Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (3): 498-506.DOI: 10.3969/j.issn.1004-1524.2022.03.10
• Animal Science • Previous Articles Next Articles
WANG Qiankun1(), ZHANG Xiaohui1,2, PANG Youzhi1,2,*(
), QI Yanxia1,2, LEI Ying1,2, BAI Junyan1,2, HU Yunqi1, ZHAO Yiwei1, YUAN Zhiwen1, WANG Tao1
Received:
2021-07-12
Online:
2022-03-25
Published:
2022-03-30
Contact:
PANG Youzhi
CLC Number:
WANG Qiankun, ZHANG Xiaohui, PANG Youzhi, QI Yanxia, LEI Ying, BAI Junyan, HU Yunqi, ZHAO Yiwei, YUAN Zhiwen, WANG Tao. Screening of genes related to auto-sexing on feather color based on RNA-seq technology[J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 498-506.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.03.10
基因 Gene | 上游引物 Forward primer(5'→3') | 下游引物 Reverse primer(5'→3') | 产物长度 Product length/bp | 退火温度 Annealing temperature/℃ |
---|---|---|---|---|
KIT | TCATTCAAGGGCTGCTACCA | GCTTGTACGCTGCTATCCAC | 197 | 59 |
DCT | TGATGAGTGGATGAAGCGGT | GCAGGTCAATGGCATAGGTG | 170 | 59 |
MLANA | AAGGACGCACCTATTTCACA | GTTGCTCCCTCACTCACCAC | 178 | 57 |
FAM174A | CAGTGCGGCTCAGAAGAAAT | TTGAGTGCATTCTGTTCCGA | 163 | 60 |
SLC45A2 | AATGGTACGAGTAAGCCG | GGTAGCGATAATGGGATG | 118 | 54 |
TYRP1 | TGAGGGACCTGCTTTCGT | GATTTCTGCGGATGGGAC | 299 | 56 |
TRPM1 | AGCAGGTCTTAGTGCCTCTTAC | TCCTTTATAGTCTTGGCTTTCC | 156 | 56 |
EIF4E | GACTGCGTCAAGCAATCG | CAGAAGTACAAGACAAAGGCG | 139 | 56 |
Table 1 Primer information of real-time fluorescent quantitative PCR
基因 Gene | 上游引物 Forward primer(5'→3') | 下游引物 Reverse primer(5'→3') | 产物长度 Product length/bp | 退火温度 Annealing temperature/℃ |
---|---|---|---|---|
KIT | TCATTCAAGGGCTGCTACCA | GCTTGTACGCTGCTATCCAC | 197 | 59 |
DCT | TGATGAGTGGATGAAGCGGT | GCAGGTCAATGGCATAGGTG | 170 | 59 |
MLANA | AAGGACGCACCTATTTCACA | GTTGCTCCCTCACTCACCAC | 178 | 57 |
FAM174A | CAGTGCGGCTCAGAAGAAAT | TTGAGTGCATTCTGTTCCGA | 163 | 60 |
SLC45A2 | AATGGTACGAGTAAGCCG | GGTAGCGATAATGGGATG | 118 | 54 |
TYRP1 | TGAGGGACCTGCTTTCGT | GATTTCTGCGGATGGGAC | 299 | 56 |
TRPM1 | AGCAGGTCTTAGTGCCTCTTAC | TCCTTTATAGTCTTGGCTTTCC | 156 | 56 |
EIF4E | GACTGCGTCAAGCAATCG | CAGAAGTACAAGACAAAGGCG | 139 | 56 |
样本名称 Sample | 原始数据 Raw reads/M | 过滤后数据 Clean reads/M | 分析数据 Clean bases/G | Q30/% | GC含量 GC content/% | 总比对读段 Total mapped reads | 多位点比对读段 Multiple mapped | 唯一比对读段 Uniquely mapped |
---|---|---|---|---|---|---|---|---|
BF1 | 46.16 | 44.44 | 6.19 | 91.25 | 49.74 | 40 037 396(90.08%) | 1 269 910(2.86%) | 38 767 486(87.23%) |
BF2 | 47.33 | 45.61 | 6.35 | 91.47 | 49.78 | 41 019 585(89.93%) | 1 239 218(2.72%) | 39 780 367(87.21%) |
BF3 | 49.89 | 48.13 | 6.68 | 91.78 | 49.87 | 43 274 927(89.91%) | 1 321 985(2.75%) | 41 952 942(87.16%) |
LF1 | 50.57 | 48.39 | 6.67 | 90.75 | 50.04 | 43 467 145(89.83%) | 1 365 790(2.82%) | 42 101 355(87.01%) |
LF2 | 47.27 | 45.35 | 6.35 | 90.96 | 49.21 | 41 127 739(90.68%) | 1 255 232(2.77%) | 39 872 507(87.92%) |
LF3 | 49.85 | 47.80 | 6.70 | 90.90 | 49.23 | 43 289 872(90.56%) | 1 332 581(2.79%) | 41 957 291(87.77%) |
Table 2 Reference of sequencing data quality pretreatment and statistical results of genome comparison rate
