Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (10): 1921-1930.DOI: 10.3969/j.issn.1004-1524.2021.10.16
• Environmental Science • Previous Articles Next Articles
CHEN De1(
), ZHAO Shouping1, YE Xuezhu1,*(
), ZHANG Qi1, XIAO Wendan1, RUAN Yifei2, WU Shaofu3
Received:2021-05-09
Online:2021-10-25
Published:2021-11-02
Contact:
YE Xuezhu
CLC Number:
CHEN De, ZHAO Shouping, YE Xuezhu, ZHANG Qi, XIAO Wendan, RUAN Yifei, WU Shaofu. Effects of soil amendments on Cd uptake and accumulation in red pepper[J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1921-1930.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2021.10.16
| 处理 | 果实Cd含量 Fruit Cd content/ (mg·kg-1) | 茎叶Cd含量 Shoot Cd content/ (mg·kg-1) | 根系Cd含量 Root Cd content/ (mg·kg-1) | 转运系数 Translocation factor | 富集系数 Concentration factor |
|---|---|---|---|---|---|
| CK | 0.106±0.004a | 1.51±0.15 a | 0.51±0.10 a | 3.10±0.95 a | 0.55±0.03 a |
| BC | 0.104±0.004 a | 1.08±0.05 b | 0.48±0.10 ab | 2.29±0.40 bc | 0.55±0.01 a |
| SH | 0.078±0.015 b | 0.83±0.06 c | 0.41±0.03 ab | 2.04±0.00 c | 0.42±0.09 b |
| SEP | 0.049±0.006 c | 0.53±0.03 e | 0.24±0.00 d | 2.18±0.10 bc | 0.26±0.04 c |
| GMP | 0.079±0.014 b | 0.77±0.10 c | 0.28±0.03 d | 2.77±0.11 ab | 0.41±0.06 b |
| F1 | 0.068±0.006 bc | 0.58±0.06 de | 0.30±0.04 cd | 1.95±0.09 c | 0.37±0.03 b |
| F2 | 0.078±0.013 b | 0.75±0.18 cd | 0.43±0.02 ab | 1.73±0.32 c | 0.41±0.06 b |
| F3 | 0.064±0.018 bc | 0.76±0.09 c | 0.40±0.07 bc | 1.92±0.09 c | 0.34±0.08 bc |
Table 1 Cd concentrations in different parts of red pepper, translocation factor and concentration factor
| 处理 | 果实Cd含量 Fruit Cd content/ (mg·kg-1) | 茎叶Cd含量 Shoot Cd content/ (mg·kg-1) | 根系Cd含量 Root Cd content/ (mg·kg-1) | 转运系数 Translocation factor | 富集系数 Concentration factor |
|---|---|---|---|---|---|
| CK | 0.106±0.004a | 1.51±0.15 a | 0.51±0.10 a | 3.10±0.95 a | 0.55±0.03 a |
| BC | 0.104±0.004 a | 1.08±0.05 b | 0.48±0.10 ab | 2.29±0.40 bc | 0.55±0.01 a |
| SH | 0.078±0.015 b | 0.83±0.06 c | 0.41±0.03 ab | 2.04±0.00 c | 0.42±0.09 b |
| SEP | 0.049±0.006 c | 0.53±0.03 e | 0.24±0.00 d | 2.18±0.10 bc | 0.26±0.04 c |
| GMP | 0.079±0.014 b | 0.77±0.10 c | 0.28±0.03 d | 2.77±0.11 ab | 0.41±0.06 b |
| F1 | 0.068±0.006 bc | 0.58±0.06 de | 0.30±0.04 cd | 1.95±0.09 c | 0.37±0.03 b |
| F2 | 0.078±0.013 b | 0.75±0.18 cd | 0.43±0.02 ab | 1.73±0.32 c | 0.41±0.06 b |
| F3 | 0.064±0.018 bc | 0.76±0.09 c | 0.40±0.07 bc | 1.92±0.09 c | 0.34±0.08 bc |
Fig.1 Available Cd concentration in soil CK, Control group without amendment; BC, Peanut husk biochar treatment; SH, Quicklime treatment; SEP, Sepiolite treatment; GMP, Calcium magnesium phosphate treatment; F1, Composite amendment 1 treatment; F2, Composite amendment 2 treatment; F3, Composite amendment 3 treatment. Data on the bars marked without the same lowercase letter indicated significant differences at P<0.05.The same as below.
