference in grain Cd accumulation between japonica and indica rice[J]. The Crop Journal, 2023, 11(2): 417-426. |
| [12] | LIU X S, FENG S J, ZHANG B Q, et al. OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice[J]. BMC Plant Biology, 2019, 19(1): 283. |
| [13] | TAN L T, ZHU Y X, FAN T, et al. OsZIP 7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice[J]. Biochemical and Biophysical Research Communications, 2019, 512(1): 112-118. |
| [14] | TAN L T, QU M M, ZHU Y X, et al. ZINC TRANSPORTER5 and ZINC TRANSPORTER9 function synergistically in zinc/cadmium uptake[J]. Plant Physiology, 2020, 183(3): 1235-1249. |
| [15] | BUGHIO N, YAMAGUCHI H, NISHIZAWA N K, et al. Cloning an iron‐regulated metal transporter from rice[J]. Journal of Experimental Botany, 2002, 53(374): 1677-1682. |
| [16] | ISHIMARU Y, SUZUKI M, TSUKAMOTO T, et al. Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+[J]. The Plant Journal, 2006, 45(3): 335-346. |
| [17] | NAKANISHI H, OGAWA I, ISHIMARU Y, et al. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice[J]. Soil Science and Plant Nutrition, 2006, 52(4): 464-469. |
| [18] | FU S, LU Y S, ZHANG X, et al. The ABC transporter ABCG36 is required for cadmium tolerance in rice[J]. Journal of Experimental Botany, 2019, 70(20): 5909-5918. |
| [19] | ODA K, OTANI M, URAGUCHI S, et al. Rice ABCG43 is Cd inducible and confers Cd tolerance on yeast[J]. Bioscience, Biotechnology, and Biochemistry, 2011, 75(6): 1211-1213. |
| [20] | YAN H L, XU W X, XIE J Y, et al. Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies[J]. Nature Communications, 2019, 10: 2562. |
| [21] | MIYADATE H, ADACHI S, HIRAIZUMI A, et al. OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles[J]. New Phytologist, 2011, 189(1): 190-199. |
| [22] | SASAKI A, YAMAJI N, MA J F. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice[J]. Journal of Experimental Botany, 2014, 65(20): 6013-6021. |
| [23] | LU C N, ZHANG L X, TANG Z, et al. Producing cadmium-free Indica rice by overexpressing OsHMA3[J]. Environment International, 2019, 126: 619-626. |
| [24] | SATOH-NAGASAWA N, MORI M, NAKAZAWA N, et al. Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium[J]. Plant and Cell Physiology, 2012, 53(1): 213-224. |
| [25] | TAKAHASHI R, ISHIMARU Y, SHIMO H, et al. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice[J]. Plant, Cell & Environment, 2012, 35(11): 1948-1957. |
| [26] | TIAN S Q, LIANG S, QIAO K, et al. Co-expression of multiple heavy metal transporters changes the translocation, accumulation, and potential oxidative stress of Cd and Zn in rice (Oryza sativa)[J]. Journal of Hazardous Materials, 2019, 380: 120853. |
| [27] | XIONG W T, WANG P, YAN T Z, et al. The rice “fruit-weight 2.2-like” gene family member OsFWL4 is involved in the translocation of cadmium from roots to shoots[J]. Planta, 2018, 247(5): 1247-1260. |
| [28] | HAO X H, ZENG M, WANG J, et al. A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice[J]. Frontiers in Plant Science, 2018, 9: 476. |
| [29] | URAGUCHI S, KAMIYA T, SAKAMOTO T, et al. Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(52): 20959-20964. |
| [30] | URAGUCHI S, KAMIYA T, CLEMENS S, et al. Characterization of OsLCT1, a cadmium transporter from indica rice (Oryza sativa)[J]. Physiologia Plantarum, 2014, 151(3): 339-347. |
| [31] | TANG L, DONG J Y, TAN L T, et al. Overexpression of OsLCT2, a low-affinity cation transporter gene, reduces cadmium accumulation in shoots and grains of rice[J]. Rice, 2021, 14(1): 89. |
| [32] | YUAN L Y, YANG S G, LIU B X, et al. Molecular characterization of a rice metal tolerance protein, OsMTP1[J]. Plant Cell Reports, 2012, 31(1): 67-79. |