样本名称 Sample | 原始数据 Raw reads/M | 过滤后数据 Clean reads/M | 分析数据 Clean bases/G | Q30/% | GC含量 GC content/% | 总比对读段 Total mapped reads | 多位点比对读段 Multiple mapped | 唯一比对读段 Uniquely mapped |
---|---|---|---|---|---|---|---|---|
BF1 | 46.16 | 44.44 | 6.19 | 91.25 | 49.74 | 40 037 396(90.08%) | 1 269 910(2.86%) | 38 767 486(87.23%) |
BF2 | 47.33 | 45.61 | 6.35 | 91.47 | 49.78 | 41 019 585(89.93%) | 1 239 218(2.72%) | 39 780 367(87.21%) |
BF3 | 49.89 | 48.13 | 6.68 | 91.78 | 49.87 | 43 274 927(89.91%) | 1 321 985(2.75%) | 41 952 942(87.16%) |
LF1 | 50.57 | 48.39 | 6.67 | 90.75 | 50.04 | 43 467 145(89.83%) | 1 365 790(2.82%) | 42 101 355(87.01%) |
LF2 | 47.27 | 45.35 | 6.35 | 90.96 | 49.21 | 41 127 739(90.68%) | 1 255 232(2.77%) | 39 872 507(87.92%) |
LF3 | 49.85 | 47.80 | 6.70 | 90.90 | 49.23 | 43 289 872(90.56%) | 1 332 581(2.79%) | 41 957 291(87.77%) |
Fig.2 Volcanic maps of gene expression Gray represented genes with no significant difference,red indicated up-regulation genes, and green indicated down-regulated genes.
Fig.4 KEGG Level2 distribution map ofdifferentially expressed gene Horizontal axis was the ratio (%) of the total number of up-regulated (down-regulated) differentially expressed genes annotated to each Level2 pathway and all up-regulated (down-regulated) genes annotated to the KEGG pathway, vertical axis represented the name of Level2 pathway, and the number on the right side of the column represented the number of up-regulated (down-regulated) differentially expressed genes annotated to the Level2 pathway.Red indicated up-regulation genes and green indicated down-regulated genes.
通路注释 Description | 通路ID Pathway accession | 基因数量 Gene numbers | 基因名称 Gene name | P值 P-vaule |
---|---|---|---|---|
黑色素生成Melanogenesis | gga04916 | 3 | TYRP1,DCT,KIT | 0.001 717 |
酪氨酸代谢Tyrosine metabolism | gga00350 | 2 | TYRP1,DCT | 0.003 700 |
神经活性配体受体相互作用Neuroactive ligand-receptor interaction | gga04080 | 4 | C3,GRP,CCK,HRH3 | 0.010 209 |
苯丙氨酸、酪氨酸和伤寒杆菌生物合成 | gga00400 | 1 | PAH | 0.014 978 |
Phenylalanine, tyrosine and typtohan biosynthesis | ||||
MAPK信号通路MAPK signaling pathway | gga04010 | 3 | CACNGS,AMHR2,KIT | 0.028 778 |
苯丙氨酸代谢Phenylalanine metabolism | gga00360 | 1 | PAH | 0.037 033 |
Table 3 KEGG pathway for differentially expressed genes
通路注释 Description | 通路ID Pathway accession | 基因数量 Gene numbers | 基因名称 Gene name | P值 P-vaule |
---|---|---|---|---|
黑色素生成Melanogenesis | gga04916 | 3 | TYRP1,DCT,KIT | 0.001 717 |
酪氨酸代谢Tyrosine metabolism | gga00350 | 2 | TYRP1,DCT | 0.003 700 |
神经活性配体受体相互作用Neuroactive ligand-receptor interaction | gga04080 | 4 | C3,GRP,CCK,HRH3 | 0.010 209 |
苯丙氨酸、酪氨酸和伤寒杆菌生物合成 | gga00400 | 1 | PAH | 0.014 978 |
Phenylalanine, tyrosine and typtohan biosynthesis | ||||
MAPK信号通路MAPK signaling pathway | gga04010 | 3 | CACNGS,AMHR2,KIT | 0.028 778 |
苯丙氨酸代谢Phenylalanine metabolism | gga00360 | 1 | PAH | 0.037 033 |
Fig.5 Relative expression levels of candidate genes in embryos of white feather and maroon feather Korean quails at different developmental stages * and ** meant significant differences at the levels of P<0.05 and P<0.01, respectively.
