Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (4): 756-765.DOI: 10.3969/j.issn.1004-1524.2022.04.12
• Horticultural Science • Previous Articles Next Articles
FAN Youcun1(), ZHANG Hongyan1, YANG Xusheng2, HAN Qian2, LIU Yujiao1, WU Xuexia1,*(
)
Received:
2020-11-24
Online:
2022-04-25
Published:
2022-04-28
Contact:
WU Xuexia
CLC Number:
FAN Youcun, ZHANG Hongyan, YANG Xusheng, HAN Qian, LIU Yujiao, WU Xuexia. Cloning, bioinformatics analysis and gene expression pattern of VfHKT1; 1 in Vicia faba L.[J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 756-765.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.04.12
引物名称 Primer name | 引物序列 Primer sequence(5'-3') | 产物大小 Product size/bp |
---|---|---|
ELF1A-F | GTGAAGCCCGGTATGCTTGT | 169 |
ELF1A-R | GATGCTGAGGATATTCAACCCC | |
HKT1-1050F | TGGGTTGCTTGTGGTTCAAG | 176 |
HKT1-1232R | ACAAACAACACCAACACGGC | |
HKT1-889F | GGGAACACGTTGTACCCTCC | 158 |
HKT1-1069R | CTTGAACCACAAGCAACCCA | |
HKT1-265 F | TCAGCCACAACAGTTTCAAGC | 159 |
HKT1-452 R | GCAAGACGAGCATGAGACGA | |
HKT1-877 F | CAAGTGCTTCTTGGGAACACG | 183 |
HKT1-1057 R | GCAACCCAAAAACAGTAGCCA |
Table 1 The qRT-PCR primer sequences
引物名称 Primer name | 引物序列 Primer sequence(5'-3') | 产物大小 Product size/bp |
---|---|---|
ELF1A-F | GTGAAGCCCGGTATGCTTGT | 169 |
ELF1A-R | GATGCTGAGGATATTCAACCCC | |
HKT1-1050F | TGGGTTGCTTGTGGTTCAAG | 176 |
HKT1-1232R | ACAAACAACACCAACACGGC | |
HKT1-889F | GGGAACACGTTGTACCCTCC | 158 |
HKT1-1069R | CTTGAACCACAAGCAACCCA | |
HKT1-265 F | TCAGCCACAACAGTTTCAAGC | 159 |
HKT1-452 R | GCAAGACGAGCATGAGACGA | |
HKT1-877 F | CAAGTGCTTCTTGGGAACACG | 183 |
HKT1-1057 R | GCAACCCAAAAACAGTAGCCA |
Fig.1 Seedlings of faba bean irrigated with different concentration of NaCl for 7 days A,Plant height of faba bean under different NaCl concentrations(bar=3 cm);B,Leaf area of faba bean under different NaCl concentrations(bar=2 cm).
Fig.2 Cloning of VfHKT1 gene and identification of the positive clone A,Cloning of VfHKT1 gene;B,Identification of positive colonies of VfHKT1 gene. 1, 2, 3 and 4 represented PCR products.
