Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (10): 1921-1930.DOI: 10.3969/j.issn.1004-1524.2021.10.16
• Environmental Science • Previous Articles Next Articles
CHEN De1(), ZHAO Shouping1, YE Xuezhu1,*(
), ZHANG Qi1, XIAO Wendan1, RUAN Yifei2, WU Shaofu3
Received:
2021-05-09
Online:
2021-10-25
Published:
2021-11-02
Contact:
YE Xuezhu
CLC Number:
CHEN De, ZHAO Shouping, YE Xuezhu, ZHANG Qi, XIAO Wendan, RUAN Yifei, WU Shaofu. Effects of soil amendments on Cd uptake and accumulation in red pepper[J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1921-1930.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2021.10.16
处理 | 果实Cd含量 Fruit Cd content/ (mg·kg-1) | 茎叶Cd含量 Shoot Cd content/ (mg·kg-1) | 根系Cd含量 Root Cd content/ (mg·kg-1) | 转运系数 Translocation factor | 富集系数 Concentration factor |
---|---|---|---|---|---|
CK | 0.106±0.004a | 1.51±0.15 a | 0.51±0.10 a | 3.10±0.95 a | 0.55±0.03 a |
BC | 0.104±0.004 a | 1.08±0.05 b | 0.48±0.10 ab | 2.29±0.40 bc | 0.55±0.01 a |
SH | 0.078±0.015 b | 0.83±0.06 c | 0.41±0.03 ab | 2.04±0.00 c | 0.42±0.09 b |
SEP | 0.049±0.006 c | 0.53±0.03 e | 0.24±0.00 d | 2.18±0.10 bc | 0.26±0.04 c |
GMP | 0.079±0.014 b | 0.77±0.10 c | 0.28±0.03 d | 2.77±0.11 ab | 0.41±0.06 b |
F1 | 0.068±0.006 bc | 0.58±0.06 de | 0.30±0.04 cd | 1.95±0.09 c | 0.37±0.03 b |
F2 | 0.078±0.013 b | 0.75±0.18 cd | 0.43±0.02 ab | 1.73±0.32 c | 0.41±0.06 b |
F3 | 0.064±0.018 bc | 0.76±0.09 c | 0.40±0.07 bc | 1.92±0.09 c | 0.34±0.08 bc |
Table 1 Cd concentrations in different parts of red pepper, translocation factor and concentration factor
处理 | 果实Cd含量 Fruit Cd content/ (mg·kg-1) | 茎叶Cd含量 Shoot Cd content/ (mg·kg-1) | 根系Cd含量 Root Cd content/ (mg·kg-1) | 转运系数 Translocation factor | 富集系数 Concentration factor |
---|---|---|---|---|---|
CK | 0.106±0.004a | 1.51±0.15 a | 0.51±0.10 a | 3.10±0.95 a | 0.55±0.03 a |
BC | 0.104±0.004 a | 1.08±0.05 b | 0.48±0.10 ab | 2.29±0.40 bc | 0.55±0.01 a |
SH | 0.078±0.015 b | 0.83±0.06 c | 0.41±0.03 ab | 2.04±0.00 c | 0.42±0.09 b |
SEP | 0.049±0.006 c | 0.53±0.03 e | 0.24±0.00 d | 2.18±0.10 bc | 0.26±0.04 c |
GMP | 0.079±0.014 b | 0.77±0.10 c | 0.28±0.03 d | 2.77±0.11 ab | 0.41±0.06 b |
F1 | 0.068±0.006 bc | 0.58±0.06 de | 0.30±0.04 cd | 1.95±0.09 c | 0.37±0.03 b |
F2 | 0.078±0.013 b | 0.75±0.18 cd | 0.43±0.02 ab | 1.73±0.32 c | 0.41±0.06 b |
F3 | 0.064±0.018 bc | 0.76±0.09 c | 0.40±0.07 bc | 1.92±0.09 c | 0.34±0.08 bc |
Fig.1 Available Cd concentration in soil CK, Control group without amendment; BC, Peanut husk biochar treatment; SH, Quicklime treatment; SEP, Sepiolite treatment; GMP, Calcium magnesium phosphate treatment; F1, Composite amendment 1 treatment; F2, Composite amendment 2 treatment; F3, Composite amendment 3 treatment. Data on the bars marked without the same lowercase letter indicated significant differences at P<0.05.The same as below.