| 处理 | 有机质 Organic matter/ (g·kg-1) | 全氮 Total nitrogen/ (g·kg-1) | 碱解氮 Alkali hydrolyzable nitrogen/(mg·kg-1) | 全磷 Total phosphorus/ (g·kg-1) | 有效磷 Available phosphorus/ (mg·kg-1) |
|---|---|---|---|---|---|
| CK | 27.00±1.83 d | 1.58±0.03 d | 129.6±3.3 c | 0.91±0.10 b | 28.33±2.74 ef |
| BC | 37.65±4.74 a | 1.84±0.12 a | 148.5±6.3 b | 0.89±0.06 b | 30.37±3.65 de |
| SH | 30.50±0.99 bcd | 1.77±0.03 ab | 170.8±22.8 a | 0.89±0.05 b | 50.83±8.04 b |
| SEP | 27.75±0.21 cd | 1.60±0.03 cd | 146.0±2.2 bc | 0.75±0.01 c | 18.80±2.43 f |
| GMP | 30.70±2.26 bcd | 1.68±0.02 bc | 149.6±5.4 b | 1.07±0.09 a | 69.28±5.55 a |
| F1 | 30.80±1.41 bcd | 1.70±0.06 b | 156.0±6.6 ab | 0.93±0.04 b | 33.45±7.75 cde |
| F2 | 33.13±0.04 ab | 1.70±0.01 b | 158.4±8.9 ab | 0.87±0.01 b | 40.43±5.60 bcd |
| F3 | 31.55±0.92 bc | 1.73±0.07 b | 155.6±8.1 ab | 0.94±0.06 b | 42.10±8.90 bc |
Table 2 Organic matter and nutrient contents in soils
| 处理 | 有机质 Organic matter/ (g·kg-1) | 全氮 Total nitrogen/ (g·kg-1) | 碱解氮 Alkali hydrolyzable nitrogen/(mg·kg-1) | 全磷 Total phosphorus/ (g·kg-1) | 有效磷 Available phosphorus/ (mg·kg-1) |
|---|---|---|---|---|---|
| CK | 27.00±1.83 d | 1.58±0.03 d | 129.6±3.3 c | 0.91±0.10 b | 28.33±2.74 ef |
| BC | 37.65±4.74 a | 1.84±0.12 a | 148.5±6.3 b | 0.89±0.06 b | 30.37±3.65 de |
| SH | 30.50±0.99 bcd | 1.77±0.03 ab | 170.8±22.8 a | 0.89±0.05 b | 50.83±8.04 b |
| SEP | 27.75±0.21 cd | 1.60±0.03 cd | 146.0±2.2 bc | 0.75±0.01 c | 18.80±2.43 f |
| GMP | 30.70±2.26 bcd | 1.68±0.02 bc | 149.6±5.4 b | 1.07±0.09 a | 69.28±5.55 a |
| F1 | 30.80±1.41 bcd | 1.70±0.06 b | 156.0±6.6 ab | 0.93±0.04 b | 33.45±7.75 cde |
| F2 | 33.13±0.04 ab | 1.70±0.01 b | 158.4±8.9 ab | 0.87±0.01 b | 40.43±5.60 bcd |
| F3 | 31.55±0.92 bc | 1.73±0.07 b | 155.6±8.1 ab | 0.94±0.06 b | 42.10±8.90 bc |
| 参数 Parameter | 果实中Cd Fruit Cd | 土壤pH值 Soil pH value | 有效态Cd Available Cd | 有机质 Organic matter | 茎叶中Cd Shoot Cd | 根中Cd Root Cd |
|---|---|---|---|---|---|---|
| 土壤pH值 Soil pH value | -0.768** | |||||
| 有效态Cd Available Cd | 0.655** | -0.856** | ||||
| 有机质 Organic matter | 0.255 | -0.062 | -0.204 | |||
| 茎叶中Cd Shoot Cd | 0.746** | -0.892** | 0.873** | 0.039 | ||
| 根中Cd Root Cd | 0.685** | -0.694** | 0.599** | 0.363 | 0.710** | |