[1] |
NG C S, LI W H. Genetic and molecular basis of feather diversity in birds[J]. Genome Biology and Evolution, 2018, 10(10): 2572-2586.
DOI URL |
[2] | 陈黎, 沈军达, 李国勤, 等. 不同羽色斑嘴野鸭毛囊中Tyr, Tyrp1及C-kit基因的表达及调控分析[J]. 浙江农业学报, 2015, 27(5): 729-733. |
CHEN L, SHEN J D, LI G Q, et al. Expression and regulation of Tyr, Tyrp1 and C-kit gene in feather bulbs of spot-billed ducks[J]. Acta AgriculturaeZhejiangensis, 2015, 27(5): 729-733. (in Chinese with English abstract) | |
[3] |
SHULTZ A J, BURNS K J. The role of sexual and natural selection in shaping patterns of sexual dichromatism in the largest family of songbirds (Aves: Thraupidae)[J]. Evolution; International Journal of Organic Evolution, 2017, 71(4): 1061-1074.
DOI URL |
[4] | MCQUEEN A, NAIMO A C, TEUNISSEN N, et al. Bright birds are cautious: seasonally conspicuous plumage prompts risk avoidance by male superb fairy-wrens[J]. ProceedingsBiological Sciences, 2017, 284(1857): 20170446. |
[5] | YANG T, JOEL W. Automatic feather sexing of poultry chicks using ultraviolet imaging:US6396938 [P/OL].(2002-05-28) [2021-07-12]. https://www.freepatentsonline.com/6396938.html . |
[6] | YANG C W, DU H R, ZHANG Z R, et al. Genetic and breeding progress analysis on five pure lines of dahen broiler[J]. Agricultural Biotechnology, 2018, 7(5): 130-132. |
[7] | ZHANG L, XU H D, LENG Q Y, et al. A genetics laboratory class to analyze early and late feather traits of chicken[J]. Hereditas, 2018, 40(3): 250-256. |
[8] |
GALVÁN I, RODRÍGUEZ-MARTÍNEZ S. A negative association between melanin-based plumage color heterogeneity and intensity in birds[J]. Physiological and Biochemical Zoology: PBZ, 2019, 92(3): 266-273.
DOI URL |
[9] | 刘坤举, 张小辉, 庞有志, 等. 朝鲜鹌鹑GNAS基因表达、克隆及其多态性与羽色的相关性[J]. 浙江农业学报, 2020, 32(8): 1369-1377. |
LIU K J, ZHANG X H, PANG Y Z, et al. Relationship of plumage color with expression and polymorphism of GNAS gene in Korean quail[J]. Acta AgriculturaeZhejiangensis, 2020, 32(8): 1369-1377. (in Chinese with English abstract) | |
[10] | 张小辉, 庞有志, 雷莹, 等. 鹌鹑性别的分子鉴定方法研究[J]. 中国家禽, 2020, 42(5): 20-23. |
ZHANG X H, PANG Y Z, LEI Y, et al. Study on molecular sex identification in quail[J]. China Poultry, 2020, 42(5): 20-23. (in Chinese with English abstract) | |
[11] |
BOLGER A M, LOHSE M, USADEL B. Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15): 2114-2120.
DOI URL |
[12] |
KIM D, LANGMEAD B, SALZBERG S L. HISAT: a fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4): 357-360.
DOI URL |
[13] |
LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12): 550.
DOI URL |
[14] |
YU G C, WANG L G, HAN Y Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. Omics: a Journal of Integrative Biology, 2012, 16(5): 284-287.