处理 | 有机质 Organic matter/ (g·kg-1) | 全氮 Total nitrogen/ (g·kg-1) | 碱解氮 Alkali hydrolyzable nitrogen/(mg·kg-1) | 全磷 Total phosphorus/ (g·kg-1) | 有效磷 Available phosphorus/ (mg·kg-1) |
---|---|---|---|---|---|
CK | 27.00±1.83 d | 1.58±0.03 d | 129.6±3.3 c | 0.91±0.10 b | 28.33±2.74 ef |
BC | 37.65±4.74 a | 1.84±0.12 a | 148.5±6.3 b | 0.89±0.06 b | 30.37±3.65 de |
SH | 30.50±0.99 bcd | 1.77±0.03 ab | 170.8±22.8 a | 0.89±0.05 b | 50.83±8.04 b |
SEP | 27.75±0.21 cd | 1.60±0.03 cd | 146.0±2.2 bc | 0.75±0.01 c | 18.80±2.43 f |
GMP | 30.70±2.26 bcd | 1.68±0.02 bc | 149.6±5.4 b | 1.07±0.09 a | 69.28±5.55 a |
F1 | 30.80±1.41 bcd | 1.70±0.06 b | 156.0±6.6 ab | 0.93±0.04 b | 33.45±7.75 cde |
F2 | 33.13±0.04 ab | 1.70±0.01 b | 158.4±8.9 ab | 0.87±0.01 b | 40.43±5.60 bcd |
F3 | 31.55±0.92 bc | 1.73±0.07 b | 155.6±8.1 ab | 0.94±0.06 b | 42.10±8.90 bc |
Table 2 Organic matter and nutrient contents in soils
处理 | 有机质 Organic matter/ (g·kg-1) | 全氮 Total nitrogen/ (g·kg-1) | 碱解氮 Alkali hydrolyzable nitrogen/(mg·kg-1) | 全磷 Total phosphorus/ (g·kg-1) | 有效磷 Available phosphorus/ (mg·kg-1) |
---|---|---|---|---|---|
CK | 27.00±1.83 d | 1.58±0.03 d | 129.6±3.3 c | 0.91±0.10 b | 28.33±2.74 ef |
BC | 37.65±4.74 a | 1.84±0.12 a | 148.5±6.3 b | 0.89±0.06 b | 30.37±3.65 de |
SH | 30.50±0.99 bcd | 1.77±0.03 ab | 170.8±22.8 a | 0.89±0.05 b | 50.83±8.04 b |
SEP | 27.75±0.21 cd | 1.60±0.03 cd | 146.0±2.2 bc | 0.75±0.01 c | 18.80±2.43 f |
GMP | 30.70±2.26 bcd | 1.68±0.02 bc | 149.6±5.4 b | 1.07±0.09 a | 69.28±5.55 a |
F1 | 30.80±1.41 bcd | 1.70±0.06 b | 156.0±6.6 ab | 0.93±0.04 b | 33.45±7.75 cde |
F2 | 33.13±0.04 ab | 1.70±0.01 b | 158.4±8.9 ab | 0.87±0.01 b | 40.43±5.60 bcd |
F3 | 31.55±0.92 bc | 1.73±0.07 b | 155.6±8.1 ab | 0.94±0.06 b | 42.10±8.90 bc |
参数 Parameter | 果实中Cd Fruit Cd | 土壤pH值 Soil pH value | 有效态Cd Available Cd | 有机质 Organic matter | 茎叶中Cd Shoot Cd | 根中Cd Root Cd |
---|---|---|---|---|---|---|
土壤pH值 Soil pH value | -0.768** | |||||
有效态Cd Available Cd | 0.655** | -0.856** | ||||
有机质 Organic matter | 0.255 | -0.062 | -0.204 | |||
茎叶中Cd Shoot Cd | 0.746** | -0.892** | 0.873** | 0.039 | ||
根中Cd Root Cd | 0.685** | -0.694** | 0.599** | 0.363 | 0.710** | |