| [33] | SHIMO H, ISHIMARU Y, AN G, et al. Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice[J]. Journal of Experimental Botany, 2011, 62(15): 5727-5734. |
| [34] | CHEN H M, YE R, LIANG Y, et al. Generation of low-cadmium rice germplasms via knockout of OsLCD using CRISPR/Cas9[J]. Journal of Environmental Sciences, 2023, 126: 138-152. |
| [35] | LUO J S, HUANG J, ZENG D L, et al. A defensin-like protein drives cadmium efflux and allocation in rice[J]. Nature Communications, 2018, 9: 645. |
| [36] | DAS N, BHATTACHARYA S, BHATTACHARYYA S, et al. Identification of alternatively spliced transcripts of rice phytochelatin synthase 2 gene OsPCS2 involved in mitigation of cadmium and arsenic stresses[J]. Plant Molecular Biology, 2017, 94(1): 167-183. |
| [37] | LI J C, GUO J B, XU W Z, et al. RNA interference-mediated silencing of phytochelatin synthase gene reduce cadmium accumulation in rice seeds[J]. Journal of Integrative Plant Biology, 2007, 49(7): 1032-1037. |
| [38] | CHEN J, HUANG X Y, SALT D E, et al. Mutation in OsCADT1 enhances cadmium tolerance and enriches selenium in rice grain[J]. New Phytologist, 2020, 226(3): 838-850. |
| [39] | 江淼, 余海娟, 李亮, 等. 水稻核心种质的耐镉性鉴定[J]. 植物生理学报, 2015, 51(10): 1617-1624. |
| JIANG M, YU H J, LI L, et al. Identification of cadmium tolerance of rice core germplasm[J]. Plant Physiology Journal, 2015, 51(10): 1617-1624. | |
| [40] | ZHAO J L, YANG W, ZHANG S H, et al. Genome-wide association study and candidate gene analysis of rice cadmium accumulation in grain in a diverse rice collection[J]. Rice, 2018, 11(1): 61. |
| [41] | 洪涌, 林金纶, 钟雪萌, 等. 不同镉耐性水稻品种资源的筛选[J]. 福建农林大学学报(自然科学版), 2022, 51(6): 730-736. |
| HONG Y, LIN J L, ZHONG X M, et al. Screening of Oryza sativa varieties with different cadmium tolerances[J]. Journal of Fujian Agriculture and Forestry University(Natural Science Edition), 2022, 51(6): 730-736. (in Chinese with English abstract) | |
| [42] | 黄春艳. 低镉水稻资源的筛选与主栽水稻品种镉积累特性的比较[D]. 长沙: 湖南师范大学, 2014. |
| HUANG C Y. The screening of low-Cd rice resources and comparisons of Cd-accmulation characteristics in main rice varieties[D]. Changsha: Hunan Normal University, 2014. (in Chinese with English abstract) | |
| [43] | 牛荣成. 镉低积累水稻品种筛选及其污染土壤改良剂研究[D]. 北京: 中国科学院大学, 2011. |
| NIU R C. Screening of rice varieties with low cadmium accumulation and study on its contaminated soil improver[D]. Beijing: University of Chinese Academy of Sciences, 2011. (in Chinese with English abstract) | |
| [44] | AKIMASA SASAKI N Y. Nramp 5 is a major transporter responsible for manganese and cadmium uptake in rice[J]. The Plant Cell, 2012, 24(5): 2155-2167. |
| [45] | 唐丽, 李曜魁, 毛毕刚, 等. 靶向突变OsNramp5基因创制镉低积累籼型杂交稻亲本及组合[C]// 2018中国作物学会学术年会论文摘要集. 扬州, 2018: 18. |
| [46] | WANG T K, LI Y X, FU Y F, et al. Mutation at different sites of metal transporter gene OsNramp 5 affects Cd accumulation and related agronomic traits in rice (Oryza sativa L.)[J]. Frontiers in Plant Science, 2019, 10: 1081. |
| [47] | YANG C H, ZHANG Y, HUANG C F. Reduction in cadmium accumulation in japonica rice grains by CRISPR/Cas9-mediated editing of OsNRAMP5[J]. Journal of Integrative Agriculture, 2019, 18(3): 688-697. |
| [48] | 龙起樟, 黄永兰, 唐秀英, 等. 利用CRISPR/Cas9敲除OsNramp5基因创制低镉籼稻[J]. 中国水稻科学, 2019, 33(5): 407-420. |
| LONG Q Z, HUANG Y L, TANG X Y, et al. Creation of low-Cd-accumulating indica rice by disruption of OsNramp5 gene via CRISPR/Cas9[J]. Chinese Journal of Rice Science, 2019, 33(5): 407-420. (in Chinese with English abstract) | |
| [49] | ZHAO F J, MA Y B, ZHU Y G, et al. Soil contamination in China: current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49(2): 750-759. |