氨基酸 Amino acid | 数量 Quantity | 百分比 Percentage/% | 氨基酸 Amino acid | 数量 Quantity | 百分比 Percentage/% |
---|---|---|---|---|---|
丙氨酸Ala(A) | 13 | 2.4 | 精氨酸Arg(R) | 13 | 2.4 |
天冬酰胺Asn(N) | 30 | 5.4 | 天冬氨酸Asp(D) | 11 | 2.0 |
半胱氨酸Cys(C) | 12 | 2.2 | 谷氨酰胺Gln(Q) | 15 | 2.7 |
谷氨酸Glu(E) | 26 | 4.7 | 甘氨酸Gly(G) | 30 | 5.4 |
组氨酸His(H) | 16 | 2.9 | 异亮氨酸Ile(I) | 46 | 8.3 |
亮氨酸Leu(L) | 80 | 14.5 | 赖氨酸Lys(K) | 42 | 7.6 |
蛋氨酸Met(M) | 17 | 3.1 | 苯丙氨酸Phe(F) | 38 | 6.9 |
脯氨酸Pro(P) | 15 | 2.7 | 丝氨酸Ser(S) | 54 | 9.8 |
苏氨酸Thr(T) | 32 | 5.8 | 色氨酸Trp(W) | 6 | 1.1 |
酪氨酸Tyr(Y) | 18 | 3.3 | 缬氨酸Val(V) | 38 | 6.9 |
吡咯赖氨酸Pyl(0) | 0 | 0 | 硒半胱氨酸Sec(U) | 0 | 0 |
Table 2 The amino acid composition of VfHKT1;1
氨基酸 Amino acid | 数量 Quantity | 百分比 Percentage/% | 氨基酸 Amino acid | 数量 Quantity | 百分比 Percentage/% |
---|---|---|---|---|---|
丙氨酸Ala(A) | 13 | 2.4 | 精氨酸Arg(R) | 13 | 2.4 |
天冬酰胺Asn(N) | 30 | 5.4 | 天冬氨酸Asp(D) | 11 | 2.0 |
半胱氨酸Cys(C) | 12 | 2.2 | 谷氨酰胺Gln(Q) | 15 | 2.7 |
谷氨酸Glu(E) | 26 | 4.7 | 甘氨酸Gly(G) | 30 | 5.4 |
组氨酸His(H) | 16 | 2.9 | 异亮氨酸Ile(I) | 46 | 8.3 |
亮氨酸Leu(L) | 80 | 14.5 | 赖氨酸Lys(K) | 42 | 7.6 |
蛋氨酸Met(M) | 17 | 3.1 | 苯丙氨酸Phe(F) | 38 | 6.9 |
脯氨酸Pro(P) | 15 | 2.7 | 丝氨酸Ser(S) | 54 | 9.8 |
苏氨酸Thr(T) | 32 | 5.8 | 色氨酸Trp(W) | 6 | 1.1 |
酪氨酸Tyr(Y) | 18 | 3.3 | 缬氨酸Val(V) | 38 | 6.9 |
吡咯赖氨酸Pyl(0) | 0 | 0 | 硒半胱氨酸Sec(U) | 0 | 0 |
Fig.10 Relative expression level of VfHKT1;1 gene in faba bean A,The expression of VfHKT1;1 gene in faba bean root and leaf under normal conditions;B,The expression of VfHKT1;1 gene in faba bean leaf under NaCl stress;C,The expression of VfHKT1;1 gene in faba bean root under NaCl stress. Values were means±SD (n=3). *,** represented significant differences at P<0.05 and P<0.01,respectively.
[1] | 王彦龙, 施建军, 盛丽, 等. 柴达木盆地重度盐碱地燕麦引种适应性评价[J]. 青海畜牧兽医杂志, 2019, 49(1): 36-41. |
WANG Y L, SHI J J, SHENG L, et al. Adaptive evaluation on oat varieties on severe saline-alkali land in Qaidam basin[J]. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2019, 49(1): 36-41. (in Chinese with English abstract) | |
[2] | 赵娜, 缪亚梅, 陈满峰, 等. 蚕豆耐盐性的研究进展[J]. 安徽农业科学, 2015, 43(18): 20-21. |
ZHAO N, MIAO Y M, CHEN M F, et al. Research progress on salt tolerance of faba bean[J]. Journal of Anhui Agricultural Sciences, 2015, 43(18): 20-21. (in Chinese with English abstract) | |
[3] | 李爱萍, 郑开斌, 林碧英, 等. 蚕豆提高土壤肥力及土壤效力研究[J]. 农业与技术, 2007, 27(2): 61-63. |
LI A P, ZHENG K B, LIN B Y, et al. Study about how the broad bean improves the soil fertility and soil efficacy[J]. Agriculture & Technology, 2007, 27(2): 61-63. (in Chinese with English abstract) | |
[4] |
ÁLVAREZ-IGLESIAS L, PUIG C G, REVILLA P, et al. Faba bean as green manure for field weed control in maize[J]. Weed Research, 2018, 58(6):437-449.
