Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (3): 507-516.DOI: 10.3969/j.issn.1004-1524.2022.03.11
• Animal Science • Previous Articles Next Articles
LAN Guoxiang1(), JIN Siqi1, LI Xingrun2, LIU Xiyu2, LI Guomei1, DONG Xinxing1,*
Received:
2021-07-02
Online:
2022-03-25
Published:
2022-03-30
Contact:
DONG Xinxing
CLC Number:
LAN Guoxiang, JIN Siqi, LI Xingrun, LIU Xiyu, LI Guomei, DONG Xinxing. Screening and functional analysis of differentially expressed genes in breast muscle transcriptome between Plateau raindrop pigeon and Janssen pigeon[J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 507-516.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.03.11
基因名 Gene name | 上游引物序列(5'→3') Forward primer sequence(5'→3') | 下游引物序列(5'→3') Reverse primer sequence(5'→3') | 产物长度 Length of product/bp |
---|---|---|---|
MGLL | GAGCTGCCCGTTCTCATTCT | CGACAGGTTTGGGAGGACAA | 189 |
SOCS3 | GCCACCAGAGAACGGAAAGA | TTAGTCCCCCGGAAAATGGC | 201 |
PPM1K | AGATGGCTGCTGATGCAACT | AGCCACCGCACTTCCTAATC | 201 |
PLCE1 | ATGCTTCCTTCACCTGGGC | TGGTAGGTGTGGTGGGGTTG | 163 |
SMYD1 | ATCTGTCATACCTGCTTCAAACG | CCAGCCTGATGTTTTCGGT | 169 |
β-actin | TTACCCACACTGTGCCCATC | AGGGCAACATAGCACAGCTT | 187 |
Table 1 Primer sequences of qRT-PCR
基因名 Gene name | 上游引物序列(5'→3') Forward primer sequence(5'→3') | 下游引物序列(5'→3') Reverse primer sequence(5'→3') | 产物长度 Length of product/bp |
---|---|---|---|
MGLL | GAGCTGCCCGTTCTCATTCT | CGACAGGTTTGGGAGGACAA | 189 |
SOCS3 | GCCACCAGAGAACGGAAAGA | TTAGTCCCCCGGAAAATGGC | 201 |
PPM1K | AGATGGCTGCTGATGCAACT | AGCCACCGCACTTCCTAATC | 201 |
PLCE1 | ATGCTTCCTTCACCTGGGC | TGGTAGGTGTGGTGGGGTTG | 163 |
SMYD1 | ATCTGTCATACCTGCTTCAAACG | CCAGCCTGATGTTTTCGGT | 169 |
β-actin | TTACCCACACTGTGCCCATC | AGGGCAACATAGCACAGCTT | 187 |
样品 Sample | 原始读段 Raw reads | 高质量序列所占 比例 Clean reads rate/% | Q30/% | 比对基因组所 占比例 Mapping rate/% |
---|---|---|---|---|
JG1 | 50 784 230 | 94.47 | 93.57 | 83.09 |
JG2 | 49 764 078 | 95.51 | 93.26 | 84.60 |
JG3 | 48 035 956 | 93.37 | 94.08 | 83.03 |
JS1 | 51 604 076 | 91.46 | 93.81 | 85.33 |
JS2 | 49 022 332 | 91.97 | 93.85 | 85.90 |
JS3 | 47 948 950 | 94.94 | 93.56 | 84.03 |
Table 2 Output of sequencing data
样品 Sample | 原始读段 Raw reads | 高质量序列所占 比例 Clean reads rate/% | Q30/% | 比对基因组所 占比例 Mapping rate/% |
---|---|---|---|---|
JG1 | 50 784 230 | 94.47 | 93.57 | 83.09 |
JG2 | 49 764 078 | 95.51 | 93.26 | 84.60 |
JG3 | 48 035 956 | 93.37 | 94.08 | 83.03 |
JS1 | 51 604 076 | 91.46 | 93.81 | 85.33 |
JS2 | 49 022 332 | 91.97 | 93.85 | 85.90 |
JS3 | 47 948 950 | 94.94 | 93.56 | 84.03 |
类别 Category | 登记号 Accession | 条目 Term | P值 P value | 差异表达 基因数量 Number of DEGs |
---|---|---|---|---|
肌肉生长 | GO:0007259 | JAK-STAT级联JAK-STAT cascade | 0.003 5 | 2 |
Muscle growth | GO:0035914 | 骨骼肌细胞分化Skeletal muscle cell differentiation | 0.005 7 | 2 |
