Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (6): 1265-1277.DOI: 10.3969/j.issn.1004-1524.2023.06.04
• Crop Science • Previous Articles Next Articles
ZHANG Xuenan1(), WANG Lele1, NIU Mingxuan1, ZHAN Ni1, REN Haojie2, XU Haocong1, YANG Kun1, WU Liquan1,3, KE Jian1, YOU Cuicui1, HE Haibing1,*(
)
Received:
2022-07-15
Online:
2023-06-25
Published:
2023-07-04
CLC Number:
ZHANG Xuenan, WANG Lele, NIU Mingxuan, ZHAN Ni, REN Haojie, XU Haocong, YANG Kun, WU Liquan, KE Jian, YOU Cuicui, HE Haibing. Estimation of rice leaf water content based on leaf reflectance spectrum and chlorophyll fluorescence[J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1265-1277.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2023.06.04
植被指数 Vegetation index | 计算公式 Algorithm | 参考文献 Reference |
---|---|---|
归一化差值短红外指数Normalized difference short infrared index (NDSII) | VNDSII=(Rλ1-Rλ2)/(Rλ1+Rλ2) | 本研究This study |
归一化差值植被指数Normalized difference vegetation index (NDVI) | VNDVI=(R895-R675)/(R895+R675) | [ |
归一化差值近红外指数Normalized difference infrared index (NDII) | VNDII=(R819-R1600)/(R819+R1600) | [ |
归一化差值水分指数Normalized difference water index (NDWI) | VNDWI=(R860-R1240)/(R860+R1240) | [ |
水分指数Water index (WI) | VWI=R970/R900 | [ |
简单比值水分指数Simple ratio water index (SRWI) | VSRWI=R860/R1240 | [ |
水分胁迫指数Moisture stress index (MSI) | VMSI=R1600/R820 | [ |
全球植被水分指数Global vegetation water index (GVWI) | VGVWI=[(R820+0.1)-(R1600+0.2)]/ | [ |
[(R820+0.1)+(R1600+0.2)] |
Table 1 List of vegetation indexes used in this study
植被指数 Vegetation index | 计算公式 Algorithm | 参考文献 Reference |
---|---|---|
归一化差值短红外指数Normalized difference short infrared index (NDSII) | VNDSII=(Rλ1-Rλ2)/(Rλ1+Rλ2) | 本研究This study |
归一化差值植被指数Normalized difference vegetation index (NDVI) | VNDVI=(R895-R675)/(R895+R675) | [ |
归一化差值近红外指数Normalized difference infrared index (NDII) | VNDII=(R819-R1600)/(R819+R1600) | [ |
归一化差值水分指数Normalized difference water index (NDWI) | VNDWI=(R860-R1240)/(R860+R1240) | [ |
水分指数Water index (WI) | VWI=R970/R900 | [ |
简单比值水分指数Simple ratio water index (SRWI) | VSRWI=R860/R1240 | [ |
水分胁迫指数Moisture stress index (MSI) | VMSI=R1600/R820 | [ |
全球植被水分指数Global vegetation water index (GVWI) | VGVWI=[(R820+0.1)-(R1600+0.2)]/ | [ |
[(R820+0.1)+(R1600+0.2)] |
Fig.1 Characteristics of LWC variation in rice Data on the bars marked without the same lowercase letter indicate significant differences at P<0.05. The same as below.
分组因子 Grouping factor | 变异来源 Variation source | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | F值 F-value | P值 P-value |
---|---|---|---|---|---|---|
水分处理 | 组间Intergroup | 0.011 | 2 | 0.005 | 18.154 | <0.01 |
Water treatment | 组内Intragroup | 0.023 | 78 | 0 | ||
总计Total | 0.034 | 80 | ||||
品种Variety | 组间Intergroup | 0.001 | 2 | 0 | 0.958 | 0.388 |
组内Intragroup | 0.033 | 78 | 0 | |||
总计Total | 0.034 | 80 | ||||
观测时期 | 组间Intergroup | 0.017 | 2 | 0.009 | 39.646 | 0 |
Observed periods | 组内Intragroup | 0.017 | 78 | 0 | ||
总计Total | 0.034 | 80 |
Table 2 Analysis of variance of LWC among varieties, water treatments, and observed periods, respectively
分组因子 Grouping factor | 变异来源 Variation source | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | F值 F-value | P值 P-value |
---|---|---|---|---|---|---|
水分处理 | 组间Intergroup | 0.011 | 2 | 0.005 | 18.154 | <0.01 |
Water treatment | 组内Intragroup | 0.023 | 78 | 0 | ||
总计Total | 0.034 | 80 | ||||
品种Variety | 组间Intergroup | 0.001 | 2 | 0 | 0.958 | 0.388 |
组内Intragroup | 0.033 | 78 | 0 | |||
总计Total | 0.034 | 80 | ||||
观测时期 | 组间Intergroup | 0.017 | 2 | 0.009 | 39.646 | 0 |
Observed periods | 组内Intragroup | 0.017 | 78 | 0 | ||