DOI URL |
[5] | 袁秀梅, 耿赛男, 郑梦圆, 等. 蚕豆根分泌物对紫色土有效养分及微生物数量的影响[J]. 中国生态农业学报, 2016, 24(7): 910-917. |
YUAN X M, GENG S N, ZHENG M Y, et al. Effects of faba bean(Vicia faba L.) root exudate on soil available nutrients and microbial population in different purple soils[J]. Chinese Journal of Eco-Agriculture, 2016, 24(7): 910-917. (in Chinese with English abstract) | |
[6] | 叶旭君, 汪成宏, 王仁第, 等. 浙东沿海台灾受咸地冬季作物的适应性[J]. 浙江农业学报, 1998, 10(6): 298-301. |
YE X J, WANG C H, WANG R D, et al. Winter crop suitability in saline-alkali fields caused by typhoon-driven sea floods in eastern coastal area of Zhejiang Province[J]. Acta Agriculturae Zhejiangensis, 1998, 10(6): 298-301. (in Chinese with English abstract) | |
[7] | 陈华涛, 陈新, 顾和平, 等. 大豆GmHKT6;2基因的克隆与表达特性分析[J]. 华北农学报, 2012, 27(3): 1-5. |
CHEN H T, CHEN X, GU H P, et al. Cloning and expression pattern analysis of GmHKT6;2in soybean[J]. Acta Agriculturae Boreali-Sinica, 2012, 27(3): 1-5. (in Chinese with English abstract) | |
[8] | 陆潭, 陈华涛, 沈振国, 等. 植物钾通道与钾转运体研究进展[J]. 华北农学报, 2019, 34(S1): 372-379. |
LU T, CHEN H T, SHEN Z G, et al. Advance of potassium channels and transporters in plant[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(S1): 372-379. (in Chinese with English abstract) | |
[9] |
PLATTEN J D, COTSAFTIS O, BERTHOMIEU P, et al. Nomenclature for HKT transporters,key determinants of plant salinity tolerance[J]. Trends in Plant Science, 2006, 11(8):372-374.
DOI URL |
[10] |
HORIE T, HAUSER F, SCHROEDER J I. HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants[J]. Trends in Plant Science, 2009, 14(12): 660-668.
DOI URL |
[11] | MÄSER P, HOSOO Y, GOSHIMA S, et al. Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(9): 6428-6433. |
[12] |
REHMAN H M, NAWAZ M A, SHAH Z H, et al. In-depth genomic and transcriptomic analysis of five K+ transporter gene families in soybean confirm their differential expression for nodulation[J]. Frontiers in Plant Science, 2017, 8: 804.
DOI URL |
[13] | CHEN H T, HE H, YU D Y. Overexpression of a novel soybean gene modulating Na+ and K+ transport enhances salt tolerance in transgenic tobacco plants[J]. PhysiologiaPlantarum, 2011, 141(1): 11-18. |
[14] |
CHEN H T, CHEN X, GU H P, et al. GmHKT1;4, a novel soybean gene regulating Na+/K+ ratio in roots enhances salt tolerance in transgenic plants[J]. Plant Growth Regulation, 2014, 73(3): 299-308.
DOI URL |
[15] | LI P, HOU W W, LIU Y J. Proteomic analysis of drought stress response on drought resistance for Vicia faba L. variety ‘Qinghai 13’ in Qinghai Plateau of China[J]. ActaAgronomicaSinica, 2019, 45(2): 267. |
[16] |
GUTIERREZ L, MAURIAT M, PELLOUX J, et al. Towards a systematic validation of references in real-time RT-PCR[J]. The Plant Cell, 2008, 20(7): 1734-1735.