DOI URL |
[15] | CHEN T Z, ZHAO B L, LIU Y, et al. MITF-M regulates melanogenesis in mouse melanocytes[J]. Journal of Dermatological Science, 2018, 90(3): 253-262. |
[16] | 岳丹, 刘兴能, 熊和丽, 等. 兰坪乌骨绵羊黑色素及其候选基因研究进展[J]. 家畜生态学报, 2021, 42(5): 1-6. |
YUE D, LIU X N, XIONG H L, et al. Research progress on melanin and its candidate gene of Lanping black-bone sheep(Ovisaris)[J]. Journal of Domestic Animal Ecology, 2021, 42(5): 1-6. (in Chinese with English abstract) | |
[17] | 黄海艳, 杜娟, 张杰, 等. 紫铆素通过AMPK通路促进正常人黑素细胞黑素合成的机制研究[J]. 中国中西医结合皮肤性病学杂志, 2020, 19(5): 406-409. |
HUANG H Y, DU J, ZHANG J, et al. Butin promotes melanocyte cytochrome synthesis in PIG1 cells through AMPK pathway[J]. Chinese Journal of Dermatovenereology of Integrated Traditional and Western Medicine, 2020, 19(5): 406-409. (in Chinese with English abstract) | |
[18] | WU Y, ZHANG Y L, HOU Z C, et al. Population genomic data reveal genes related to important traits of quail[J]. GigaScience, 2018, 7(5): giy049. |
[19] |
SUN L, ZHOU T, WAN Q H, et al. Transcriptome comparison reveals key components of nuptial plumage coloration in crested ibis[J]. Biomolecules, 2020, 10(6): 905.
DOI URL |
[20] |
SULTANA H, SEO D, CHOI N R, et al. Identification of polymorphisms in MITF and DCT genes and their associations with plumage colors in Asian duck breeds[J]. Asian-Australasian Journal of Animal Sciences, 2018, 31(2): 180-188.
DOI URL |
[21] |
XI Y, LIU H, LI L, et al. Transcriptome reveals multi pigmentation genes affecting dorsoventral pattern in avian body[J]. Frontiers in Cell and Developmental Biology, 2020, 8: 560766.
DOI URL |
[22] |
YAO L D, BAO A, HONG W J, et al. Transcriptome profiling analysis reveals key genes of different coat color in sheep skin[J]. PeerJ, 2019, 7: e8077.
DOI URL |
[23] |
LE L, ESCOBAR I E, HO T, et al. SLC45A2 protein stability and regulation of melanosome pH determine melanocyte pigmentation[J]. Molecular Biology of the Cell, 2020, 31(24): 2687-2702.
DOI URL |
[24] |
DU Z, HUANG K, ZHAO J, et al. Comparative transcriptome analysis of raccoon dog skin to determine melanin content in hair and melanin distribution in skin[J]. Scientific Reports, 2017, 7: 40903.
DOI URL |
[25] |
LAI X L, WICHERS H J, SOLER-LOPEZ M, et al. Phenylthiourea binding to human tyrosinase-related protein 1[J]. International Journal of Molecular Sciences, 2020, 21(3): 915.
DOI URL |
[26] | LI J Y, BED'HOM B, MARTHEY S, et al. A missense mutation in TYRP1 causes the chocolate plumage color in chicken and alters melanosome structure[J]. Pigment Cell & Melanoma Research, 2019, 32(3): 381-390. |
[27] |
WENG Z X, XU Y J, LI W N, et al. Genomic variations and signatures of selection in Wuhua yellow chicken[J]. PLoS One, 2020, 15(10): e0241137.
DOI URL |
[28] |
JIA Q, HU S X, JIAO D X, et al. Synaptotagmin-4 promotes dendrite extension and melanogenesis in alpaca melanocytes by regulating Ca2+ influx via TRPM1 channels[J]. Cell Biochemistry and Function, 2020, 38(3): 275-282.
DOI URL |
[29] |
XU Q, LIU X M, CHAO Z, et al. Transcriptomic analysis of coding genes and non-coding RNAs reveals complex regulatory networks underlying the black back and white belly coat phenotype in Chinese Wuzhishan pigs[J]. Genes, 2019, 10(3): 201.
DOI URL |
[30] |
NIE C S, ZHANG Z B, ZHENG J X, et al. Genome-wide association study revealed genomic regions related to white/red earlobe color trait in the Rhode Island Red chickens[J]. BMC Genetics, 2016, 17(1): 115.