总计Total | 0.034 | 80 |
时期 Stage | 叶位 Leaf position | Fv/Fm | Fo | Y(Ⅱ) |
---|---|---|---|---|
抽穗期 | L1 | 0.572** | -0.573** | 0.705** |
Heading stage | L2 | 0.709** | -0.591** | 0.778** |
L3 | 0.662** | -0.585** | 0.740** | |
L12 | 0.717** | -0.594** | 0.797** | |
L13 | 0.677** | -0.634** | 0.785** | |
L23 | 0.732** | -0.656** | 0.800** | |
开花期 | L1 | 0.676** | -0.535** | 0.642** |
Flowering stage | L2 | 0.694** | -0.613** | 0.758** |
L3 | 0.679** | -0.570** | 0.756** | |
L12 | 0.717** | -0.603** | 0.747** | |
L13 | 0.714** | -0.589** | 0.735** | |
L23 | 0.721** | -0.623** | 0.767** | |
灌浆期 | L1 | 0.604** | -0.528** | 0.718** |
Filling stage | L2 | 0.674** | -0.589** | 0.767** |
L3 | 0.645** | -0.548** | 0.748** | |
L12 | 0.681** | -0.625** | 0.792** | |
L13 | 0.664** | -0.586** | 0.776** | |
L23 | 0.698** | -0.669** | 0.807** | |
抽穗-灌浆期 | L1 | 0.560** | -0.426** | 0.580** |
Heading- | L2 | 0.613** | -0.577** | 0.644** |
filling stage | L3 | 0.592** | -0.521** | 0.607** |
L12 | 0.626** | -0.528** | 0.654** | |
L13 | 0.632** | -0.517** | 0.635** | |
L23 | 0.654** | -0.618** | 0.663** |
Table 3 Correlation coefficient between different fluorescence parameters and rice LWC at different growth stages
时期 Stage | 叶位 Leaf position | Fv/Fm | Fo | Y(Ⅱ) |
---|---|---|---|---|
抽穗期 | L1 | 0.572** | -0.573** | 0.705** |
Heading stage | L2 | 0.709** | -0.591** | 0.778** |
L3 | 0.662** | -0.585** | 0.740** | |
L12 | 0.717** | -0.594** | 0.797** | |
L13 | 0.677** | -0.634** | 0.785** | |
L23 | 0.732** | -0.656** | 0.800** | |
开花期 | L1 | 0.676** | -0.535** | 0.642** |
Flowering stage | L2 | 0.694** | -0.613** | 0.758** |
L3 | 0.679** | -0.570** | 0.756** | |
L12 | 0.717** | -0.603** | 0.747** | |
L13 | 0.714** | -0.589** | 0.735** | |
L23 | 0.721** | -0.623** | 0.767** | |
灌浆期 | L1 | 0.604** | -0.528** | 0.718** |
Filling stage | L2 | 0.674** | -0.589** | 0.767** |
L3 | 0.645** | -0.548** | 0.748** | |
L12 | 0.681** | -0.625** | 0.792** | |
L13 | 0.664** | -0.586** | 0.776** | |
L23 | 0.698** | -0.669** | 0.807** | |
抽穗-灌浆期 | L1 | 0.560** | -0.426** | 0.580** |
Heading- | L2 | 0.613** | -0.577** | 0.644** |
filling stage | L3 | 0.592** | -0.521** | 0.607** |
L12 | 0.626** | -0.528** | 0.654** | |
L13 | 0.632** | -0.517** | 0.635** | |
L23 | 0.654** | -0.618** | 0.663** |
叶位 Leaf position | 回归方程 Regression equation | 模型精度 Model Precision(R2) | 预测精度 Prediction Precision( | 均方根误 RMSE | 相对误差 RE/% |
---|---|---|---|---|---|
L1 | y =0.925x+0.670 | 0.337 | 0.363 | 0.018 | 2.318 |
L2 | y=1.032x+0.674 | 0.415 | 0.429 | 0.016 | 2.197 |
L3 | y=0.982x+0.682 | 0.369 | 0.416 | 0.016 | 2.295 |
L12 | y=1.114x+0.666 | 0.427 | 0.457 | 0.016 | 2.163 |
L13 | y=1.091x+0.670 | 0.404 | 0.425 | 0.016 | 2.215 |
L23 | y=1.130x+0.673 | 0.439 | 0.468 | 0.015 | 2.156 |
Table 4 Quantitative relationship and model verification effect of LWC and fluorescence parameter Y(Ⅱ) in rice
叶位 Leaf position | 回归方程 Regression equation | 模型精度 Model Precision(R2) | 预测精度 Prediction Precision( | 均方根误 RMSE | 相对误差 RE/% |
---|---|---|---|---|---|
L1 | y =0.925x+0.670 | 0.337 | 0.363 | 0.018 | 2.318 |
L2 | y=1.032x+0.674 | 0.415 | 0.429 | 0.016 | 2.197 |
L3 | y=0.982x+0.682 | 0.369 | 0.416 | 0.016 | 2.295 |
L12 | y=1.114x+0.666 | 0.427 | 0.457 | 0.016 | 2.163 |
L13 | y=1.091x+0.670 | 0.404 | 0.425 | 0.016 | 2.215 |
L23 | y=1.130x+0.673 | 0.439 | 0.468 | 0.015 | 2.156 |
时期 | 叶位 | NDVI | NDII | NDWI | WI | SRWI | MSI | GVWI |
---|---|---|---|---|---|---|---|---|
Stage | Leaf position | |||||||
抽穗期 | L1 | -0.663** | -0.604** | 0.674** | 0.588** | 0.591** | 0.623** | -0.603** |
