Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (12): 2594-2602.DOI: 10.3969/j.issn.1004-1524.2022.12.02
• Crop Science • Previous Articles Next Articles
WU Hao(
), ZHANG Xuesong(
), WANG Dan
Received:2021-09-26
Online:2022-12-25
Published:2022-12-26
Contact:
ZHANG Xuesong
CLC Number:
WU Hao, ZHANG Xuesong, WANG Dan. Effects of different CO2 concentration and nitrogen rates on photosynthesis and growth of winter wheat[J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2594-2602.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.12.02
| 盆型 Pot type | 氮水平 N level | 不同时期的施用量 Application rate at different growth stages | ||
|---|---|---|---|---|
| 播种期 Sowing stage | 返青期 Regreening stage | 拔节期 Jointing stage | ||
| 小号盆栽 | LN | 0.393 | 0.112 | 0.056 |
| Small pot | HN | 1.050 | 0.300 | 0.150 |
| 中号盆栽 | LN | 0.890 | 0.254 | 0.127 |
| Medium pot | HN | 2.360 | 0.674 | 0.337 |
| 大号盆栽 | LN | 1.280 | 0.366 | 0.183 |
| Large pot | HN | 3.210 | 0.917 | 0.450 |
Table 1 Amount of urea applied during the test period g
| 盆型 Pot type | 氮水平 N level | 不同时期的施用量 Application rate at different growth stages | ||
|---|---|---|---|---|
| 播种期 Sowing stage | 返青期 Regreening stage | 拔节期 Jointing stage | ||
| 小号盆栽 | LN | 0.393 | 0.112 | 0.056 |
| Small pot | HN | 1.050 | 0.300 | 0.150 |
| 中号盆栽 | LN | 0.890 | 0.254 | 0.127 |
| Medium pot | HN | 2.360 | 0.674 | 0.337 |
| 大号盆栽 | LN | 1.280 | 0.366 | 0.183 |
| Large pot | HN | 3.210 | 0.917 | 0.450 |
Fig.1 Photosynthetic parameters of winter wheat leaves under different treatments Bars marked without the same letters indicated significant (P<0.05) difference within treatments at the same growth stage. The same as below.
| 年份 Year | 生育期 Growth stage | 处理 Treatment | 碳含量 Carbon content/(mg·g-1) | 氮含量 Nitrogen content/(mg·g-1) | C/N |
|---|---|---|---|---|---|
| 2019 | 拔节期Jointing stage | C-LN | 37.81±0.32 a | 5.00±0.19 b | 7.61±0.35 a |
| C-HN | 36.75±0.19 a | 5.57±0.01 a | 6.60±0.04 b | ||
| T-LN | 37.11±0.28 a | 5.17±0.20 ab | 7.21±0.27 ab | ||
| T-HN | 36.85±0.56 a | 4.99±0.10 b | 7.40±0.24 a | ||
| 孕穗—抽穗期 | C-LN | 37.58±0.45 b | 4.76±0.19 ab | 7.93±0.24 a | |
| Booting-heading stage | C-HN | 37.40±0.17 b | 4.61±0.19 ab | 8.16±0.38 a | |
| T-LN | 39.36±0.29 a | 5.10±0.18 a | 7.75±0.34 a | ||
| T-HN | 36.58±0.57 b | 4.17±0.21 b | 8.86±0.52 a | ||
| 开花期Flowering stage | C-LN | 39.06±0.07 b | 3.97±0.10 a | 9.87±0.25 a | |
| C-HN | 39.17±0.26 b | 4.03±0.29 a | 9.88±0.76 a | ||
| T-LN | 41.29±0.41 a | 3.91±0.27 a | 9.76±0.58 a | ||
| T-HN | 40.3±0.81 ab | 4.10±0.07 a | 9.84±0.22 a | ||
| 灌浆期Filling stage | C-LN | 38.69±0.44 a | 1.20±0.10 a | 29.80±0.49 a | |