GO:0010830 | 肌管分化调控Regulation of myotube differentiation | 0.008 4 | 2 | |
GO:0045661 | 成肌细胞分化调控Regulation of myoblast differentiation | 0.011 0 | 2 | |
GO:0051153 | 横纹肌细胞分化调控Regulation of striated muscle cell differentiation | 0.024 0 | 2 | |
GO:0006937 | 肌肉收缩调节Regulation of muscle contraction | 0.044 0 | 1 | |
能量利用 | GO:0009083 | 支链氨基酸分解过程Branched-chain amino acid catabolic process | 0.000 9 | 2 |
Energy utilization | GO:0016042 | 脂质分解过程Lipid catabolic process | 0.001 0 | 5 |
GO:0009081 | 支链氨基酸代谢过程Branched-chain amino acid metabolic process | 0.001 3 | 2 | |
GO:0006651 | 甘油二酯生物合成过程Diacylglycerol biosynthetic process | 0.007 1 | 1 | |
GO:0036155 | 酰基甘油链重构Acylglycerol acyl-chain remodeling | 0.007 1 | 1 | |
GO:0006638 | 中性脂质代谢过程Neutral lipid metabolic process | 0.017 0 | 2 | |
GO:0006639 | 酰基甘油代谢过程Acylglycerol metabolic process | 0.017 0 | 2 | |
GO:0006633 | 脂肪酸生物合成过程Fatty acid biosynthetic process | 0.030 0 | 2 | |
GO:0046339 | 二酰基甘油代谢过程Diacylglycerol metabolic process | 0.031 0 | 2 | |
GO:0019433 | 甘油三酯分解过程Triglyceride catabolic process | 0.038 0 | 2 | |
GO:0006629 | 脂质代谢过程Lipid metabolic process | 0.041 0 | 7 | |
GO:0006631 | 脂肪酸代谢过程Fatty acid metabolic process | 0.047 0 | 3 | |
肌肉生长与能量利用 | GO:0031323 | 细胞代谢过程调节Regulation of cellular metabolic process | 8.5×10-6 | 27 |
Muscle growth and | GO:0080090 | 初级代谢过程调节Regulation of primary metabolic process | 1.8×10-5 | 26 |
energy utilization | GO:0019222 | 代谢过程调节Regulation of metabolic process | 3.5×10-5 | 27 |
GO:0060255 | 大分子代谢过程调控Regulation of macromolecule metabolic process | 0.000 2 | 26 | |
GO:0051171 | 氮化合物代谢过程的调节 | 0.000 8 | 24 | |
Regulation of nitrogen compound metabolic process | ||||
GO:0044238 | 初级代谢过程Primary metabolic process | 0.003 5 | 29 | |
GO:0071704 | 有机物代谢过程Organic substance metabolic process | 0.008 2 | 28 | |
GO:0008152 | 代谢过程Metabolic process | 0.018 0 | 28 |
Table 3 Main GO items of DEGs enrichment analysis related to muscle growth and energy utilization
类别 Category | 登记号 Accession | 条目 Term | P值 P value | 差异表达 基因数量 Number of DEGs |
---|---|---|---|---|
肌肉生长 | GO:0007259 | JAK-STAT级联JAK-STAT cascade | 0.003 5 | 2 |
Muscle growth | GO:0035914 | 骨骼肌细胞分化Skeletal muscle cell differentiation | 0.005 7 | 2 |
GO:0010830 | 肌管分化调控Regulation of myotube differentiation | 0.008 4 | 2 | |
GO:0045661 | 成肌细胞分化调控Regulation of myoblast differentiation | 0.011 0 | 2 | |
GO:0051153 | 横纹肌细胞分化调控Regulation of striated muscle cell differentiation | 0.024 0 | 2 | |
GO:0006937 | 肌肉收缩调节Regulation of muscle contraction | 0.044 0 | 1 | |
能量利用 | GO:0009083 | 支链氨基酸分解过程Branched-chain amino acid catabolic process | 0.000 9 | 2 |
Energy utilization | GO:0016042 | 脂质分解过程Lipid catabolic process | 0.001 0 | 5 |
GO:0009081 | 支链氨基酸代谢过程Branched-chain amino acid metabolic process | 0.001 3 | 2 | |
GO:0006651 | 甘油二酯生物合成过程Diacylglycerol biosynthetic process | 0.007 1 | 1 | |