Heading stage | L2 | -0.759** | -0.678** | 0.743** | 0.615** | 0.680** | 0.675** | -0.626** |
L3 | -0.678** | -0.644** | 0.735** | 0.637** | 0.625** | 0.660** | -0.684** | |
L12 | -0.783** | -0.683** | 0.832** | 0.673** | 0.683** | 0.667** | -0.686** | |
L13 | -0.764** | -0.661** | 0.748** | 0.699** | 0.681** | 0.683** | -0.677** | |
L23 | -0.782** | -0.705** | 0.842** | 0.717** | 0.702** | 0.699** | -0.704** | |
开花期 | L1 | -0.631** | -0.599** | 0.583** | 0.604** | 0.582** | 0.588** | -0.608** |
Flowering stage | L2 | -0.750** | -0.612** | 0.706** | 0.594** | 0.624** | 0.623** | -0.630** |
L3 | -0.656** | -0.601** | 0.625** | 0.557** | 0.653** | 0.632** | -0.620** | |
L12 | -0.716** | -0.629** | 0.721** | 0.628** | 0.622** | 0.632** | -0.664** | |
L13 | -0.709** | -0.649** | 0.684** | 0.607** | 0.615** | 0.670** | -0.658** | |
L23 | -0.725** | -0.657** | 0.737** | 0.621** | 0.667** | 0.696** | -0.709** | |
灌浆期 | L1 | -0.615** | -0.620** | 0.621** | 0.535** | 0.558** | 0.522** | -0.601** |
Filling stage | L2 | -0.691** | -0.661** | 0.699** | 0.613** | 0.622** | 0.623** | -0.585** |
L3 | -0.687** | -0.638** | 0.630** | 0.606** | 0.610** | 0.616** | -0.593** | |
L12 | -0.765** | -0.673** | 0.687** | 0.689** | 0.627** | 0.614** | -0.700** | |
L13 | -0.763** | -0.729** | 0.684** | 0.641** | 0.630** | 0.598** | -0.740** | |
L23 | -0.775** | -0.746** | 0.702** | 0.722** | 0.673** | 0.694** | -0.652** | |
抽穗-灌浆期 | L1 | -0.581** | -0.507** | 0.565** | 0.548** | 0.543** | 0.524** | -0.495** |
Heading-filling stage | L2 | -0.693** | -0.576** | 0.664** | 0.570** | 0.613** | 0.545** | -0.517** |
L3 | -0.651** | -0.555** | 0.600** | 0.567** | 0.587** | 0.541** | -0.520** | |
L12 | -0.702** | -0.546** | 0.644** | 0.565** | 0.624** | 0.538** | -0.516** | |
L13 | -0.670** | -0.554** | 0.583** | 0.571** | 0.607** | 0.538** | -0.522** | |
L23 | -0.731** | -0.583** | 0.656** | 0.576** | 0.643** | 0.545** | -0.521** |
Table 5 Correlation coefficient between typical vegetation indexes and rice LWC at different growth stages
时期 | 叶位 | NDVI | NDII | NDWI | WI | SRWI | MSI | GVWI |
---|---|---|---|---|---|---|---|---|
Stage | Leaf position | |||||||
抽穗期 | L1 | -0.663** | -0.604** | 0.674** | 0.588** | 0.591** | 0.623** | -0.603** |
Heading stage | L2 | -0.759** | -0.678** | 0.743** | 0.615** | 0.680** | 0.675** | -0.626** |
L3 | -0.678** | -0.644** | 0.735** | 0.637** | 0.625** | 0.660** | -0.684** | |
L12 | -0.783** | -0.683** | 0.832** | 0.673** | 0.683** | 0.667** | -0.686** | |
L13 | -0.764** | -0.661** | 0.748** | 0.699** | 0.681** | 0.683** | -0.677** | |
L23 | -0.782** | -0.705** | 0.842** | 0.717** | 0.702** | 0.699** | -0.704** | |
开花期 | L1 | -0.631** | -0.599** | 0.583** | 0.604** | 0.582** | 0.588** | -0.608** |
Flowering stage | L2 | -0.750** | -0.612** | 0.706** | 0.594** | 0.624** | 0.623** | -0.630** |
L3 | -0.656** | -0.601** | 0.625** | 0.557** | 0.653** | 0.632** | -0.620** | |
L12 | -0.716** | -0.629** | 0.721** | 0.628** | 0.622** | 0.632** | -0.664** | |
L13 | -0.709** | -0.649** | 0.684** | 0.607** | 0.615** | 0.670** | -0.658** | |
L23 | -0.725** | -0.657** | 0.737** | 0.621** | 0.667** | 0.696** | -0.709** | |
灌浆期 | L1 | -0.615** | -0.620** | 0.621** | 0.535** | 0.558** | 0.522** | -0.601** |
Filling stage | L2 | -0.691** | -0.661** | 0.699** | 0.613** | 0.622** | 0.623** | -0.585** |
L3 | -0.687** | -0.638** | 0.630** | 0.606** | 0.610** | 0.616** | -0.593** | |
L12 | -0.765** | -0.673** | 0.687** | 0.689** | 0.627** | 0.614** | -0.700** | |
L13 | -0.763** | -0.729** | 0.684** | 0.641** | 0.630** | 0.598** | -0.740** | |