| 转运系数 Translocation factor | 0.340 | -0.523** | 0.560** | -0.290 | 0.638** | -0.078 |
Table 3 Correlation coefficient among Cd concentrations in different parts of pepper and soil properties
| 参数 Parameter | 果实中Cd Fruit Cd | 土壤pH值 Soil pH value | 有效态Cd Available Cd | 有机质 Organic matter | 茎叶中Cd Shoot Cd | 根中Cd Root Cd |
|---|---|---|---|---|---|---|
| 土壤pH值 Soil pH value | -0.768** | |||||
| 有效态Cd Available Cd | 0.655** | -0.856** | ||||
| 有机质 Organic matter | 0.255 | -0.062 | -0.204 | |||
| 茎叶中Cd Shoot Cd | 0.746** | -0.892** | 0.873** | 0.039 | ||
| 根中Cd Root Cd | 0.685** | -0.694** | 0.599** | 0.363 | 0.710** | |
| 转运系数 Translocation factor | 0.340 | -0.523** | 0.560** | -0.290 | 0.638** | -0.078 |
| [1] | 王大州, 林剑, 王大霞, 等. 根际土-辣椒系统中重金属的分布及食物安全风险评价[J]. 地球与环境, 2014, 42(4):546-549. |
| WANG D Z, LIN J, WANG D X, et al. Distribution of heavy metals in the rhizospheric soil-Capsicum system and risk assessment[J]. Earth and Environment, 2014, 42(4):546-549.(in Chinese with English abstract) | |
| [2] | 孙硕, 李菊梅, 马义兵, 等. 河北省蔬菜大棚土壤及蔬菜中重金属累积分析[J]. 农业资源与环境学报, 2019, 36(2):236-244. |
| SUN S, LI J M, MA Y B, et al. Accumulation of heavy metals in soil and vegetables of greenhouses in Hebei Province, China[J]. Journal of Agricultural Resources and Environment, 2019, 36(2):236-244.(in Chinese with English abstract) | |
| [3] |
DUDKA S, MILLER W P. Accumulation of potentially toxic elements in plants and their transfer to human food chain[J]. Journal of Environmental Science and Health, Part B, 1999, 34(4):681-708.
DOI URL |
| [4] |
REEVES P G, CHANEY R L. Bioavailability as an issue in risk assessment and management of food cadmium: a review[J]. Science of the Total Environment, 2008, 398(1/2/3):13-19.
DOI URL |
| [5] | 王美娥, 彭驰, 陈卫平. 水稻品种及典型土壤改良措施对稻米吸收镉的影响[J]. 环境科学, 2015, 36(11):4283-4290. |
| WANG M E, PENG C, CHEN W P. Effects of rice cultivar and typical soil improvement measures on the uptake of Cd in rice grains[J]. Environmental Science, 2015, 36(11):4283-4290.(in Chinese with English abstract) | |
| [6] |
KUMAR SHARMA R, AGRAWAL M, MARSHALL F. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India[J]. Ecotoxicology and Environmental Safety, 2007, 66(2):258-266.