转运系数 Translocation factor | 0.340 | -0.523** | 0.560** | -0.290 | 0.638** | -0.078 |
Table 3 Correlation coefficient among Cd concentrations in different parts of pepper and soil properties
参数 Parameter | 果实中Cd Fruit Cd | 土壤pH值 Soil pH value | 有效态Cd Available Cd | 有机质 Organic matter | 茎叶中Cd Shoot Cd | 根中Cd Root Cd |
---|---|---|---|---|---|---|
土壤pH值 Soil pH value | -0.768** | |||||
有效态Cd Available Cd | 0.655** | -0.856** | ||||
有机质 Organic matter | 0.255 | -0.062 | -0.204 | |||
茎叶中Cd Shoot Cd | 0.746** | -0.892** | 0.873** | 0.039 | ||
根中Cd Root Cd | 0.685** | -0.694** | 0.599** | 0.363 | 0.710** | |
转运系数 Translocation factor | 0.340 | -0.523** | 0.560** | -0.290 | 0.638** | -0.078 |
[1] | 王大州, 林剑, 王大霞, 等. 根际土-辣椒系统中重金属的分布及食物安全风险评价[J]. 地球与环境, 2014, 42(4):546-549. |
WANG D Z, LIN J, WANG D X, et al. Distribution of heavy metals in the rhizospheric soil-Capsicum system and risk assessment[J]. Earth and Environment, 2014, 42(4):546-549.(in Chinese with English abstract) | |
[2] | 孙硕, 李菊梅, 马义兵, 等. 河北省蔬菜大棚土壤及蔬菜中重金属累积分析[J]. 农业资源与环境学报, 2019, 36(2):236-244. |
SUN S, LI J M, MA Y B, et al. Accumulation of heavy metals in soil and vegetables of greenhouses in Hebei Province, China[J]. Journal of Agricultural Resources and Environment, 2019, 36(2):236-244.(in Chinese with English abstract) | |
[3] |
DUDKA S, MILLER W P. Accumulation of potentially toxic elements in plants and their transfer to human food chain[J]. Journal of Environmental Science and Health, Part B, 1999, 34(4):681-708.
DOI URL |
[4] |
REEVES P G, CHANEY R L. Bioavailability as an issue in risk assessment and management of food cadmium: a review[J]. Science of the Total Environment, 2008, 398(1/2/3):13-19.
DOI URL |
[5] | 王美娥, 彭驰, 陈卫平. 水稻品种及典型土壤改良措施对稻米吸收镉的影响[J]. 环境科学, 2015, 36(11):4283-4290. |
WANG M E, PENG C, CHEN W P. Effects of rice cultivar and typical soil improvement measures on the uptake of Cd in rice grains[J]. Environmental Science, 2015, 36(11):4283-4290.(in Chinese with English abstract) | |
[6] |
KUMAR SHARMA R, AGRAWAL M, MARSHALL F. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India[J]. Ecotoxicology and Environmental Safety, 2007, 66(2):258-266.