L23 | -0.775** | -0.746** | 0.702** | 0.722** | 0.673** | 0.694** | -0.652** | |
抽穗-灌浆期 | L1 | -0.581** | -0.507** | 0.565** | 0.548** | 0.543** | 0.524** | -0.495** |
Heading-filling stage | L2 | -0.693** | -0.576** | 0.664** | 0.570** | 0.613** | 0.545** | -0.517** |
L3 | -0.651** | -0.555** | 0.600** | 0.567** | 0.587** | 0.541** | -0.520** | |
L12 | -0.702** | -0.546** | 0.644** | 0.565** | 0.624** | 0.538** | -0.516** | |
L13 | -0.670** | -0.554** | 0.583** | 0.571** | 0.607** | 0.538** | -0.522** | |
L23 | -0.731** | -0.583** | 0.656** | 0.576** | 0.643** | 0.545** | -0.521** |
叶位 Leaf position | 回归方程 Regression equation | 模型精度 Model Precision(R2) | 预测精度 Prediction Precision( | 均方根误 RMSE | 相对误差 RE(%) |
---|---|---|---|---|---|
L1 | y=-0.582x+0.930 | 0.482 | 0.505 | 0.015 | 2.065 |
L2 | y=-0.620x+0.941 | 0.597 | 0.619 | 0.013 | 1.849 |
L3 | y=-0.567x+0.915 | 0.577 | 0.618 | 0.013 | 1.873 |
L12 | y=-0.781x+0.965 | 0.609 | 0.621 | 0.013 | 1.806 |
L13 | y=-0.647x+0.948 | 0.598 | 0.627 | 0.013 | 1.825 |
L23 | y=-0.654x+0.950 | 0.648 | 0.679 | 0.012 | 1.718 |
Table 6 Quantitative relationships and model verification effect of LWC and vegetation index NDSII(1114,1387) in rice
叶位 Leaf position | 回归方程 Regression equation | 模型精度 Model Precision(R2) | 预测精度 Prediction Precision( | 均方根误 RMSE | 相对误差 RE(%) |
---|---|---|---|---|---|
L1 | y=-0.582x+0.930 | 0.482 | 0.505 | 0.015 | 2.065 |
L2 | y=-0.620x+0.941 | 0.597 | 0.619 | 0.013 | 1.849 |
L3 | y=-0.567x+0.915 | 0.577 | 0.618 | 0.013 | 1.873 |
L12 | y=-0.781x+0.965 | 0.609 | 0.621 | 0.013 | 1.806 |
L13 | y=-0.647x+0.948 | 0.598 | 0.627 | 0.013 | 1.825 |
L23 | y=-0.654x+0.950 | 0.648 | 0.679 | 0.012 | 1.718 |
模型 Model | 回归方程 Regression equation | 模型精度 Model Precision (R2) | 预测精度 Prediction Precision ( | 均方根误 RMSE | 相对误差 RE/% | 校正效果 Correction effect/% | |
---|---|---|---|---|---|---|---|
Y(Ⅱ) | NDSII | ||||||
L1 | y=0.545a-0.482b+0.864 | 0.620 | 0.635 | 0.009 | 1.249 | 83.976 | 28.631 |
L2 | y=0.367a-0.459b+0.871 | 0.713 | 0.725 | 0.008 | 1.090 | 71.807 | 19.430 |
L3 | y=0.237a-0.668b+0.949 | 0.647 | 0.661 | 0.009 | 1.207 | 75.339 | 12.132 |
L12 | y=0.495a-0.427b+0.852 | 0.768 | 0.777 | 0.007 | 0.981 | 79.859 | 26.108 |
L13 | y=0.579a-0.478b+0.865 | 0.714 | 0.726 | 0.008 | 1.079 | 76.733 | 19.398 |
L23 | y=0.452a-0.464b+0.866 | 0.796 | 0.804 | 0.007 | 0.917 | 81.321 | 22.840 |
Table 7 Comprehensive evaluation of model
模型 Model | 回归方程 Regression equation | 模型精度 Model Precision (R2) | 预测精度 Prediction Precision ( | 均方根误 RMSE | 相对误差 RE/% | 校正效果 Correction effect/% | |
---|---|---|---|---|---|---|---|
Y(Ⅱ) | NDSII | ||||||
L1 | y=0.545a-0.482b+0.864 | 0.620 | 0.635 | 0.009 | 1.249 | 83.976 | 28.631 |
L2 | y=0.367a-0.459b+0.871 | 0.713 | 0.725 | 0.008 | 1.090 | 71.807 | 19.430 |
L3 | y=0.237a-0.668b+0.949 | 0.647 | 0.661 | 0.009 | 1.207 | 75.339 | 12.132 |
L12 | y=0.495a-0.427b+0.852 | 0.768 | 0.777 | 0.007 | 0.981 | 79.859 | 26.108 |
L13 | y=0.579a-0.478b+0.865 | 0.714 | 0.726 | 0.008 | 1.079 | 76.733 | 19.398 |
L23 | y=0.452a-0.464b+0.866 | 0.796 | 0.804 | 0.007 | 0.917 | 81.321 | 22.840 |
[1] | 陈海波, 李就好. 基于光谱反射率的作物水分状况研究进展[J]. 节水灌溉, 2010(8): 69-72. |
CHEN H B, LI J H. Advances on crop water content diagnosis based on spectral reflectance[J]. Water Saving Irrigation, 2010(8): 69-72. (in Chinese with English abstract) | |
[2] | THOMAS J R, NAMKEN L N, OERTHER G F, et al. Estimating leaf water content by reflectance Measurements[J]. Agronomy Journal, 1971, 63(6): 845-847. |