DOI URL |
| [7] | 赵云青, 周怡, 黄兴洁, 等. 重金属在矿区土壤-蔬菜系统的吸收与迁移特性研究[J]. 土壤通报, 2019, 50(5):1233-1238. |
| ZHAO Y Q, ZHOU Y, HUANG X J, et al. Absorption and migration of heavy metals in soil-vegetable system in mining area[J]. Chinese Journal of Soil Science, 2019, 50(5):1233-1238.(in Chinese with English abstract) | |
| [8] | 冯艳红, 王国庆, 张亚, 等. 土壤-蔬菜系统中镉的生物富集效应及土壤阈值研究[J]. 地球与环境, 2019, 47(5):653-661. |
| FENG Y H, WANG G Q, ZHANG Y, et al. Study on bioaccumulation of cadmium in soil-vegetable system and pollution threshold in soil[J]. Earth and Environment, 2019, 47(5):653-661.(in Chinese with English abstract) | |
| [9] | 肖青青, 王宏镔, 赵宾, 等. 云南个旧市郊农作物重金属污染现状及健康风险[J]. 农业环境科学学报, 2011, 30(2):271-281. |
| XIAO Q Q, WANG H B, ZHAO B, et al. Heavy metal pollution in crops growing in suburb of Gejiu City, Yunnan Province, China: present situation and health risk[J]. Journal of Agro-Environment Science, 2011, 30(2):271-281.(in Chinese with English abstract) | |
| [10] | 冯英, 马璐瑶, 王琼, 等. 我国土壤-蔬菜作物系统重金属污染及其安全生产综合农艺调控技术[J]. 农业环境科学学报, 2018, 37(11):2359-2370. |
| FENG Y, MA L Y, WANG Q, et al. Heavy-metal pollution and safety production technologies of soil-vegetable crop systems in China[J]. Journal of Agro-Environment Science, 2018, 37(11):2359-2370.(in Chinese) | |
| [11] | 彭秋, 李桃, 徐卫红, 等. 不同品种辣椒镉亚细胞分布和化学形态特征差异[J]. 环境科学, 2019, 40(7):3347-3354. |
| PENG Q, LI T, XU W H, et al. Differences in the cadmium-enrichment capacity and subcellular distribution and chemical form of cadmium in different varieties of pepper[J]. Environmental Science, 2019, 40(7):3347-3354.(in Chinese with English abstract) | |
| [12] | 刘青栋. 镉在土壤-辣椒体系迁移富集及其耦合关系探究[D]. 贵阳: 贵州大学, 2019. |
| LIU Q D. Study on migration and enrichment of cadmium in soil-pepper system and its coupling relationship[D]. Guiyang: Guizhou University, 2019. (in Chinese with English abstract) | |
| [13] |
GUO G L, ZHOU Q X, MA L Q. Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review[J]. Environmental Monitoring and Assessment, 2006, 116(1/2/3):513-528.
DOI URL |
| [14] | 孟龙, 黄涂海, 陈謇, 等. 镉污染农田土壤安全利用策略及其思考[J]. 浙江大学学报(农业与生命科学版), 2019, 45(3):263-271. |
| MENG L, HUANG T H, CHEN J, et al. Safe utilization of farmland soil with cadmium pollution: strategies and deliberations[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3):263-271.(in Chinese with English abstract) | |
| [15] | 刘振刚, 夏宇, 孟芋含, 等. 生物质炭材料修复重金属污染土壤的研究进展:修复机理及研究热点分析[J]. 环境工程学报, 2021, 15(4):1140-1148. |
| LIU Z G, XIA Y, MENG Y H, et al. Research advances in biomass-based carbon materials for remediation of heavy metal contaminated soil: immobilization mechanism and analysis of related studies[J]. Chinese Journal of Environmental Engineering, 2021, 15(4):1140-1148.(in Chinese with English abstract) | |
| [16] |
SUN Y B, XU Y, XU Y M, et al. Reliability and stability of immobilization remediation of Cd polluted soils using sepiolite under pot and field trials[J]. Environmental Pollution, 2016, 208:739-746.
DOI URL |
| [17] |
CHEN D, LIU X Y, BIAN R J, et al. Effects of biochar on availability and plant uptake of heavy metals: a meta-analysis[J]. Journal of Environmental Management, 2018, 222:76-85.
DOI URL |
| [18] | 黄柏豪, 吴秦慧姿, 肖亨, 等. 连施石灰对Cd污染土壤Cd形态及稻麦吸收Cd的影响[J]. 中国土壤与肥料, 2020(3):138-143. |
| HUANG B H, WU Q H Z, XIAO H, et al. Effects of continuous application of lime for three years on cadmium concentration and uptake by wheat and rice in Cd contaminated soil[J]. Soil and Fertilizer Sciences in China, 2020(3):138-143.(in Chinese with English abstract) | |
| [19] |
ALVANI S, HOJATI S, LANDI A. Effects of sepiolite nanoparticles on the kinetics of Pb and Cu removal from aqueous solutions and their immobilization in columns with different soil textures[J]. Geoderma, 2019, 350:19-28.