DOI URL |
[7] | 赵云青, 周怡, 黄兴洁, 等. 重金属在矿区土壤-蔬菜系统的吸收与迁移特性研究[J]. 土壤通报, 2019, 50(5):1233-1238. |
ZHAO Y Q, ZHOU Y, HUANG X J, et al. Absorption and migration of heavy metals in soil-vegetable system in mining area[J]. Chinese Journal of Soil Science, 2019, 50(5):1233-1238.(in Chinese with English abstract) | |
[8] | 冯艳红, 王国庆, 张亚, 等. 土壤-蔬菜系统中镉的生物富集效应及土壤阈值研究[J]. 地球与环境, 2019, 47(5):653-661. |
FENG Y H, WANG G Q, ZHANG Y, et al. Study on bioaccumulation of cadmium in soil-vegetable system and pollution threshold in soil[J]. Earth and Environment, 2019, 47(5):653-661.(in Chinese with English abstract) | |
[9] | 肖青青, 王宏镔, 赵宾, 等. 云南个旧市郊农作物重金属污染现状及健康风险[J]. 农业环境科学学报, 2011, 30(2):271-281. |
XIAO Q Q, WANG H B, ZHAO B, et al. Heavy metal pollution in crops growing in suburb of Gejiu City, Yunnan Province, China: present situation and health risk[J]. Journal of Agro-Environment Science, 2011, 30(2):271-281.(in Chinese with English abstract) | |
[10] | 冯英, 马璐瑶, 王琼, 等. 我国土壤-蔬菜作物系统重金属污染及其安全生产综合农艺调控技术[J]. 农业环境科学学报, 2018, 37(11):2359-2370. |
FENG Y, MA L Y, WANG Q, et al. Heavy-metal pollution and safety production technologies of soil-vegetable crop systems in China[J]. Journal of Agro-Environment Science, 2018, 37(11):2359-2370.(in Chinese) | |
[11] | 彭秋, 李桃, 徐卫红, 等. 不同品种辣椒镉亚细胞分布和化学形态特征差异[J]. 环境科学, 2019, 40(7):3347-3354. |
PENG Q, LI T, XU W H, et al. Differences in the cadmium-enrichment capacity and subcellular distribution and chemical form of cadmium in different varieties of pepper[J]. Environmental Science, 2019, 40(7):3347-3354.(in Chinese with English abstract) | |
[12] | 刘青栋. 镉在土壤-辣椒体系迁移富集及其耦合关系探究[D]. 贵阳: 贵州大学, 2019. |
LIU Q D. Study on migration and enrichment of cadmium in soil-pepper system and its coupling relationship[D]. Guiyang: Guizhou University, 2019. (in Chinese with English abstract) | |
[13] |
GUO G L, ZHOU Q X, MA L Q. Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review[J]. Environmental Monitoring and Assessment, 2006, 116(1/2/3):513-528.
DOI URL |
[14] | 孟龙, 黄涂海, 陈謇, 等. 镉污染农田土壤安全利用策略及其思考[J]. 浙江大学学报(农业与生命科学版), 2019, 45(3):263-271. |
MENG L, HUANG T H, CHEN J, et al. Safe utilization of farmland soil with cadmium pollution: strategies and deliberations[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3):263-271.(in Chinese with English abstract) | |
[15] | 刘振刚, 夏宇, 孟芋含, 等. 生物质炭材料修复重金属污染土壤的研究进展:修复机理及研究热点分析[J]. 环境工程学报, 2021, 15(4):1140-1148. |
LIU Z G, XIA Y, MENG Y H, et al. Research advances in biomass-based carbon materials for remediation of heavy metal contaminated soil: immobilization mechanism and analysis of related studies[J]. Chinese Journal of Environmental Engineering, 2021, 15(4):1140-1148.(in Chinese with English abstract) | |
[16] |
SUN Y B, XU Y, XU Y M, et al. Reliability and stability of immobilization remediation of Cd polluted soils using sepiolite under pot and field trials[J]. Environmental Pollution, 2016, 208:739-746.
DOI URL |
[17] |
CHEN D, LIU X Y, BIAN R J, et al. Effects of biochar on availability and plant uptake of heavy metals: a meta-analysis[J]. Journal of Environmental Management, 2018, 222:76-85.
DOI URL |
[18] | 黄柏豪, 吴秦慧姿, 肖亨, 等. 连施石灰对Cd污染土壤Cd形态及稻麦吸收Cd的影响[J]. 中国土壤与肥料, 2020(3):138-143. |
HUANG B H, WU Q H Z, XIAO H, et al. Effects of continuous application of lime for three years on cadmium concentration and uptake by wheat and rice in Cd contaminated soil[J]. Soil and Fertilizer Sciences in China, 2020(3):138-143.(in Chinese with English abstract) | |
[19] |
ALVANI S, HOJATI S, LANDI A. Effects of sepiolite nanoparticles on the kinetics of Pb and Cu removal from aqueous solutions and their immobilization in columns with different soil textures[J]. Geoderma, 2019, 350:19-28.