GO:0036155 | 酰基甘油链重构Acylglycerol acyl-chain remodeling | 0.007 1 | 1 | |
GO:0006638 | 中性脂质代谢过程Neutral lipid metabolic process | 0.017 0 | 2 | |
GO:0006639 | 酰基甘油代谢过程Acylglycerol metabolic process | 0.017 0 | 2 | |
GO:0006633 | 脂肪酸生物合成过程Fatty acid biosynthetic process | 0.030 0 | 2 | |
GO:0046339 | 二酰基甘油代谢过程Diacylglycerol metabolic process | 0.031 0 | 2 | |
GO:0019433 | 甘油三酯分解过程Triglyceride catabolic process | 0.038 0 | 2 | |
GO:0006629 | 脂质代谢过程Lipid metabolic process | 0.041 0 | 7 | |
GO:0006631 | 脂肪酸代谢过程Fatty acid metabolic process | 0.047 0 | 3 | |
肌肉生长与能量利用 | GO:0031323 | 细胞代谢过程调节Regulation of cellular metabolic process | 8.5×10-6 | 27 |
Muscle growth and | GO:0080090 | 初级代谢过程调节Regulation of primary metabolic process | 1.8×10-5 | 26 |
energy utilization | GO:0019222 | 代谢过程调节Regulation of metabolic process | 3.5×10-5 | 27 |
GO:0060255 | 大分子代谢过程调控Regulation of macromolecule metabolic process | 0.000 2 | 26 | |
GO:0051171 | 氮化合物代谢过程的调节 | 0.000 8 | 24 | |
Regulation of nitrogen compound metabolic process | ||||
GO:0044238 | 初级代谢过程Primary metabolic process | 0.003 5 | 29 | |
GO:0071704 | 有机物代谢过程Organic substance metabolic process | 0.008 2 | 28 | |
GO:0008152 | 代谢过程Metabolic process | 0.018 0 | 28 |
功能ID Function ID | 功能描述 Description of function | P值 P value | 差异表达基因 DEGs |
---|---|---|---|
map04910 | 胰岛素信号通路Insulin signaling pathway | 0.000 4 | SOCS3、ACACB、PPP1R3C |
map04931 | 胰岛素抵抗Insulin resistance | 0.003 3 | SOCS3、ACACB、PPP1R3C |
map04919 | 甲状腺激素信号通路Thyroid hormone signaling pathway | 0.003 8 | STAT1、HIF1A、PLCE1 |
map04920 | 脂肪细胞因子信号通路Adipocytokine signaling pathway | 0.014 0 | SOCS3、ACACB |
map00061 | 脂肪酸生物合成Fatty acid biosynthesis | 0.039 0 | ACACB |
map04152 | AMPK信号通路AMPK signal pathway | 0.042 0 | ACACB |
map04630 | Jak-STAT信号通路Jak-STAT signaling pathway | 0.050 0 | SOCS3、STAT1 |
Table 4 Pathways of DEGs enrichment analysis related to muscle growth and energy utilization
功能ID Function ID | 功能描述 Description of function | P值 P value | 差异表达基因 DEGs |
---|---|---|---|
map04910 | 胰岛素信号通路Insulin signaling pathway | 0.000 4 | SOCS3、ACACB、PPP1R3C |
map04931 | 胰岛素抵抗Insulin resistance | 0.003 3 | SOCS3、ACACB、PPP1R3C |
map04919 | 甲状腺激素信号通路Thyroid hormone signaling pathway | 0.003 8 | STAT1、HIF1A、PLCE1 |
map04920 | 脂肪细胞因子信号通路Adipocytokine signaling pathway | 0.014 0 | SOCS3、ACACB |
map00061 | 脂肪酸生物合成Fatty acid biosynthesis | 0.039 0 | ACACB |
map04152 | AMPK信号通路AMPK signal pathway | 0.042 0 | ACACB |
map04630 | Jak-STAT信号通路Jak-STAT signaling pathway | 0.050 0 | SOCS3、STAT1 |
Fig.2 Protein interaction network Circles represented proteins, and their color shades represented their weights in the network, with darker colors representing greater weights. Straight lines represented interactions between proteins, with thicker lines representing grater interactions.