| C-HN | 36.40±0.49 b | 1.42±0.06 a | 24.88±0.25 b | ||
| T-LN | 39.31±0.07 a | 1.22±0.04 a | 31.61±1.14 a | ||
| T-HN | 38.09±0.67 a | 1.43±0.19 a | 24.07±0.74 b | ||
| 2020 | 开花期Flowering stage | C-LN | 41.75±0.56 a | 2.75±0.17 c | 15.44±0.78 a |
| C-HN | 42.35±0.21 a | 4.39±0.07 a | 10.64±0.55 b | ||
| T-LN | 41.92±0.07 a | 3.48±0.23 b | 12.34±0.82 b | ||
| T-HN | 42.35±0.34 a | 3.62±0.18 b | 11.84±0.50 b | ||
| 灌浆期Filling stage | C-LN | 38.73±0.33 c | 1.67±0.01 b | 23.27±0.40 a | |
| C-HN | 40.90±0.14 a | 2.92±0.12 a | 14.11±0.51 b | ||
| T-LN | 39.88±0.09 b | 1.68±0.14 b | 24.76±2.12 a | ||
| T-HN | 40.33±0.004 ab | 2.84±0.23 a | 14.77±1.24 b |
Table 2 Carbon and nitrogen content in winter wheat leaves and C/N ratio under different treatments
| 年份 Year | 生育期 Growth stage | 处理 Treatment | 碳含量 Carbon content/(mg·g-1) | 氮含量 Nitrogen content/(mg·g-1) | C/N |
|---|---|---|---|---|---|
| 2019 | 拔节期Jointing stage | C-LN | 37.81±0.32 a | 5.00±0.19 b | 7.61±0.35 a |
| C-HN | 36.75±0.19 a | 5.57±0.01 a | 6.60±0.04 b | ||
| T-LN | 37.11±0.28 a | 5.17±0.20 ab | 7.21±0.27 ab | ||
| T-HN | 36.85±0.56 a | 4.99±0.10 b | 7.40±0.24 a | ||
| 孕穗—抽穗期 | C-LN | 37.58±0.45 b | 4.76±0.19 ab | 7.93±0.24 a | |
| Booting-heading stage | C-HN | 37.40±0.17 b | 4.61±0.19 ab | 8.16±0.38 a | |
| T-LN | 39.36±0.29 a | 5.10±0.18 a | 7.75±0.34 a | ||
| T-HN | 36.58±0.57 b | 4.17±0.21 b | 8.86±0.52 a | ||
| 开花期Flowering stage | C-LN | 39.06±0.07 b | 3.97±0.10 a | 9.87±0.25 a | |
| C-HN | 39.17±0.26 b | 4.03±0.29 a | 9.88±0.76 a | ||
| T-LN | 41.29±0.41 a | 3.91±0.27 a | 9.76±0.58 a | ||
| T-HN | 40.3±0.81 ab | 4.10±0.07 a | 9.84±0.22 a | ||
| 灌浆期Filling stage | C-LN | 38.69±0.44 a | 1.20±0.10 a | 29.80±0.49 a | |
| C-HN | 36.40±0.49 b | 1.42±0.06 a | 24.88±0.25 b | ||
| T-LN | 39.31±0.07 a | 1.22±0.04 a | 31.61±1.14 a | ||
| T-HN | 38.09±0.67 a | 1.43±0.19 a | 24.07±0.74 b | ||
| 2020 | 开花期Flowering stage | C-LN | 41.75±0.56 a | 2.75±0.17 c | 15.44±0.78 a |
| C-HN | 42.35±0.21 a | 4.39±0.07 a | 10.64±0.55 b | ||
| T-LN | 41.92±0.07 a | 3.48±0.23 b | 12.34±0.82 b | ||
| T-HN | 42.35±0.34 a | 3.62±0.18 b | 11.84±0.50 b | ||
| 灌浆期Filling stage | C-LN | 38.73±0.33 c | 1.67±0.01 b | 23.27±0.40 a | |
| C-HN | 40.90±0.14 a | 2.92±0.12 a | 14.11±0.51 b | ||
| T-LN | 39.88±0.09 b | 1.68±0.14 b | 24.76±2.12 a | ||
| T-HN | 40.33±0.004 ab | 2.84±0.23 a | 14.77±1.24 b |
| 年份 Year | 处理 Treatment | 分蘖数 Tiller number/m-2 | 籽粒数 Grain number/m-2 | 产量 Yield/(g·m-2) |
|---|---|---|---|---|
| 2019 | C-LN | 280.50±17.82 a | 7 750±732 a | 199.38±16.79 b |
| C-HN | 305.25±8.25 a | 7 308±251 a | 221.39±17.11 ab | |