DOI URL |
| [20] |
CHEN D, YE X Z, ZHANG Q, et al. The effect of sepiolite application on rice Cd uptake: a two-year field study in Southern China[J]. Journal of Environmental Management, 2020, 254:109788.
DOI URL |
| [21] | LEHMANN J, JOSEPH S. Biochar for environmental management[M]. London: Routledge, 2015. |
| [22] |
ALBERT H A, LI X, JEYAKUMAR P, et al. Influence of biochar and soil properties on soil and plant tissue concentrations of Cd and Pb: a meta-analysis[J]. Science of the Total Environment, 2021, 755:142582.
DOI URL |
| [23] |
TIAN X S, WANG D Y, CHAI G Q, et al. Does biochar inhibit the bioavailability and bioaccumulation of As and Cd in co-contaminated soils? A meta-analysis[J]. Science of the Total Environment, 2021, 762:143117.
DOI URL |
| [24] |
WANG D, JIANG P K, ZHANG H B, et al. Biochar production and applications in agro and forestry systems: a review[J]. Science of the Total Environment, 2020, 723:137775.
DOI URL |
| [25] | 蔡鑫, 白珊, 陈绩, 等. 碱性肥料和生物质炭对土壤镉的钝化效果[J]. 浙江农业科学, 2021, 62(2):448-452. |
| CAI X, BAI S, CHEN J, et al. Passivation effects of alkaline fertilizer and biochar on heavy metal cadmium in soil[J]. Journal of Zhejiang Agricultural Sciences, 2021, 62(2):448-452.(in Chinese) | |
| [26] | LUO K, LIU H Y, LIU Q D, et al. Cadmium accumulation and migration of 3 peppers varieties in yellow and limestone soils under geochemical anomaly[J]. Environmental Technology, 2020: 1-11. |
| [27] | 赵首萍, 叶雪珠, 张棋, 等. 不同辣椒品种镉吸收积累能力及关键期研究[J]. 植物营养与肥料学报, 2021, 27(4):695-705. |
| ZHAO S P, YE X Z, ZHANG Q, et al. The capacity and critical stage of Cd absorption and accumulation of different pepper cultivars[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(4):695-705.(in Chinese with English abstract) | |
| [28] | 李素霞, 谢朝阳, 季斌, 等. 不同改良剂在镉与硝酸盐复合污染下对辣椒品质的影响[J]. 西南农业学报, 2011, 24(4):1480-1483. |
| LI S X, XIE Z Y, JI B, et al. Effects of several modifiers on quality of pepper in interactive of nitrogen nutrition and cadmium contamination soil[J]. Southwest China Journal of Agricultural Sciences, 2011, 24(4):1480-1483.(in Chinese with English abstract) | |
| [29] |
YANG J X, GUO H T, MA Y B, et al. Genotypic variations in the accumulation of Cd exhibited by different vegetables[J]. Journal of Environmental Sciences, 2010, 22(8):1246-1252.
DOI URL |
| [30] |
WANG J, WANG P M, GU Y, et al. Iron-manganese (oxyhydro) oxides, rather than oxidation of sulfides, determine mobilization of Cd during soil drainage in paddy soil systems[J]. Environmental Science & Technology, 2019, 53(5):2500-2508.
DOI URL |
| [31] | LINDSAY W L. Chemical equilibria in soils[M]. New York: John Wiley and Sons Ltd, 1979:222-236. |
| [32] |
MCBRIDE M, SAUVE S, HENDERSHOT W. Solubility control of Cu, Zn, Cd and Pb in contaminated soils[J]. European Journal of Soil Science, 1997, 48(2):337-346.
DOI URL |
| [33] |
CAO X D, MA L N, GAO B, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine[J]. Environmental Science & Technology, 2009, 43(9):3285-3291.
DOI URL |
| [34] |
INYANG M I, GAO B, YAO Y, et al. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal[J]. Critical Reviews in Environmental Science and Technology, 2016, 46(4):406-433.