DOI URL |
[20] |
CHEN D, YE X Z, ZHANG Q, et al. The effect of sepiolite application on rice Cd uptake: a two-year field study in Southern China[J]. Journal of Environmental Management, 2020, 254:109788.
DOI URL |
[21] | LEHMANN J, JOSEPH S. Biochar for environmental management[M]. London: Routledge, 2015. |
[22] |
ALBERT H A, LI X, JEYAKUMAR P, et al. Influence of biochar and soil properties on soil and plant tissue concentrations of Cd and Pb: a meta-analysis[J]. Science of the Total Environment, 2021, 755:142582.
DOI URL |
[23] |
TIAN X S, WANG D Y, CHAI G Q, et al. Does biochar inhibit the bioavailability and bioaccumulation of As and Cd in co-contaminated soils? A meta-analysis[J]. Science of the Total Environment, 2021, 762:143117.
DOI URL |
[24] |
WANG D, JIANG P K, ZHANG H B, et al. Biochar production and applications in agro and forestry systems: a review[J]. Science of the Total Environment, 2020, 723:137775.
DOI URL |
[25] | 蔡鑫, 白珊, 陈绩, 等. 碱性肥料和生物质炭对土壤镉的钝化效果[J]. 浙江农业科学, 2021, 62(2):448-452. |
CAI X, BAI S, CHEN J, et al. Passivation effects of alkaline fertilizer and biochar on heavy metal cadmium in soil[J]. Journal of Zhejiang Agricultural Sciences, 2021, 62(2):448-452.(in Chinese) | |
[26] | LUO K, LIU H Y, LIU Q D, et al. Cadmium accumulation and migration of 3 peppers varieties in yellow and limestone soils under geochemical anomaly[J]. Environmental Technology, 2020: 1-11. |
[27] | 赵首萍, 叶雪珠, 张棋, 等. 不同辣椒品种镉吸收积累能力及关键期研究[J]. 植物营养与肥料学报, 2021, 27(4):695-705. |
ZHAO S P, YE X Z, ZHANG Q, et al. The capacity and critical stage of Cd absorption and accumulation of different pepper cultivars[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(4):695-705.(in Chinese with English abstract) | |
[28] | 李素霞, 谢朝阳, 季斌, 等. 不同改良剂在镉与硝酸盐复合污染下对辣椒品质的影响[J]. 西南农业学报, 2011, 24(4):1480-1483. |
LI S X, XIE Z Y, JI B, et al. Effects of several modifiers on quality of pepper in interactive of nitrogen nutrition and cadmium contamination soil[J]. Southwest China Journal of Agricultural Sciences, 2011, 24(4):1480-1483.(in Chinese with English abstract) | |
[29] |
YANG J X, GUO H T, MA Y B, et al. Genotypic variations in the accumulation of Cd exhibited by different vegetables[J]. Journal of Environmental Sciences, 2010, 22(8):1246-1252.
DOI URL |
[30] |
WANG J, WANG P M, GU Y, et al. Iron-manganese (oxyhydro) oxides, rather than oxidation of sulfides, determine mobilization of Cd during soil drainage in paddy soil systems[J]. Environmental Science & Technology, 2019, 53(5):2500-2508.
DOI URL |
[31] | LINDSAY W L. Chemical equilibria in soils[M]. New York: John Wiley and Sons Ltd, 1979:222-236. |
[32] |
MCBRIDE M, SAUVE S, HENDERSHOT W. Solubility control of Cu, Zn, Cd and Pb in contaminated soils[J]. European Journal of Soil Science, 1997, 48(2):337-346.
DOI URL |
[33] |
CAO X D, MA L N, GAO B, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine[J]. Environmental Science & Technology, 2009, 43(9):3285-3291.
DOI URL |
[34] |
INYANG M I, GAO B, YAO Y, et al. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal[J]. Critical Reviews in Environmental Science and Technology, 2016, 46(4):406-433.
DOI URL |
[35] | CHEN D, LI R Y, BIAN R J, et al. Contribution of soluble minerals in biochar to Pb2+ adsorption in aqueous solutions[J]. BioResources, 2017, 12(1):1662-1679. |
[36] |
ZACHARA J M, MCKINLEY J P. Influence of hydrolysis on the sorption of metal cations by smectites: importance of edge coordination reactions[J]. Aquatic Sciences, 1993, 55(4):250-261.