| T-LN | 305.25±49.27 a | 7 600±754 a | 220.58±15.93 ab | |
| T-HN | 330.00±43.13 a | 8 229±638 a | 248.67±11.15 a | |
| 2020 | C-LN | 243.38±27.26 a | 2 597±530 b | 38.81±8.47 c |
| C-HN | 251.63±52.77 a | 4 277±605 b | 97.92±11.51 b | |
| T-LN | 247.50±26.09 a | 3 741±395 b | 69.18±3.74 bc | |
| T-HN | 341.00±34.38 a | 6 375±1 102 a | 139.63±25.33 a |
Table 3 Analysis of variance of winter wheat yield structure in winter wheat leaves treated with different CO2 and nitrogen in 2019 and 2020
| 年份 Year | 处理 Treatment | 分蘖数 Tiller number/m-2 | 籽粒数 Grain number/m-2 | 产量 Yield/(g·m-2) |
|---|---|---|---|---|
| 2019 | C-LN | 280.50±17.82 a | 7 750±732 a | 199.38±16.79 b |
| C-HN | 305.25±8.25 a | 7 308±251 a | 221.39±17.11 ab | |
| T-LN | 305.25±49.27 a | 7 600±754 a | 220.58±15.93 ab | |
| T-HN | 330.00±43.13 a | 8 229±638 a | 248.67±11.15 a | |
| 2020 | C-LN | 243.38±27.26 a | 2 597±530 b | 38.81±8.47 c |
| C-HN | 251.63±52.77 a | 4 277±605 b | 97.92±11.51 b | |
| T-LN | 247.50±26.09 a | 3 741±395 b | 69.18±3.74 bc | |
| T-HN | 341.00±34.38 a | 6 375±1 102 a | 139.63±25.33 a |
| [1] | Intergovernmental Panel on Climate Change (IPCC). Climate change 2014: impacts, adaptation and vulnerability: contribution of working group Ⅱ to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2014. |
| [2] | 徐玲, 赵天宏, 胡莹莹, 等. CO2浓度升高对春小麦光合作用和籽粒产量的影响[J]. 麦类作物学报, 2008, 28(5): 867-872. |
| XU L, ZHAO T H, HU Y Y, et al. Effects of CO2 enrichment on photosynthesis and grain yield of spring wheat[J]. Journal of Triticeae Crops, 2008, 28(5): 867-872. (in Chinese with English abstract) | |
| [3] | 于佳, 于显枫, 郭天文, 等. 施氮和大气CO2浓度升高对春小麦拔节期光合作用的影响[J]. 麦类作物学报, 2010, 30(4): 651-655. |
| YU J, YU X F, GUO T W, et al. Effect of nitrogen application rate and elevated atmospheric CO2 concentration on photosynthesis of spring wheat at jointing stage[J]. Journal of Triticeae Crops, 2010, 30(4): 651-655. (in Chinese with English abstract) | |
| [4] | 缪宇轩. CO2浓度升高对高、低应答水稻品种的生长生理与气体交换模型参数的影响[D]. 南京: 南京信息工程大学, 2021. |
| MIAO Y X. Effects of elevated CO2 on the growth, physiology and gas exchange model parameters of more and less CO2-responsive rice cultivars[D]. Nanjing: Nanjing University of Information Science & Technology, 2021. (in Chinese with English abstract) | |
| [5] | 韩雪, 王贺然, 郝兴宇, 等. 大气CO2浓度升高对冬小麦光合作用的影响[C]// 强化科技基础,推进气象现代化:第29届中国气象学会年. 北京: 中国气象学会, 2012: 68-75. |
| [6] |
MITCHELL R A C, BLACK C R, BURKART S, et al. Photosynthetic responses in spring wheat grown under elevated CO2 concentrations and stress conditions in the European, multiple-site experiment ‘ESPACE-wheat’[J]. European Journal of Agronomy, 1999, 10(3/4): 205-214.