Fig.3 Relative expression levels of DEGs in breast muscle between Plateau raindrop pigeon and Janssen pigeon A, Transcriptome sequencing results; B,qRT-PCR results.
[1] | 王萨仁图雅. 赛鸽人工孵化与哺育技术的研究[D]. 呼和浩特: 内蒙古农业大学, 2009. |
WANG S R T Y. Studies on artificial incubation and hand-fed of match pigeon[D]. Hohhot: Inner Mongolia Agricultural University, 2009. (in Chinese with English abstract) | |
[2] |
JACKSON B E, DIAL K P. Scaling of mechanical power output during burst escape flight in the Corvidae[J]. The Journal of Experimental Biology, 2011, 214(Pt 3): 452-461.
DOI URL |
[3] | 刘铸, 杨春文, 金志民. 浅谈鸟类适应飞翔的探究问题与理论知识[J]. 生物学教学, 2010, 35(10): 67-68. |
LIU Z, YANG C W, JIN Z M. A brief talk on inquiry questions and theoretical knowledge of birds’ adaptation to flying[J]. Biology Teaching, 2010, 35(10): 67-68. (in Chinese) | |
[4] | 郭云. 风靡宁夏山川的“2595”詹森鸽系: 凤城名鸽探析之二[J]. 环球赛鸽科技, 2006(3): 62-63. |
GUO Y. The “2595” Jason pigeon line popular in Ningxia: the second analysis of Fengcheng famous pigeons[J]. Global Racing Pigeon Science, 2006(3): 62-63. (in Chinese) | |
[5] | 毛竹. 禽品种资源[J]. 云南政报, 1991(1): 44-45. |
MAO Z. Poultry variety resources[J]. Bulletin of the People’s Government of Yunnan Province, 1991(1): 44-45. (in Chinese) | |
[6] | 蒋明雅, 邹小利, 罗文, 等. 不同生长速度型鸡胚胎发育后期肌纤维形态学对比分析[J]. 中国家禽, 2017, 39(16): 10-16. |
JIANG M Y, ZOU X L, LUO W, et al. Skeletal muscle fiber morphological comparative study in chickens with different growth rate during the late embryonic development[J]. China Poultry, 2017, 39(16): 10-16. (in Chinese with English abstract) | |
[7] |
TRAPNELL C, WILLIAMS B A, PERTEA G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation[J]. Nature Biotechnology, 2010, 28(5): 511-515.
DOI URL |
[8] |
WANG W, WANG Y J, ZHANG Q, et al. Global characterization of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing[J]. BMC Genomics, 2009, 10: 465.
DOI URL |
[9] |
FRANCESCHINI A, SZKLARCZYK D, FRANKILD S, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration[J]. Nucleic Acids Research, 2012, 41(D1): D808-D815.