| [1] | TAN Shiyi, YU Guohong, XUE Xianglei, ZHAO Yinglei, XU Baoyu, ZHANG Chenghao. Design and experiment of tray handling device for industrialized rice seedling raising [J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1545-1555. |
| [2] | ZHANG Zhi, HE Haohao, YU Miao, XU Jianfeng. Effects of chemical fertilizer reduction combined with soil conditioner on soil acidity, soil nutrients and rice yield [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1301-1308. |
| [3] | LIN Xiaobing, LI Jiang, CHENG Yanhong, WANG Binqiang, HE Shaolang, HUANG Shangshu, HUANG Qianru. Effects of organic materials on soil microbial biomass, mineral nitrogen content and rice yield [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1309-1318. |
| [4] | SU Yang, SHANG Xiaolan, QIAN Zhongming, WU Lingen, HUANG Jiaqi, ZHUANG Haifeng, ZHAO Yufei, DANG Hongyang, XU Lijun. Effects of synergistic enhancement of straw returning to the field with decomposition agent and biochar on soil quality and rice growth [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1139-1148. |
| [5] | ZHU Xiao, ZHU Ying, LI Hongjun, CHEN Shanfeng. Preparation and quality of oat chickpea compound rice by squeezing [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1149-1158. |
| [6] | LIU Qihua, SUN Zhaowen, ZHENG Chongke. Effects of nitrogen management on absorption and allocation of microelements in above-ground parts of dry direct-sowing rice [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 987-997. |
| [7] | YING Yongfei, HAN Dongxuan, MENG Fang, YU Lin, SHEN Jialuan, WANG Kaiying. Effects of biogas slurry substituting chemical fertilizer on rice yield and quality and soil characteristics [J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 880-891. |
| [8] | SONG Xinlu, FAN Shuhong, WU Guangqi, ZHAN Mengqi, HOU Qian, LI Mingyue, XU Yan. Effects of combined copper-phenanthrene pollution on physiological characteristics and pollutant accumulation of rice roots at tillering stage [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 521-529. |
| [9] | LEI Zhiwei, LI Xinxin, XU Heng, ZHANG Heng, ZHU Ying, ZHANG Hua. Identification of QTLs for stem borer resistance using chromosome segment substitution lines in rice [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 530-537. |
| [10] | XIE Changyan, JIN Yumeng, ZHANG Miao, DONG Qingjun, LI Qing, JI Li, ZHONG Ping, CHEN Chuan, ZHANG Ankang. Application effect of nutrient soil made from river sludge for machine-transplanted rice seedling [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 538-547. |
| [11] | LI Guiping, XU Xiaomei, LU Lizhi. Rice-duck farming and its environmental effects [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 643-653. |
| [12] | WU Jiaqi, ZHU Xueming, BAO Jiandong, WANG Caoyi, ZHOU Xiaoyu, LI Lin, LIN Fucheng. Research progress on biological control of rice blast [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 736-744. |
| [13] | WAN Shaoyuan, LIU Xianbo, CAI Shuo, SHI Hong, CHENG Jie. Effect of irrigation and planting methods on the yield and quality of double-cropping rice [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 257-268. |
| [14] | LAN Xuecheng, ZHAO Fengliang, ZHANG Guangxu, LI Yang, GUO Xiaohong. Effects of nano zinc oxide and nano silicon dioxide on rice seed germination [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 269-277. |
| [15] | LI Jianqiang, WEI Qianqian, LIU Xiaoxia, ZHANG Junhua, ZHU Chunquan. Effects of optimizing fertilization methods on rice yield and soil nutrient balance [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 438-446. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||