DOI URL |
| [7] |
BAKER J, HARTWELL ALLEN L, BOOTE K, et al. Rice responses to drought under carbon dioxide enrichment 2: photosynthesis and evapotranspiration[J]. Global Change Biology, 1997, 3(2): 129-138.
DOI URL |
| [8] |
WEIGEL H J, MANDERSCHEID R. Crop growth responses to free air CO2 enrichment and nitrogen fertilization: rotating barley, ryegrass, sugar beet and wheat[J]. European Journal of Agronomy, 2012, 43: 97-107.
DOI URL |
| [9] |
BENCZE S, VEISZ O, BEDÖ Z. Effects of high atmospheric CO2 and heat stress on phytomass, yield and grain quality of winter wheat[J]. Cereal Research Communications, 2004, 32(1): 75-82.
DOI URL |
| [10] | 陈法军, 吴刚, 戈峰. 春小麦对大气CO2浓度升高的响应及其对麦长管蚜生长发育和繁殖的影响[J]. 应用生态学报, 2006, 17(1): 91-96. |
| CHEN F J, WU G, GE F. Responses of spring wheat to elevated CO2 and their effects on Sitobion avenae aphid growth, development and reproduction[J]. Chinese Journal of Applied Ecology, 2006, 17(1): 91-96. (in Chinese with English abstract) | |
| [11] |
牛胤全, 史雨刚, 汤小莎, 等. 高CO2浓度、干旱及其互作对不同持绿型小麦幼苗的影响[J]. 应用生态学报, 2020, 31(7): 2407-2414.
DOI |
| NIU Y Q, SHI Y G, TANG X S, et al. Effects of high CO2 concentration, drought, and their interaction on different stay-green wheat seedlings[J]. Chinese Journal of Applied Ecology, 2020, 31(7): 2407-2414. (in Chinese with English abstract) | |
| [12] |
LI A G, TRENT A, WALL G W, et al. Free-air CO2 enrichment effects on rate and duration of apical development of spring wheat[J]. Crop Science, 1997, 37(3): 789-796.
DOI URL |
| [13] | 杨连新, 王余龙, 李世峰, 等. 开放式空气二氧化碳浓度增高对小麦物质生产与分配的影响[J]. 应用生态学报, 2007, 18(2): 339-346. |
| YANG L X, WANG Y L, LI S F, et al. Effects of free-air CO2 enrichment (FACE) on dry matter production and allocation in wheat[J]. Chinese Journal of Applied Ecology, 2007, 18(2): 339-346. (in Chinese with English abstract) | |
| [14] | 李伏生, 康绍忠, 张富仓. CO2浓度升高、氮与土壤水分对春小麦生长及干物质积累的效应[J]. 中国生态农业学报, 2003, 11(2): 37-40. |
| LI F S, KANG S Z, ZHANG F C. Effects of CO2 enrichment, nitrogen and soil moisture on growth and dry matter accumulation of spring wheat[J]. Chinese Journal of Eco-Agriculture, 2003, 11(2): 37-40. (in Chinese with English abstract) | |
| [15] |
AMTHOR J S. Effects of atmospheric CO2 concentration on wheat yield: review of results from experiments using various approaches to control CO2 concentration[J]. Field Crops Research, 2001, 73(1): 1-34.
DOI URL |
| [16] |
LONG S P, AINSWORTH E A, LEAKEY A D B, et al. Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations[J]. Science, 2006, 312(5782): 1918-1921.
DOI URL |
| [17] |
WALL G W, GARCIA R L, KIMBALL B A, et al. Interactive effects of elevated carbon dioxide and drought on wheat[J]. Agronomy Journal, 2006, 98(2): 354-381.
DOI URL |
| [18] |
MA H L, ZHU J G, XIE Z B, et al. Responses of rice and winter wheat to free-air CO2 enrichment (China FACE) at rice/wheat rotation system[J]. Plant and Soil, 2007, 294(1/2): 137-146.