DOI URL |
[10] | 翁锡全. 运动时骨骼肌的能量供应过程[J]. 中国体育教练员, 2014, 22(2): 38-39. |
WENG X Q. Energy supply process of skeletal muscles during exercise[J]. China Sports Coaches, 2014, 22(2): 38-39. (in Chinese) | |
[11] | 王平, 漆正堂, 丁树哲. Smyd1基因选择性剪接的组蛋白修饰机制调控应力刺激下骨骼肌肥大作用研究进展[J]. 中国运动医学杂志, 2013, 32(9): 845-850. |
WANG P, QI Z T, DING S Z. Research progress on the histone modification mechanism of alternative splicing of Smyd1 gene in regulating skeletal muscle hypertrophy under stress[J]. Chinese Journal of Sports Medicine, 2013, 32(9): 845-850. (in Chinese) | |
[12] | 王娟, 叶湘漓, 姜丽, 等. IGF-1通过SRF结合位点调节SMYD1在C2C12细胞中的表达[J]. 中国生物化学与分子生物学报, 2010, 26(12): 1113-1120. |
WANG J, YE X L, JIANG L, et al. IGF-1 regulates SMYD1 expression through SRF response element in C2C12 cells[J]. Chinese Journal of Biochemistry and Molecular Biology, 2010, 26(12): 1113-1120. (in Chinese with English abstract) | |
[13] |
NAGANDLA H, LOPEZ S, YU W, et al. Defective myogenesis in the absence of the muscle-specific lysine methyltransferase SMYD1[J]. Developmental Biology, 2016, 410(1): 86-97.
DOI URL |
[14] |
CHU W Y, ZHANG F L, SONG R, et al. Proteomic and microRNA transcriptome analysis revealed the microRNA-SmyD1 network regulation in skeletal muscle fibers performance of Chinese perch[J]. Scientific Reports, 2017, 7: 16498.
DOI URL |
[15] |
NOMURA D K, LONG J Z, NIESSEN S, et al. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis[J]. Cell, 2010, 140(1): 49-61.
DOI URL |
[16] |
NOMURA D K, LOMBARDI D P, CHANG J W, et al. Monoacylglycerol lipase exerts dual control over endocannabinoid and fatty acid pathways to support prostate cancer[J]. Chemistry & Biology, 2011, 18(7): 846-856.
DOI URL |
[17] |
SCALVINI L, PIOMELLI D, MOR M. Monoglyceride lipase: structure and inhibitors[J]. Chemistry and Physics of Lipids, 2016, 197: 13-24.
DOI URL |
[18] |
TASCHLER U, RADNER F P W, HEIER C, et al. Monoglyceride lipase deficiency in mice impairs lipolysis and attenuates diet-induced insulin resistance[J]. Journal of Biological Chemistry, 2011, 286(20): 17467-17477.
DOI URL |
[19] |
KIENS B. Skeletal muscle lipid metabolism in exercise and insulin resistance[J]. Physiological Reviews, 2006, 86(1): 205-243.
DOI URL |
[20] |
BISWAS D, DUFFLEY L, PULINILKUNNIL T. Role of branched-chain amino acid-catabolizing enzymes in intertissue signaling, metabolic remodeling, and energy homeostasis[J]. FASEB Journal, 2019, 33(8): 8711-8731.
DOI URL |
[21] | 吴江维. 猪SOCS-3基因cDNA的克隆及其在脂肪和肌肉组织表达的初步研究[D]. 杨凌:西北农林科技大学, 2006. |
WU J W. Cloning the porcine SOCS-3 cDNA and its expression in porcine adipose and muscle tissue[D]. Yangling: Northwest A & F University, 2006. (in Chinese with English abstract) | |
[22] | 林娜, 姚晓光, 李南方. 细胞因子信号转导抑制因子3的研究进展[J]. 中国医学科学院学报, 2012, 34(2): 178-182. |
LIN N, YAO X G, LI N F. Research advances in suppressor of cytokine signaling 3[J]. Acta Academiae Medicinae Sinicae, 2012, 34(2): 178-182. (in Chinese with English abstract) | |
[23] | 郑琪, 睢梦华, 凌英会. 骨骼肌卫星细胞增殖与成肌分化过程中关键信号通路的作用[J]. 畜牧兽医学报, 2017, 48(11): 2005-2014. |
ZHENG Q, SUI M H, LING Y H. The role of key signaling pathways in the proliferation and differentiation of skeletal muscle satellite cells[J]. Chinese Journal of Animal and Veterinary Sciences, 2017, 48(11): 2005-2014. (in Chinese with English abstract) | |
[24] |
SWIDERSKI K, THAKUR S S, NAIM T, et al. Muscle-specific deletion of SOCS3 increases the early inflammatory response but does not affect regeneration after myotoxic injury[J]. Skeletal Muscle, 2016, 6: 36.