DOI URL |
[37] |
URAGUCHI S, MORI S, KURAMATA M, et al. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice[J]. Journal of Experimental Botany, 2009, 60(9):2677-2688.
DOI URL |
[38] |
YU Z G, ZHOU Q X. Growth responses and cadmium accumulation of Mirabilis jalapa L. under interaction between cadmium and phosphorus[J]. Journal of Hazardous Materials, 2009, 167(1/2/3):38-43.
DOI URL |
[39] | 袁兴超, 李博, 朱仁凤, 等. 不同钝化剂对铅锌矿区周边农田镉铅污染钝化修复研究[J]. 农业环境科学学报, 2019, 38(4):807-817. |
YUAN X C, LI B, ZHU R F, et al. Immobilization of Cd and Pb using different amendments of cultivated soils around lead-zinc mines[J]. Journal of Agro-Environment Science, 2019, 38(4):807-817.(in Chinese with English abstract) | |
[40] |
LIANG X F, HAN J, XU Y M, et al. In situ field-scale remediation of Cd polluted paddy soil using sepiolite and palygorskite[J]. Geoderma, 2014, 235/236:9-18.
DOI URL |
[41] |
SUN Y B, SUN G H, XU Y M, et al. In situ stabilization remediation of cadmium contaminated soils of wastewater irrigation region using sepiolite[J]. Journal of Environmental Sciences, 2012, 24(10):1799-1805.
DOI URL |
[42] |
HOODA P S, ALLOWAY B J. The effect of liming on heavy metal concentrations in wheat, carrots and spinach grown on previously sludge-applied soils[J]. The Journal of Agricultural Science, 1996, 127(3):289-294.
DOI URL |
[43] |
RUTTENS A, ADRIAENSEN K, MEERS E, et al. Long-term sustainability of metal immobilization by soil amendments: cyclonic ashes versus lime addition[J]. Environmental Pollution, 2010, 158(5):1428-1434.
DOI URL |
[44] | 潘根兴, 张阿凤, 邹建文, 等. 农业废弃物生物黑炭转化还田作为低碳农业途径的探讨[J]. 生态与农村环境学报, 2010, 26(4):394-400. |
PAN G X, ZHANG A, ZOU J W, et al. Biochar from agro-byproducts used as amendment to croplands: an option for low carbon agriculture[J]. Journal of Ecology and Rural Environment, 2010, 26(4):394-400.(in Chinese with English abstract) | |
[45] | 张阿凤, 潘根兴, 李恋卿. 生物黑炭及其增汇减排与改良土壤意义[J]. 农业环境科学学报, 2009, 28(12):2459-2463. |
ZHANG A F, PAN G X, LI L Q. Biochar and the effect on C stock enhancement, emission reduction of greenhouse gases and soil reclaimation[J]. Journal of Agro-Environment Science, 2009, 28(12):2459-2463.(in Chinese with English abstract) | |
[46] | 金睿, 刘可星, 艾绍英, 等. 生物炭复配调理剂对镉污染土壤性状和小白菜镉吸收及其生理特性的影响[J]. 南方农业学报, 2016, 47(9):1480-1487. |
JIN R, LIU K X, AI S Y, et al. Effects of biochar complex conditioner on properties of cadmium contaminated soil and cadmium absorption and physiological characteristics of Brassica chinensis[J]. Journal of Southern Agriculture, 2016, 47(9):1480-1487. (in Chinese with English abstract) | |
[47] | 赵莎莎, 肖广全, 陈玉成, 等. 不同施用量石灰和生物炭对稻田镉污染钝化的延续效应[J]. 水土保持学报, 2021, 35(1):334-340. |
ZHAO S S, XIAO G Q, CHEN Y C, et al. Continuous effect of different application rates of lime and biochar on the passivation of cadmium pollution in paddy fields[J]. Journal of Soil and Water Conservation, 2021, 35(1):334-340.(in Chinese with English abstract) |
[1] | CUI Ningbo, SHENG Shiyu. Quantitative research on ecological compensation for cultivated land in black soil region in northeast China from perspective of food security [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1759-1769. |
[2] | SUN Liping, BAI Linlin, GAN Yating, CHEN Xueyun, WANG Liu, ZHANG Yiming, HE Kaiyu, XU Xiahong. Research progress of rapid detection of pesticides and veterinary drugs residues and heavy metal ions based on DNA G-quadruplex [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1770-1778. |