DOI URL |
[17] |
LIU W, SCHACHTMAN D P, ZHANG W. Partial deletion of a loop region in the high affinity K+ transporter HKT1 changes ionic permeability leading to increased salt tolerance[J]. The Journal of Biological Chemistry, 2000, 275(36): 27924-27932.
DOI URL |
[18] | HAUSER F, HORIE T. A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress[J]. Plant, Cell & Environment, 2010, 33(4): 552-565. |
[19] | 李旭娟, 刘洪博, 林秀琴, 等. 甘蔗KNOX基因(Sckn 1)的电子克隆及生物信息学分析[J]. 基因组学与应用生物学, 2015, 34(1): 136-142. |
LI X J, LIU H B, LIN X Q, et al. In silico cloning and bioinformatics analysis of KNOX gene in sugarcane(Sckn1)[J]. Genomics and Applied Biology, 2015, 34(1): 136-142. (in Chinese with English abstract) | |
[20] |
ALI Z, PARK H C, ALI A, et al. TsHKT1;2, a HKT1 homolog from the extremophile Arabidopsis relative Thellungiella salsuginea, shows K+ specificity in the presence of NaCl[J]. Plant Physiology, 2012, 158(3): 1463-1474.
DOI URL |
[21] |
KHAN M A, ALGHAMDI S S, AMMAR M H, et al. Transcriptome profiling of faba bean (Vicia faba L.) drought-tolerant variety Hassawi-2 under drought stress using RNA sequencing[J]. Electronic Journal of Biotechnology, 2019, 39: 15-29.
DOI URL |
[22] |
WU X X, FAN Y C, LI L P, et al. The influence of soil drought stress on the leaf transcriptome of faba bean (Vicia faba L.) in the Qinghai-Tibet Plateau[J]. Biotech, 2020, 10(9): 1-16.
DOI URL |
[23] |
DURELL S R, HAO Y L, NAKAMURA T, et al. Evolutionary relationship between K+ channels and symporters[J]. Biophysical Journal, 1999, 77(2): 775-788.
DOI URL |
[24] |
VIEIRA-PIRES R S, SZOLLOSI A, MORAIS-CABRAL J H. The structure of the KtrAB potassium transporter[J]. Nature, 2013, 496(7445): 323-328.
DOI URL |
[25] |
王甜甜, 郝怀庆, 冯雪, 等. 植物HKT蛋白耐盐机制研究进展[J]. 植物学报, 2018, 53(5):710-725.
DOI |
WANG T T, HAO H Q, FENG X, et al. Research advances in the function of the high-affinity K+ transporter (HKT) proteins and plant salt tolerance[J]. Chinese Bulletin of Botany, 2018, 53(5):710-725. (in Chinese with English abstract) | |
[26] |
MØLLER I S, GILLIHAM M, JHA D, et al. Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis[J]. The Plant Cell, 2009, 21(7): 2163-2178.
DOI URL |
[27] |
SUZUKI K, YAMAJI N, COSTA A, et al. OsHKT1;4-mediated Na+ transport in stems contributes to Na+ exclusion from leaf blades of rice at the reproductive growth stage upon salt stress[J]. BMC Plant Biology, 2016, 16: 22.
DOI URL |
[28] |
KOBAYASHI N I, YAMAJI N, YAMAMOTO H, et al. OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice[J]. The Plant Journal, 2017, 91(4): 657-670.
DOI URL |
[29] |
WANG H, ZHANG M S, GUO R, et al. Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.)[J]. BMC Plant Biology, 2012, 12: 194.
DOI URL |
[30] |
LAURIE S, FEENEY K A, MAATHUIS F J M, et al. A role for HKT1 in sodium uptake by wheat roots[J]. The Plant Journal, 2002, 32(2): 139-149.
DOI URL |
[31] |
CAMPBELL M T, BANDILLO N, AL SHIBLAWI F R A, et al. Allelic variants of OsHKT1;1 underlie the divergence between indica and japonica subspecies of rice (Oryza sativa) for root sodium content[J]. PLoS Genetics, 2017, 13(6): e1006823.