[3] | SEELIG H D, HOEHN A, STODIECK L S, et al. The assessment of leaf water content using leaf reflectance ratios in the visible, near-, and short-wave-infrared[J]. International Journal of Remote Sensing, 2008, 29(13): 3701-3713. |
[4] | LIN W P, LI Y, DU S Q, et al. Effect of dust deposition on spectrum-based estimation of leaf water content in urban plant[J]. Ecological Indicators, 2019, 104: 41-47. |
[5] | KONG W P, HUANG W J, MA L L, et al. Estimating vertical distribution of leaf water content within wheat canopies after head emergence[J]. Remote Sensing, 2021, 13(20): 4125. |
[6] | 刘良云, 王纪华, 张永江, 等. 叶片辐射等效水厚度计算与叶片水分定量反演研究[J]. 遥感学报, 2007, 11(3): 289-295. |
LIU L Y, WANG J H, ZHANG Y J, et al. Detection of leaf EWT by calculating REWT from reflectance spectra[J]. Journal of Remote Sensing, 2007, 11(3): 289-295. (in Chinese with English abstract) | |
[7] | YANG F F, LIU T, WANG Q Y, et al. Rapid determination of leaf water content for monitoring waterlogging in winter wheat based on hyperspectral parameters[J]. Journal of Integrative Agriculture, 2021, 20(10): 2613-2626. |
[8] | KOVAR M, BRESTIC M, SYTAR O, et al. Evaluation of hyperspectral reflectance parameters to assess the leaf water content in soybean[J]. Water, 2019, 11(3): 443. |
[9] | PEÑUELAS J, FILELLA I, BIEL C, et al. The reflectance at the 950-970 nm region as an indicator of plant water status[J]. International Journal of Remote Sensing, 1993, 14(10): 1887-1905. |
[10] | ZHU Z, LI T S, CUI J, et al. Non-destructive estimation of winter wheat leaf moisture content using near-ground hyperspectral imaging technology[J]. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 2020, 70(4): 294-306. |
[11] | YANG J A, ZHANG Y Y, DU L, et al. Improving the selection of vegetation index characteristic wavelengths by using the PROSPECT model for leaf water content estimation[J]. Remote Sensing, 2021, 13(4): 821. |
[12] | 田永超, 杨杰, 姚霞, 等. 利用叶片高光谱指数预测水稻群体叶层全氮含量[J]. 作物学报, 2010, 36(9): 1529-1537. |
TIAN Y C, YANG J, YAO X, et al. Monitoring canopy leaf nitrogen concentration based on leaf hyperspectral indices in rice[J]. Acta Agronomica Sinica, 2010, 36(9): 1529-1537. (in Chinese with English abstract) | |
[13] | DANSON F M, STEVEN M D, MALTHUS T J, et al. High-spectral resolution data for determining leaf water content[J]. International Journal of Remote Sensing, 1992, 13(3): 461-470. |
[14] | 梁亮, 张连蓬, 林卉, 等. 基于导数光谱的小麦冠层叶片含水量反演[J]. 中国农业科学, 2013, 46(1): 18-29. |
LIANG L, ZHANG L P, LIN H, et al. Estimating canopy leaf water content in wheat based on derivative spectra[J]. Scientia Agricultura Sinica, 2013, 46(1): 18-29. (in Chinese with English abstract) | |
[15] | 刘小军, 田永超, 姚霞, 等. 基于高光谱的水稻叶片含水量监测研究[J]. 中国农业科学, 2012, 45(3): 435-442. |
LIU X J, TIAN Y C, YAO X, et al. Monitoring leaf water content based on hyperspectra in rice[J]. Scientia Agricultura Sinica, 2012, 45(3): 435-442. (in Chinese with English abstract) | |
[16] | 李刚华, 薛利红, 尤娟, 等. 水稻氮素和叶绿素SPAD叶位分布特点及氮素诊断的叶位选择[J]. 中国农业科学, 2007, 40(6): 1127-1134. |
LI G H, XUE L H, YOU J, et al. Spatial distribution of leaf N content and SPAD value and determination of the suitable leaf for N diagnosis in rice[J]. Scientia Agricultura Sinica, 2007, 40(6): 1127-1134. (in Chinese with English abstract) | |
[17] | 徐浩聪, 姚波, 王权, 等. 基于叶片反射光谱估测水稻氮营养指数[J]. 中国农业科学, 2021, 54(21): 4525-4539. |
XU H C, YAO B, WANG Q, et al. Determination of suitable band width for estimating rice nitrogen nutrition index based on leaf reflectance spectra[J]. Scientia Agricultura Sinica, 2021, 54(21): 4525-4539. (in Chinese with English abstract) | |