DOI URL |
[25] | 朱道立. 运动和内分泌器官: 骨骼肌[J]. 生物学教学, 2007(8): 2-3. |
ZHU D L. Exercise and endocrine organs-skeletal muscles[J]. Biology Teaching, 2007(8): 2-3. (in Chinese) | |
[26] | 刘莉, 马爽, 李岩溪, 等. 高脂饮食大鼠脂肪组织SOCS-3及FAS表达[J]. 中国公共卫生, 2009, 25(4): 428-430. |
LIU L, MA S, LI Y X, et al. Study on SOCS-3 and FAS expression of adipose tissues in rats fed with high-fat diet[J]. Chinese Journal of Public Health, 2009, 25(4): 428-430. (in Chinese with English abstract) | |
[27] | 刘莉, 顾海伦, 杨军, 等. 大鼠重组瘦素对成熟脂肪细胞细胞因子信号转导抑制因子3表达的影响[J]. 卫生研究, 2009, 38(2): 160-162. |
LIU L, GU H L, YANG J, et al. Effect of rat recombinant leptin on expression of SOCS-3 in mature adipocytes[J]. Journal of Hygiene Research, 2009, 38(2): 160-162. (in Chinese with English abstract) | |
[28] | 林佳盛. 瘦素及其受体基因对猪脂肪组织沉积影响的研究[D]. 福州: 福建农林大学, 2015. |
LIN J S. The effects of leptin and its receptor genes on the deposition of adipose tissue of pigs[D]. Fuzhou: Fujian Agriculture and Forestry University, 2015. (in Chinese with English abstract) | |
[29] | 钮小玲, 黄文彦. PLCE1基因突变与激素耐药性肾病综合征的关系[J]. 国际病理科学与临床杂志, 2009, 29(4): 337-341. |
NIU X L, HUANG W Y. Mutation of PLCE1 gene and steroid-resistant nephrotic syndrome[J]. International Journal of Pathology and Clinical Medicine, 2009, 29(4): 337-341. (in Chinese with English abstract) | |
[30] |
ANTIGNY F, KONIG S, BERNHEIM L, et al. Inositol 1, 4, 5 trisphosphate receptor 1 is a key player of human myoblast differentiation[J]. Cell Calcium, 2014, 56(6): 513-521.
DOI URL |
[31] |
CHOI J Y, HWANG C Y, LEE B, et al. Age-associated repression of type 1 inositol 1, 4, 5-triphosphate receptor impairs muscle regeneration[J]. Aging, 2016, 8(9): 2062-2080.
DOI URL |
[32] |
KERESZTES M, HÄGGBLAD J, HEILBRONN E. Basal and ATP-stimulated phosphoinositol metabolism in fusing rat skeletal muscle cells in culture[J]. Experimental Cell Research, 1991, 196(2): 362-364.
DOI URL |
[33] |
LEE S J, LEE Y H, KIM Y S, et al. Transcriptional regulation of phospholipase C-gamma 1 gene during muscle differentiation[J]. Biochemical and Biophysical Research Communications, 1995, 206(1): 194-200.
DOI URL |
[34] |
HINKES B, WIGGINS R C, GBADEGESIN R, et al. Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible[J]. Nature Genetics, 2006, 38(12): 1397-1405.
DOI URL |
[35] |
BALUCH D P, KOENEMAN B A, HATCH K R, et al. PKC isotypes in post-activated and fertilized mouse eggs: association with the meiotic spindle[J]. Developmental Biology, 2004, 274(1): 45-55.