DOI URL |
| [35] | CHEN D, LI R Y, BIAN R J, et al. Contribution of soluble minerals in biochar to Pb2+ adsorption in aqueous solutions[J]. BioResources, 2017, 12(1):1662-1679. |
| [36] |
ZACHARA J M, MCKINLEY J P. Influence of hydrolysis on the sorption of metal cations by smectites: importance of edge coordination reactions[J]. Aquatic Sciences, 1993, 55(4):250-261.
DOI URL |
| [37] |
URAGUCHI S, MORI S, KURAMATA M, et al. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice[J]. Journal of Experimental Botany, 2009, 60(9):2677-2688.
DOI URL |
| [38] |
YU Z G, ZHOU Q X. Growth responses and cadmium accumulation of Mirabilis jalapa L. under interaction between cadmium and phosphorus[J]. Journal of Hazardous Materials, 2009, 167(1/2/3):38-43.
DOI URL |
| [39] | 袁兴超, 李博, 朱仁凤, 等. 不同钝化剂对铅锌矿区周边农田镉铅污染钝化修复研究[J]. 农业环境科学学报, 2019, 38(4):807-817. |
| YUAN X C, LI B, ZHU R F, et al. Immobilization of Cd and Pb using different amendments of cultivated soils around lead-zinc mines[J]. Journal of Agro-Environment Science, 2019, 38(4):807-817.(in Chinese with English abstract) | |
| [40] |
LIANG X F, HAN J, XU Y M, et al. In situ field-scale remediation of Cd polluted paddy soil using sepiolite and palygorskite[J]. Geoderma, 2014, 235/236:9-18.
DOI URL |
| [41] |
SUN Y B, SUN G H, XU Y M, et al. In situ stabilization remediation of cadmium contaminated soils of wastewater irrigation region using sepiolite[J]. Journal of Environmental Sciences, 2012, 24(10):1799-1805.
DOI URL |
| [42] |
HOODA P S, ALLOWAY B J. The effect of liming on heavy metal concentrations in wheat, carrots and spinach grown on previously sludge-applied soils[J]. The Journal of Agricultural Science, 1996, 127(3):289-294.
DOI URL |
| [43] |
RUTTENS A, ADRIAENSEN K, MEERS E, et al. Long-term sustainability of metal immobilization by soil amendments: cyclonic ashes versus lime addition[J]. Environmental Pollution, 2010, 158(5):1428-1434.
DOI URL |
| [44] | 潘根兴, 张阿凤, 邹建文, 等. 农业废弃物生物黑炭转化还田作为低碳农业途径的探讨[J]. 生态与农村环境学报, 2010, 26(4):394-400. |
| PAN G X, ZHANG A, ZOU J W, et al. Biochar from agro-byproducts used as amendment to croplands: an option for low carbon agriculture[J]. Journal of Ecology and Rural Environment, 2010, 26(4):394-400.(in Chinese with English abstract) | |
| [45] | 张阿凤, 潘根兴, 李恋卿. 生物黑炭及其增汇减排与改良土壤意义[J]. 农业环境科学学报, 2009, 28(12):2459-2463. |
| ZHANG A F, PAN G X, LI L Q. Biochar and the effect on C stock enhancement, emission reduction of greenhouse gases and soil reclaimation[J]. Journal of Agro-Environment Science, 2009, 28(12):2459-2463.(in Chinese with English abstract) | |
| [46] | 金睿, 刘可星, 艾绍英, 等. 生物炭复配调理剂对镉污染土壤性状和小白菜镉吸收及其生理特性的影响[J]. 南方农业学报, 2016, 47(9):1480-1487. |
| JIN R, LIU K X, AI S Y, et al. Effects of biochar complex conditioner on properties of cadmium contaminated soil and cadmium absorption and physiological characteristics of Brassica chinensis[J]. Journal of Southern Agriculture, 2016, 47(9):1480-1487. (in Chinese with English abstract) | |
| [47] | 赵莎莎, 肖广全, 陈玉成, 等. 不同施用量石灰和生物炭对稻田镉污染钝化的延续效应[J]. 水土保持学报, 2021, 35(1):334-340. |
| ZHAO S S, XIAO G Q, CHEN Y C, et al. Continuous effect of different application rates of lime and biochar on the passivation of cadmium pollution in paddy fields[J]. Journal of Soil and Water Conservation, 2021, 35(1):334-340.(in Chinese with English abstract) |
| [1] | WU Ju, YANG Fei, WU Guoquan, FU Xian, XU Chenguang. Effects of sand culture and soil culture on growth, yield, and quality of cucumber (Cucumis sativus L.) [J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 1905-1913. |