DOI URL |
[1] | YU Yanling, LUO Honglin, LUO Hui, FENG Pengfei, PAN Chuanyan, SONG Manling, XIAO Rui, ZHANG Yongde. Genome-wide identification and expression of MRF gene family in embryonic development of Trachinotus ovatus [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 695-705. |
[2] | LIU Tongjin, XU Mingjie, WANG Jinglei, LIU Liangfeng, CUI Qunxiang, BAO Chonglai, WANG Changyi. Genome-wide identification and expression analysis of ALMT gene family in radish [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 746-755. |
[3] | WANG Qiankun, ZHANG Xiaohui, PANG Youzhi, QI Yanxia, LEI Ying, BAI Junyan, HU Yunqi, ZHAO Yiwei, YUAN Zhiwen, WANG Tao. Screening of genes related to auto-sexing on feather color based on RNA-seq technology [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 498-506. |
[4] | JIA Liqiang, ZHAO Qiufang, CHEN Shu, DING Bo. Expression analysis of bZIP G subfamily genes in maize [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 221-231. |
[5] | YANG Weijun, DONG Yanlei, WU Qiufang, ZHANG Meiling, HAN Libin, ZHANG Yuanchen. Cloning and expression analysis of AgoATPb gene in cotton-melon aphid, Aphis gossypi [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 329-336. |
[6] | XU Jingen, JIN Erhui, WANG Chonglong, GU Youfang, LI Qinggang. Polymorphism and bioinformatics analysis of pig CAST gene [J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 17-23. |
[7] | ZHAO Guofu, YAN Yaqin, WANG Jinglei, WEI Qingzhen, BAO Chonglai. Genome-wide identification and expression analysis of LOX gene family in eggplant (Solanum melongena) [J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 1025-1034. |
[8] | YANG Xinxia, ZHANG Bin. Identification of soybean LAZ1 gene family and functional analysis of GmLAZ1-9 [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 586-594. |
[9] | ZHAO Xiuping, WANG Shuang, YAN Xingyi, DUAN Qiang, ZHANG Shuai, CHEN Yongsheng, LI Guorui. Expression, purification and bioinformatics analysis of Magnaporthe oryzae MGG-01005 [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 470-478. |
[10] | HUANG Yongming, SONG Fang, WANG Ce, YAO Jinglei, WANG Zhijing, HE Ligang, WU Liming, JIANG Yingchun. Effects of root pruning on growth and expression of related genes in Poncirus trifoliata [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 270-277. |
[11] | BAI Hao, LI Xiaofan, ZHONG Li, SONG Qianqian, JIANG Yong, ZHANG Yang, WANG Zhixiu, XU Qi, CHANG Guobin, CHEN Guohong. Study on depositions of mineral elements and expression levels of key genes in different tissues of Liancheng white ducks [J]. Acta Agriculturae Zhejiangensis, 2021, 33(12): 2264-2274. |
[12] | MENG Yaxuan, SUN Yingqi, ZHAO Xinyue, WANG Fengxia, WENG Qiaoyun, LIU Yinghui. Identification and expression analysis of millet GH5 gene family [J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1797-1807. |
[13] | DU Jinliang, CAO Liping, JIA Rui, GU Zhengyan, HE Qin, XU Pao, JENEY Galina, MA Yuzhong, YIN Guojun. Protective effects of Glycyrrhiza total flavones on liver injury of tilapia (Oreochromis niloticus) under high fat condition [J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1826-1835. |
[14] | YANG Haijian, ZHANG Yungui, ZHOU Xinzhi, HONG Lin, YANG Lei, PENG Fangfang, WANG Wu. Analysis of anthocyanin synthesis and related gene expression in blood orange peel under different PE materials shading during fruit coloring period [J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1861-1869. |
[15] | LIANG Liqin, YANG Rui, GAO Gang. Bioinformatics analysis of StUOXs gene family in potato [J]. , 2020, 32(9): 1523-1532. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||