DOI URL |
[31] |
JONES M, SERGEANT C, RICHARDSON M, et al. A non-synonymous SNP in exon 3 of the KIT gene is responsible for the classic grey phenotype in alpacas (Vicugna pacos)[J]. Animal Genetics, 2019, 50(5): 493-500.
DOI URL |
[1] | LAN Guoxiang, JIN Siqi, LI Xingrun, LIU Xiyu, LI Guomei, DONG Xinxing. Screening and functional analysis of differentially expressed genes in breast muscle transcriptome between Plateau raindrop pigeon and Janssen pigeon [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 507-516. |
[2] | YANG Xinxia, TANG Mansheng, ZHANG Bin. Identification of soybean PP2C family genes and transcriptome analysis in response to salt stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 207-220. |
[3] | JIA Liqiang, ZHAO Qiufang, CHEN Shu, DING Bo. Expression analysis of bZIP G subfamily genes in maize [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 221-231. |
[4] | MA Jie, QU Wen, CHEN Chunyan, WANG Lei, MA Jun, LIU Zhenshan, MA Wei, ZHOU Ping, HE Yuankuan, SUN Bo. Development of SSR markers based on transcriptome sequencing and genetic diversity analysis of Nainaiqingcai leaf mustard [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1640-1649. |
[5] | DONG Zhihao, CHEN Yu, HUANG Gaoxiang, BAI Junyan, LI Jingyun, ZHAO Shujuan, LEI Ying, WANG Xinle, HU Qihang, FAN Zhengyu. Association analysis of VIPR-1 gene polymorphism and early growth traits in egg quail [J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1393-1401. |
[6] | HUANG Changbing, CHENG Peilei, YANG Shaozong, ZHANG Huanchao, JIANG Zhengzhi, JIN Limin. Transcriptome analysis of Hemerocallis fulva under low temperature stress [J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1445-1460. |
[7] | ZHAO Guofu, YAN Yaqin, WANG Jinglei, WEI Qingzhen, BAO Chonglai. Genome-wide identification and expression analysis of LOX gene family in eggplant (Solanum melongena) [J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 1025-1034. |
[8] | YANG Xinxia, ZHANG Bin. Identification of soybean LAZ1 gene family and functional analysis of GmLAZ1-9 [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 586-594. |
[9] | HUANG Yongming, SONG Fang, WANG Ce, YAO Jinglei, WANG Zhijing, HE Ligang, WU Liming, JIANG Yingchun. Effects of root pruning on growth and expression of related genes in Poncirus trifoliata [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 270-277. |
[10] | BAI Hao, LI Xiaofan, ZHONG Li, SONG Qianqian, JIANG Yong, ZHANG Yang, WANG Zhixiu, XU Qi, CHANG Guobin, CHEN Guohong. Study on depositions of mineral elements and expression levels of key genes in different tissues of Liancheng white ducks [J]. Acta Agriculturae Zhejiangensis, 2021, 33(12): 2264-2274. |
[11] | JIANG Zhifang, HAN Yidie, LOU Panpan, GUO Hong, FENG Shangguo, SHEN Chenjia, WANG Huizhong1. Identification and expression analysis of cytochrome P450 family genes from Physalis angulata L. [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2009-2016. |
[12] | FENG Shangle, LI Xuenan, CHEN Yige, LIU Ruiqi, BAI Zhiyi, LI Wenjuan. Screening and expression of cyclins gene in Hyriopsis cumingii [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2041-2050. |
[13] | DU Jinliang, CAO Liping, JIA Rui, GU Zhengyan, HE Qin, XU Pao, JENEY Galina, MA Yuzhong, YIN Guojun. Protective effects of Glycyrrhiza total flavones on liver injury of tilapia (Oreochromis niloticus) under high fat condition [J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1826-1835. |
[14] | YANG Haijian, ZHANG Yungui, ZHOU Xinzhi, HONG Lin, YANG Lei, PENG Fangfang, WANG Wu. Analysis of anthocyanin synthesis and related gene expression in blood orange peel under different PE materials shading during fruit coloring period [J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1861-1869. |
[15] | YIN Minghua, CAO Qing, CHEN Hong, DENG Siyu, DENG Yanmei. Transcriptome analysis of red bud taro and green stem taro in Yanshan, Jiangxi Province [J]. , 2020, 32(9): 1533-1543. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||