DOI URL |
| [19] |
DE KAUWE M G, MEDLYN B E, ZAEHLE S, et al. Forest water use and water use efficiency at elevated CO2: a model-data intercomparison at two contrasting temperate forest FACE sites[J]. Global Change Biology, 2013, 19(6): 1759-1779.
DOI URL |
| [20] |
NAYYAR H, GUPTA D. Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants[J]. Environmental and Experimental Botany, 2006, 58(1/2/3): 106-113.
DOI URL |
| [21] |
STITT M, KRAPP A. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background[J]. Plant, Cell and Environment, 1999, 22(6): 583-621.
DOI URL |
| [22] | 范金杰, 俞杨浏, 左强, 等. 大气CO2浓度升高对小麦蒸腾耗水与根系吸水的影响[J]. 农业工程学报, 2020, 36(3): 92-98. |
| FAN J J, YU Y L, ZUO Q, et al. Effects of elevated CO2 concentration on transpiration and root-water-uptake of wheat[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(3): 92-98. (in Chinese with English abstract) | |
| [23] | 李靖涛, 居辉, 王宏富, 等. 不同水分条件下CO2浓度升高对冬小麦碳氮转运的影响[J]. 中国生态农业学报, 2015, 23(8): 954-963. |
| LI J T, JU H, WANG H F, et al. Effects of elevated CO2 concentration on accumulation and translocation of carbon and nitrogen of winter wheat under different water conditions[J]. Chinese Journal of Eco-Agriculture, 2015, 23(8): 954-963. (in Chinese with English abstract) | |
| [24] | 张英华, 张琪, 徐学欣, 等. 适宜微喷灌灌水频率及氮肥量提高冬小麦产量和水分利用效率[J]. 农业工程学报, 2016, 32(5): 88-95. |
| ZHANG Y H, ZHANG Q, XU X X, et al. Optimal irrigation frequency and nitrogen application rate improving yield formation and water utilization in winter wheat under micro-sprinkling condition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(5): 88-95. (in Chinese with English abstract) | |
| [25] | 杨连新, 李世峰, 王余龙, 等. 开放式空气二氧化碳浓度增高对小麦产量形成的影响[J]. 应用生态学报, 2007, 18(1): 75-80. |
| YANG L X, LI S F, WANG Y L, et al. Effects of free-air CO2 enrichment(FACE)on yield formation of wheat[J]. Chinese Journal of Applied Ecology, 2007, 18(1): 75-80. (in Chinese with English abstract) | |
| [26] | 居辉, 姜帅, 李靖涛, 等. 北方冬麦区CO2浓度增高与氮肥互作对冬小麦生理特性和产量的影响[J]. 中国农业科学, 2015, 48(24): 4948-4956. |
| JU H, JIANG S, LI J T, et al. Interactive effects of elevated CO2 and nitrogen on the physiology and yield of winter wheat in north winter wheat region of China[J]. Scientia Agricultura Sinica, 2015, 48(24): 4948-4956. (in Chinese with English abstract) | |
| [27] | 韩雪, 郝兴宇, 王贺然, 等. FACE条件下冬小麦生长特征及产量构成的影响[J]. 中国农学通报, 2012, 28(36): 154-159. |
| HAN X, HAO X Y, WANG H R, et al. Effect of free air CO2 enrichment (FACE) on the growth and grain yield of winter wheat[J]. Chinese Agricultural Science Bulletin, 2012, 28(36): 154-159. (in Chinese with English abstract) | |
| [28] | 许育彬, 沈玉芳, 李世清. CO2浓度升高和施氮对冬小麦光合面积及粒叶比的影响[J]. 中国生态农业学报, 2013, 21(9): 1049-1056. |
|
XU Y B, SHEN Y F, LI S Q. Effects of elevated CO2 and nitrogen application on photosynthetic area and gain-leaf ratio of winter wheat[J]. Chinese Journal of Eco-Agriculture, 2013, 21(9): 1049-1056. (in Chinese with English abstract)
DOI URL |
| [1] | WU Ju, YANG Fei, WU Guoquan, FU Xian, XU Chenguang. Effects of sand culture and soil culture on growth, yield, and quality of cucumber (Cucumis sativus L.) [J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 1905-1913. |
| [2] | ZHU Weijing, WU Jia, HONG Chunlai, ZHU Fengxiang, HONG Leidong, ZHANG Tao, ZHANG Shuo, ZHU Huifen. Effects of straw mulching on water, heat, fertility status of soil and yield and quality of flat peach [J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 1924-1932. |