[18] | PEREIRA T S, LIMA M D R, PAULA L S, et al. Tolerance to water deficit in cowpea populations resulting from breeding program: detection by gas exchange and chlorophyll fluorescence[J]. Indian Journal of Plant Physiology, 2016, 21(2): 171-178. |
[19] | 白晶晶, 吴俊文, 李吉跃, 等. 干旱胁迫对2种速生树种叶绿素荧光特性的影响[J]. 华南农业大学学报, 2015, 36(1): 85-90. |
BAI J J, WU J W, LI J Y, et al. Effects of drought stress on chlorophyll fluorescence parameters of two fast-growing tree species[J]. Journal of South China Agricultural University, 2015, 36(1): 85-90. (in Chinese with English abstract) | |
[20] | BANKS J M. Chlorophyll fluorescence as a tool to identify drought stress in Acer genotypes[J]. Environmental and Experimental Botany, 2018, 155: 118-127. |
[21] | 汤飞洋, 金荷仙, 唐宇力. 不同程度干旱胁迫对4个杜鹃品种叶绿素荧光参数的影响[J]. 西北林学院学报, 2017, 32(5): 64-68. |
TANG F Y, JIN H X, TANG Y L. Effects of different drought stress on chlorophyll fluorescence of four Rhododendron cultivars[J]. Journal of Northwest Forestry University, 2017, 32(5): 64-68. (in Chinese with English abstract) | |
[22] | 吴姗姗, 徐学欣, 张霞, 等. 不同品种冬小麦苗期叶绿素荧光参数与抗旱性关系研究[J]. 华北农学报, 2020, 35(6): 90-99. |
WU S S, XU X X, ZHANG X, et al. Relationship analysis of chlorophyll fluorescence parameters and drought resistance in different winter wheat varieties at seedling stage[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(6): 90-99. (in Chinese with English abstract) | |
[23] | WANG B F, YANG X L, CHEN L, et al. Physiological mechanism of drought-resistant rice coping with drought stress[J]. Journal of Plant Growth Regulation, 2022, 41(7): 2638-2651. |
[24] | 倪建中, 罗倩, 陈小宇, 等. 木棉叶片叶绿素荧光参数和SPAD值对干旱胁迫的响应[J]. 亚热带植物科学, 2021, 50(4): 257-261. |
NI J Z, LUO Q, CHEN X Y, et al. Responses of chlorophyll fluorescence parameters and SPAD value in leaves of Bombax ceiba to drought stress[J]. Subtropical Plant Science, 2021, 50(4): 257-261. (in Chinese with English abstract) | |
[25] | 印玉明, 王永清, 马春晨, 等. 利用日光诱导叶绿素荧光监测水稻叶片叶绿素含量[J]. 农业工程学报, 2021, 37(12): 169-180. |
YIN Y M, WANG Y Q, MA C C, et al. Monitoring of chlorophyll content in rice canopy and single leaf using Sun-induced chlorophyll fluorescence[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(12): 169-180. (in Chinese with English abstract) | |
[26] | 何海兵, 杨茹, 廖江, 等. 水分和氮肥管理对灌溉水稻优质高产高效调控机制的研究进展[J]. 中国农业科学, 2016, 49(2): 305-318. |
HE H B, YANG R, LIAO J, et al. Research advance of high-yielding and high efficiency in resource use and improving grain quality of rice plants under water and nitrogen managements in an irrigated region[J]. Scientia Agricultura Sinica, 2016, 49(2): 305-318. (in Chinese with English abstract) | |
[27] | 姚霞. 小麦冠层和单叶氮素营养指标的高光谱监测研究[D]. 南京: 南京农业大学, 2009. |
YAO X. Monitoring nitrogen status at canopy and leaf scales with hyperspectral sensing in wheat[D]. Nanjing: Nanjing Agricultural University, 2009. (in Chinese with English abstract) | |
[28] | SERRANO L, USTIN S L, ROBERTS D A, et al. Deriving water content of chaparral vegetation from AVIRIS data[J]. Remote Sensing of Environment, 2000, 74(3): 570-581. |
[29] | HARDISKY M. The influence of soil salinity, growth form, and leaf moisture on-the spectral radiance of Spartina alterniflora canopies[J]. Photogrammetric Engineering and Remote Sensing, 1983, 49(1):77-84. |
[30] | GAO B C. NDWI: a normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing of Environment, 1996, 58(3): 257-266. |
[31] | ZARCO-TEJADA P J, RUEDA C A, USTIN S L. Water content estimation in vegetation with MODIS reflectance data and model inversion methods[J]. Remote Sensing of Environment, 2003, 85(1): 109-124. |
[32] | MACK A R, FERGUSON W S. A moisture stress index for wheat by means of a modulated soil moisture budget[J]. Canadian Journal of Plant Science, 1968, 48(5): 535-544. |