[3] | CHEN Gui, ZHOU Jiewen, LI Haiping, ZHANG Faming, LI Chunshun, LIU Li, ZHANG Y. Effects of soil conditioner application on pH value of acidified soil and root characteristics of flue-cured tobacco [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1275-1282. |
[4] | ZHANG Qingqing, LIANG Jing, WU Haibing, ZHENG Sijun, HUANG Junhua. Effect of land use change on soil organic carbon pool in process of urbanization: a case study of Sanlin Green Wedge, Shanghai [J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 1062-1068. |
[5] | ZHU Yun, GUO Bin, LIN Yicheng, FU Qinglin, LIU Chen, LI Ningyu, LI Hua. Effects of self-developed soil conditioner on soil physiochemical properties and rice yield in coastal saline soil [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 885-892. |
[6] | XI Hui, LI Guolei, TAO An’an, GU Pin, HAN Dongdao, LI Na, CHEN Xijing. Effect of drip fertigation with organic liquid fertilizer on soil environment, fruit yield, quality, and economic benefits of citrus cv. beni madonna [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 670-677. |
[7] | WU Peicong, ZHANG Peng, SHAN Ying, ZOU Ganghua, DING Zheli, ZHU Zhiqiang, ZHAO Fengliang. Effects of staw-derived biochar on ammonia volatilization in tropical soil-rice system [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 678-687. |
[8] | FAN Linjuan, LIU Zirong, XU Xueliang, WANG Fenshan, PENG Deliang, YAO Yingjuan. Effects of six kinds of nematicides on soil microbial population, enzymes activities and nutrients in replanted Chinese yam field [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 506-515. |
[9] | CHENG Jing, LIU Jiming, WANG Shu, WANG Deng, LI Lixia, XU Guorui, CHEN Meng, HUANG Luting. Plasticity of a karst endemic plant Juglans regia L. f. luodianense Liu et Xu in response to soil moisture [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 259-269. |
[10] | FAN Linjuan, LIU Zirong, XU Xueliang, WANG Fenshan, PENG Deliang, YAO Yingjuan. Effects of different planting patterns on soil nematode community structure and soil properties of Chinese yam field [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 316-325. |
[11] | XIONG Tinghao, HUANG Yiguo, ZHOU Xuan, LU Yanhong, ZI Tao, HU Yuqian, SONG Haixing. Evaluation on soil nutrients and heavy metals pollution risk in main producing areas of rapeseed in Hunan Province, China [J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1904-1912. |
[12] | YANG Yiwei, XIAO Hua, CHEN Hu, XIAO Niejia, GUO Cheng. Structural characteristics of soil mite communities under different modes of rose-based agroforestry in Karst area [J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 112-121. |
[13] | CHEN Gui, LU Chenni, SHI Yanping, NI Xiongwei, CHENG Wangda, ZHANG Hongmei, WANG Baojun, ZHANG Liping, SUN Da. Effect of different controlled-release fertilizers with urea ammonium on yield, nitrogen use efficiency and soil nutrients of rice [J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 122-130. |
[14] | LI Jinwu, YU Jihua, LYU Jian, FENG Zhi, YANG Haixing, CHE Xusheng, QIN Qijie, ZHANG Yang, JIN Ning. Effects of different mulching methods on yield, quality and soil nutrients of open-air loose-curd cauliflower on plateau in summer [J]. , 2020, 32(9): 1626-1633. |
[15] | CHANG Huiqing, XU Fujin, PAN Yajie. Passivation effects of calcium carbonate with/without chitosan on chromium pollution in calcareous soil [J]. , 2020, 32(9): 1665-1671. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||