DOI URL |
[36] |
YU Y S, HALET G, LAI F A, et al. Regulation of diacylglycerol production and protein kinase C stimulation during sperm-and PLCzeta-mediated mouse egg activation[J]. Biology of the Cell, 2008, 100(11): 633-643.
DOI URL |
[37] | TATONE C, DELLE MONACHE S, FRANCIONE A, et al. Ca2+-independent protein kinase C signalling in mouse eggs during the early phases of fertilization[J]. The International Journal of Developmental Biology, 2003, 47(5): 327-333. |
[38] | HALET G. PKC signaling at fertilization in mammalian eggs[J]. Biochimica et Biophysica Acta, 2004, 1742(1/2/3): 185-189. |
[39] |
SUGURO T, WATANABE T, KANOME T, et al. Serotonin acts as an up-regulator of acyl-coenzyme A: cholesterol acyltransferase-1 in human monocyte-macrophages[J]. Atherosclerosis, 2006, 186(2): 275-281.
DOI URL |
[40] |
GAO Y, LI Y F, GUO X, et al. Loss of STAT1 in bone marrow-derived cells accelerates skeletal muscle regeneration[J]. PLoS One, 2012, 7(5): e37656.
DOI URL |
[41] |
GOLDBERG A A, NKENGFAC B, SANCHEZ A M J, et al. Regulation of ULK1 expression and autophagy by STAT1[J]. Journal of Biological Chemistry, 2017, 292(5): 1899-1909.
DOI URL |
[42] |
MEDLEY S C, RATHNAKAR B H, GEORGESCU C, et al. Fibroblast-specific Stat1 deletion enhances the myofibroblast phenotype during tissue repair[J]. Wound Repair and Regeneration, 2020, 28(4): 448-459.
DOI URL |
[43] |
ANTONY A, LIAN Z Q, PERRARD X D, et al. Deficiency of Stat1 in CD11c+ cells alters adipose tissue inflammation and improves metabolic dysfunctions in mice fed a high-fat diet[J]. Diabetes, 2021, 70(3): 720-732.
DOI URL |
[44] |
HODGE B A, ZHANG X P, GUTIERREZ-MONREAL M A, et al. MYOD 1 functions as a clock amplifier as well as a critical co-factor for downstream circadian gene expression in muscle[J]. eLife, 2019, 8: e43017.
DOI URL |
[45] | 张勇. 骨髓间充质干细胞成肌分化及其对肌损伤修复的实验研究[D]. 重庆: 第三军医大学, 2002. |
ZHANG Y. Myogenic differentiation of mesenchymal stem cells in vitro and its graft in repair of muscle injury in mice[D]. Chongqing: Third Military Medical University, 2002. (in Chinese with English abstract) | |
[46] |
RUDNICKI M A, LE GRAND F, MCKINNELL I, et al. The molecular regulation of muscle stem cell function[J]. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73: 323-331.
DOI URL |
[47] |
MESHORER E, MISTELI T. Chromatin in pluripotent embryonic stem cells and differentiation[J]. Nature Reviews Molecular Cell Biology, 2006, 7(7): 540-546.
DOI URL |
[48] |
WANG C, LIU W Y, NIE Y H, et al. Loss of MyoD promotes fate transdifferentiation of myoblasts into brown adipocytes[J]. EBioMedicine, 2017, 16: 212-223.
DOI URL |
[49] | 金红红. VEGFA和VEGFB调节脂肪组织分化、基因表达和生物学功能的平衡[D]. 长春: 东北师范大学, 2018. |
JIN H H. VEGFA and VEGFB play balancing roles in adipose differentiation, gene expression and function[D]. Changchun: Northeast Normal University, 2018. (in Chinese with English abstract) | |
[50] |
PARK J, KIM M, SUN K, et al. VEGF-A-expressing adipose tissue shows rapid beiging and enhanced survival after transplantation and confers IL-4-independent metabolic improvements[J]. Diabetes, 2017, 66(6): 1479-1490.