| [2] | ZHU Weijing, WU Jia, HONG Chunlai, ZHU Fengxiang, HONG Leidong, ZHANG Tao, ZHANG Shuo, ZHU Huifen. Effects of straw mulching on water, heat, fertility status of soil and yield and quality of flat peach [J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 1924-1932. |
| [3] | WEI Qingcui, JIANG Naying, SHEN Junyang, ZHANG Huanchao, ZHANG Hengfeng. Effects of reduced chemical fertilization and biochar application on nitrogen and phosphorus leaching and soil properties of sandy soil [J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 1943-1950. |
| [4] | TAN Haixia, PENG Hongli, WANG Lianlong, WEI Jianmei. Differences in soil microbial community diversity between healthy and scab-diseased potato plants in root zone [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1743-1754. |
| [5] | GAO Yang, ZHANG Yuxin, BU Aiai, XU Jiayi, MA Jiawei, YE Zhengqian, LIU Dan, FANG Xianzhi. Evaluation of fertility quality in typical “non-grain” cultivated soils of Zhejiang Province of China based on the improved Nemerow method [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1755-1765. |
| [6] | YAN Fulin, LANG Yunhu, JIAN Yingquan, CHEN Xiongfei, WEI Wei, WANG Zhiwei, AN Jiangyong, REN Deqiang, DING Ning, WEI Shenghua. Response of yield and quality of Radix Ardisia to soil physiochemical properties [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1766-1775. |
| [7] | CHEN Xingxing, YU Wenxuan, XU Jianwei, ZHANG Peng. Characterization of heavy metal contents in different parts of Undaria pinnatifida and assessment of health hazard [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1794-1804. |
| [8] | JIANG Zhenlan, CHEN Fuxun, LUO Shuangfei, LUO Yeqin, SHA Jinming. Inversion of soil total iron content using random forest model based on multi-spectral transformation and principle compoment analysis [J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1521-1532. |
| [9] | ZHANG Zhi, HE Haohao, YU Miao, XU Jianfeng. Effects of chemical fertilizer reduction combined with soil conditioner on soil acidity, soil nutrients and rice yield [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1301-1308. |
| [10] | HE Xinyun, DENG Bichun, HU Qingyu, FENG Hong, GUO Yanbiao. Application of nitrogen fertilizer for banana based on nitrate nitrogen concentration in soil solution [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1319-1326. |
| [11] | REN Ning, YU Guohong, ZHENG Hang, CHEN Zhidong. Parameter calibration of tea garden soil based on discrete element method [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1353-1359. |
| [12] | ZHUO Wenqi, MA Wanzhu, ZHUO Zhiqing, ZHU Kangying. Comparison of properties between soils developed from eluvium and deluvium in subtropical low mountain forest land [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1121-1129. |
| [13] | SU Yang, SHANG Xiaolan, QIAN Zhongming, WU Lingen, HUANG Jiaqi, ZHUANG Haifeng, ZHAO Yufei, DANG Hongyang, XU Lijun. Effects of synergistic enhancement of straw returning to the field with decomposition agent and biochar on soil quality and rice growth [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1139-1148. |
| [14] | ZHU Zheyi, SHI Fang, NING Ke, ZHENG Shan. Effect of policy incentives on farmer's adoption behavior of conservation tillage technologies: based on the perspectives of factor quality and time preference [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1172-1181. |
| [15] | WANG Li, CHEN Liming, WANG Pengfei, ZHANG Bin, MU Xiaopeng. Effects of organic fertilizer combined with bacterial fertilizer on fruit quality and soil properties of Cerasus humilis [J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 820-830. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||