| [3] | ZHANG Zhiying, QIU Qin, HOU Lijuan, XU Ping, JIANG Ning, LIN Jinsheng, LI Huiping, QU Shaoxuan, MA Lin, WANG Weixia, LI Fuhou. Evaluation on the safety of insecticides application on Pleurotus pulmonarius and Auricularia cornea [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1733-1742. |
| [4] | YAN Fulin, LANG Yunhu, JIAN Yingquan, CHEN Xiongfei, WEI Wei, WANG Zhiwei, AN Jiangyong, REN Deqiang, DING Ning, WEI Shenghua. Response of yield and quality of Radix Ardisia to soil physiochemical properties [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1766-1775. |
| [5] | ZHANG Zhi, HE Haohao, YU Miao, XU Jianfeng. Effects of chemical fertilizer reduction combined with soil conditioner on soil acidity, soil nutrients and rice yield [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1301-1308. |
| [6] | LIN Xiaobing, LI Jiang, CHENG Yanhong, WANG Binqiang, HE Shaolang, HUANG Shangshu, HUANG Qianru. Effects of organic materials on soil microbial biomass, mineral nitrogen content and rice yield [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1309-1318. |
| [7] | DONG Zhichao, YUE Ningyan, LYU Wei, YU Xiaoyi, ZHENG Kaiwen, SONG Haixing, CHEN Haifei. Differential responses of yield, quality, and nitrogen use efficiency to nitrogen application rate in high- and low-oil content rapeseed varieties [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 998-1008. |
| [8] | LI Yancui, LI Fuqiang, ZHOU Bo. Effects of deficit irrigation at different growth stages on photosynthetic characteristics, yield and quality of Astragalus membranaceus var. mongholicus [J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 779-789. |
| [9] | QIN Yukun, CHEN Junying, WANG Yuping, ZHANG Lijuan. Effects of reducing nitrogen and increasing carbon on cotton production and nitrogen absorption and utilization in the Yangtze River Basin of China [J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 869-879. |
| [10] | YING Yongfei, HAN Dongxuan, MENG Fang, YU Lin, SHEN Jialuan, WANG Kaiying. Effects of biogas slurry substituting chemical fertilizer on rice yield and quality and soil characteristics [J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 880-891. |
| [11] | WAN Shaoyuan, LIU Xianbo, CAI Shuo, SHI Hong, CHENG Jie. Effect of irrigation and planting methods on the yield and quality of double-cropping rice [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 257-268. |
| [12] | LI Can, YANG Ting, SUN Yiming, CHEN Hongliang, CUI Qi, SHEN Xiaoxia. Selection and evaluation of superior germplasm resources of Rubus chingii Hu [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 349-364. |
| [13] | LI Jianqiang, WEI Qianqian, LIU Xiaoxia, ZHANG Junhua, ZHU Chunquan. Effects of optimizing fertilization methods on rice yield and soil nutrient balance [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 438-446. |
| [14] | LIU Shengnan, ZHU Jianyi, LI Ming, ZHAO Haoyu, XIONG Tao, TANG Yonglu, ZHOU Xiaogang, LI Chaosu. Weed control efficacy and wheat yield in no-tillage rotary sowing after rice stubble [J]. Acta Agriculturae Zhejiangensis, 2025, 37(10): 2129-2137. |
| [15] | HAN Xiao, LIU Xujie, SHI Lyu, ZHANG Jin, SHAN Haiyong, SHI Xiaoxu, YAN Yini, LIU Jian, XUE Yaguang. Effects of reduced application of controlled-release nitrogen fertilizer on rice yield, quality and nitrogen fertilizer utilization efficiency under concentrated coverage of wheat straw between rows for returning to field [J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 1-13. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||