[33] | CECCATO P, GOBRON N, FLASSE S, et al. Designing a spectral index to estimate vegetation water content from remote sensing data: part 1[J]. Remote Sensing of Environment, 2002, 82(2/3): 188-197. |
[34] | DAS D, ULLAH H, TISARUM R, et al. Morpho-physiological responses of tropical rice to potassium and silicon fertilization under water-deficit stress[J]. Journal of Soil Science and Plant Nutrition, 2023, 23(1): 220-237. |
[35] | HE H B, WANG Q A, WANG L L, et al. Photosynthetic physiological response of water-saving and drought-resistant rice to severe drought under wetting-drying alternation irrigation[J]. Physiologia Plantarum, 2021, 173(4): 2191-2206. |
[36] | KRAUSE G H, SOMERSALO S, OSMOND C B, et al. Fluorescence as a tool in photosynthesis research: application in studies of photoinhibition, cold acclimation and freezing stress[J]. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 1989, 323(1216): 281-293. |
[37] | SAGLAM A, SARUHAN N, TERZI R, et al. The relations between antioxidant enzymes and chlorophyll fluorescence parameters in common bean cultivars differing in sensitivity to drought stress[J]. Russian Journal of Plant Physiology, 2011, 58(1): 60-68. |
[38] | 王玉芬, 李娟, 路战远, 等. 玉米高产品种光合特性及抗氧化系统对水分胁迫的响应[J]. 华北农学报, 2015, 30(6): 97-104. |
WANG Y F, LI J, LU Z Y, et al. Responses of water stress on photosynthetic trait and antioxygenation system in two high-yield maize cultivars[J]. Acta Agriculturae Boreali-Sinica, 2015, 30(6): 97-104. (in Chinese with English abstract) | |
[39] | 卜令铎, 张仁和, 常宇, 等. 苗期玉米叶片光合特性对水分胁迫的响应[J]. 生态学报, 2010, 30(5): 1184-1191. |
BU L D, ZHANG R H, CHANG Y, et al. Response of photosynthetic characteristics to water stress of maize leaf in seeding[J]. Acta Ecologica Sinica, 2010, 30(5): 1184-1191. (in Chinese with English abstract) | |
[40] | 李娟, 彭镇华, 高健, 等. 干旱胁迫下黄条金刚竹的光合和叶绿素荧光特性[J]. 应用生态学报, 2011, 22(6): 1395-1402. |
LI J, PENG Z H, GAO J, et al. Photosynthetic parameters and chlorophyll fluorescence characteristics of Pleioblastus kongosanensis f. aureostriaus under drought stress[J]. Chinese Journal of Applied Ecology, 2011, 22(6): 1395-1402. (in Chinese with English abstract) | |
[41] | 孙骏威, 杨勇, 蒋德安. 水分亏缺下水稻的光化学和抗氧化应答[J]. 浙江大学学报(农业与生命科学版), 2004, 30(3): 278-284. |
SUN J W, YANG Y, JIANG D A. Photochemical and antioxidant behavior of rice in response to water deficit[J]. Journal of Zhejiang University(Agric & Life Sci), 2004, 30(3): 278-284. (in Chinese with English abstract) | |
[42] | CHENG T, RIVARD B, SÁNCHEZ-AZOFEIFA A. Spectroscopic determination of leaf water content using continuous wavelet analysis[J]. Remote Sensing of Environment, 2011, 115(2): 659-670. |
[43] | ZARCO-TEJADA P J, HORNERO A, HERNÁNDEZ-CLEMENTE R, et al. Understanding the temporal dimension of the red-edge spectral region for forest decline detection using high-resolution hyperspectral and Sentinel-2a imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 137: 134-148. |
[44] | FRAMPTON W J, DASH J, WATMOUGH G, et al. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 82: 83-92. |
[45] | 王化新, 李实蕡, 陈翼伯, 等. 水稻不同节位叶的光合强度和光合产物的运转与分配[J]. 四川农业大学学报, 1989, 7(3): 142-145. |
WANG H X, LI S F, CHEN Y B, et al. The intensity of photosynthesis and the transportation and distribution of the photosynthetic product in the different node leaves of rice headinc stace[J]. Journal of Sichuan Agricultural University, 1989, 7(3): 142-145. (in Chinese with English abstract) |
[1] | ZHU Dongqin, FENG Quan, ZHANG Jianhua. Plant disease identification based on pruning [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1462-1472. |