DOI URL |
[51] | LUDZKI A C, PATAKY M W, CARTEE G D, et al. Acute endurance exercise increases Vegfa mRNA expression in adipose tissue of rats during the early stages of weight gain[J]. Applied Physiology, Nutrition, and Metabolism, 2018, 43(7): 751-754. |
[1] | WANG Qiankun, ZHANG Xiaohui, PANG Youzhi, QI Yanxia, LEI Ying, BAI Junyan, HU Yunqi, ZHAO Yiwei, YUAN Zhiwen, WANG Tao. Screening of genes related to auto-sexing on feather color based on RNA-seq technology [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 498-506. |
[2] | YANG Xinxia, TANG Mansheng, ZHANG Bin. Identification of soybean PP2C family genes and transcriptome analysis in response to salt stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 207-220. |
[3] | MA Jie, QU Wen, CHEN Chunyan, WANG Lei, MA Jun, LIU Zhenshan, MA Wei, ZHOU Ping, HE Yuankuan, SUN Bo. Development of SSR markers based on transcriptome sequencing and genetic diversity analysis of Nainaiqingcai leaf mustard [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1640-1649. |
[4] | HUANG Changbing, CHENG Peilei, YANG Shaozong, ZHANG Huanchao, JIANG Zhengzhi, JIN Limin. Transcriptome analysis of Hemerocallis fulva under low temperature stress [J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1445-1460. |
[5] | JIANG Zhifang, HAN Yidie, LOU Panpan, GUO Hong, FENG Shangguo, SHEN Chenjia, WANG Huizhong1. Identification and expression analysis of cytochrome P450 family genes from Physalis angulata L. [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2009-2016. |
[6] | FENG Shangle, LI Xuenan, CHEN Yige, LIU Ruiqi, BAI Zhiyi, LI Wenjuan. Screening and expression of cyclins gene in Hyriopsis cumingii [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2041-2050. |
[7] | YIN Minghua, CAO Qing, CHEN Hong, DENG Siyu, DENG Yanmei. Transcriptome analysis of red bud taro and green stem taro in Yanshan, Jiangxi Province [J]. , 2020, 32(9): 1533-1543. |
[8] | LIU Xinyu, TIAN Jie. Analysis of simple sequence repeats in transcriptome of garlic (Allium sativum L.) and development of molecular markers [J]. , 2020, 32(9): 1615-1625. |
[9] | GE Jintao, WANG Jiangying, ZHAO Wenjing, SHAO Xiaobin, ZHU Pengbo, TANG Xueyan, SUN Mingwei, LIU Xingman. Transcriptome analysis on development of aerial root in grape of Weike [J]. , 2020, 32(9): 1645-1655. |
[10] | ZHU Yu, LIU Yang. Transcriptome analysis on heat tolerance of Chilo suppressalis larvae [J]. , 2020, 32(5): 849-857. |
[11] | SONG Zhiqiang, DING Xiang, TANG Xian, ZHU Miao, HOU Yiling. Transcriptome analysis of fruiting bodies of Lactarius deliciosus at two developmental stages [J]. , 2020, 32(2): 337-347. |
[12] | ZHU Xiaolin, WEI Xiaohong, WANG Baoqiang, WANG Xian, ZHANG Mingjun. Transcriptome analysis of tomato under salt stress induced by c-GMP [J]. , 2020, 32(10): 1788-1797. |
[13] | WANG Qi, CHEN Xiaojie, GU Shuangyue, ZHANG Xinyue, HANG Tianlu, DING Ting. Transcriptome profiling of maize resistance gene in response to DZSY21 induction [J]. , 2019, 31(3): 345-354. |
[14] | WANG Hua, WANG Wangwei, WANG Dongliang, ZHANG Shihu, HU Xinfang, LU Shiyu, GONG Xuemei. De novo assembly and functional annotation of transcriptome data of Rhododendron pulchurum cv. Baifeng 4 leaf [J]. , 2018, 30(7): 1149-1159. |
[15] | FENG Chen, TANG Haoru, JIANG Leiyu, SONG Xia, ZHANG Yunting, YE Yuntian, CHEN Qing, SUN Bo. Analysis of codon usage bias of specific genes in strawberry transcriptome under the red and blue light [J]. , 2017, 29(4): 566-574. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||