[2] | LIU Wei, TAO Jianping. How does livestock and poultry restricted zone policy affect stability of China’s hog market? [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1195-1210. |
[3] | MA Xinchao, XUAN Zhengying, TAN Zhanming, ZHOU Yu, WANG Xufeng. Optimization of water-nitrogen coupling scheme for production effect of cucumber in sand culture in greenhouse [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 809-820. |
[4] | ZHANG Yanbin, GENG Bin, LIANG Ying, XU Tiaojuan, XU Baogen, ZENG Xin, ZHANG Yueyue. Research on promotion mechanism of “standard land” reform to high quality development of modern agriculture [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 688-697. |
[5] | LI Bin, LIU Dongyang, SHI Guolong, MU Jingsheng, XU Haoran, GU Lichuan, JIAO Jun. Pig posture detection based on improved YOLOv4 model [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 215-225. |
[6] | DING Dongxia, LI Nenghui, LI Jing, TANG Chaonan, WANG Cheng, NIU Tianhang, YANG Yan, YANG Haitao, XIE Jianming. Effects of exogenous melatonin on chlorophyll fluorescence and antioxidant system of pepper (Capsicum annuum L.) under low temperature and low light stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1935-1944. |
[7] | JIANG Youyi, ZHANG Chengjian, HAN Shaoyu, YANG Xiaodong, YANG Guijun, YANG Hao. Automatic counting of maize plants based on unmanned aerial vehicle (UAV) 3D point cloud [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 2032-2042. |
[8] | KE Fuyan, XU Zhiyuan, YANG Liangshan. Study on driving effects of agricultural science and technology investments on agricultural economic growth:based on the data of 60 counties in Zhejiang Province, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1537-1544. |
[9] | SHAO Yitian. How information symmetry promotes pesticide reduction: theoretical models, typical cases and regulatory strategies [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1326-1336. |
[10] | ZHANG Zhiguo, CONG Lin, ZHANG Shijie, LI Rongguang, ZOU Weina, CHI Fa'an, ZHANG Bao, JIANG Yuping. Effects of root-zone temperature on growth, development and flowering of Hemerocallis fulva [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1005-1014. |
[11] | DONG Jie, ZENG Mi. Research on compensation standard for carbon sequestration afforestation based on carbon sequestration income and loss of wood income [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 790-800. |
[12] | JI Xunsheng, HUANG Qilin, XIA Shengkui. Analysis of laying performance and influencing factors of laying hens based on VAR model [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 824-830. |
[13] | WANG Huiru, LI Jianshe, YAN Sihua, GAO Yanming. Effect of prunning patterns on canopy light interception characteristics and chlorophyll fluorescence parameters in cherry tomato [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 525-533. |
[14] | GU Xingguo, MIN Qingwen, WANG Ying, WANG Bin. Conservation and development of agricultural heritage systems in Zhejiang Province, China: progress, problems and countermeasures [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 397-408. |
[15] | SUN Shouxia, CHEN Hong, LYU Wei, PIAO Hanqi, ZHOU Guanghui, WANG Hesong, ZHANG Shubin, HAO Jinlian. Effects of dustfall on photosynthetic characteristics and chlorophyll fluorescence characteristics of major fruit trees in Aksu Region, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2659-2668. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||