Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (10): 2456-2464.DOI: 10.3969/j.issn.1004-1524.20221792
• Food Science • Previous Articles Next Articles
LIU Guige1,2,3(), QIAO Yongjin3, CHEN Bingjie3, WANG Xiao3, ZHANG Yi3, ZHONG Yaoguang1,2,*(
)
Received:
2022-12-14
Online:
2023-10-25
Published:
2023-10-31
CLC Number:
LIU Guige, QIAO Yongjin, CHEN Bingjie, WANG Xiao, ZHANG Yi, ZHONG Yaoguang. Effect of drying methods on quality of yellow peach powder[J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2456-2464.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20221792
指标Index | 评估标准Evaluation standard | 分值Score |
---|---|---|
色泽Color | 色泽鲜亮,粉质细腻Bright color, fine powder | 16~20 |
色泽偏暗,粉质细腻Dark color, fine powder | 10~15 | |
色泽偏暗,粉质粗糙Dark color, coarse powder | 0~9 | |
滋味Taste | 口感柔顺,无颗粒感Soft and grainy | 21~30 |
口感较浓郁,无颗粒感Rich taste and grainy | 10~20 | |
口感过于浓郁或有明显颗粒感Too rich taste or with obvious grain feeling | 0~9 | |
气味Smell | 有浓厚的桃香味,无异味Strong peach flavor, without peculiar smell | 16~20 |
有桃的清香味,无异味Frragrance of peach, without peculiar smell | 10~15 | |
香气不足或存在异味Weak fragrance of peach, or with peculiar smell | 0~9 | |
组织状态Texture | 溶解性好,无沉淀Good solubility, no precipitation | 21~30 |
溶解性良好,有少量沉淀Good solubility, with a small amount of precipitation | 10~20 | |
溶解性较差,有较多沉淀Poor solubility, with a lot of precipitation | 0~9 |
Table 1 Standard for sensory scoring of yellow peach powder
指标Index | 评估标准Evaluation standard | 分值Score |
---|---|---|
色泽Color | 色泽鲜亮,粉质细腻Bright color, fine powder | 16~20 |
色泽偏暗,粉质细腻Dark color, fine powder | 10~15 | |
色泽偏暗,粉质粗糙Dark color, coarse powder | 0~9 | |
滋味Taste | 口感柔顺,无颗粒感Soft and grainy | 21~30 |
口感较浓郁,无颗粒感Rich taste and grainy | 10~20 | |
口感过于浓郁或有明显颗粒感Too rich taste or with obvious grain feeling | 0~9 | |
气味Smell | 有浓厚的桃香味,无异味Strong peach flavor, without peculiar smell | 16~20 |
有桃的清香味,无异味Frragrance of peach, without peculiar smell | 10~15 | |
香气不足或存在异味Weak fragrance of peach, or with peculiar smell | 0~9 | |
组织状态Texture | 溶解性好,无沉淀Good solubility, no precipitation | 21~30 |
溶解性良好,有少量沉淀Good solubility, with a small amount of precipitation | 10~20 | |
溶解性较差,有较多沉淀Poor solubility, with a lot of precipitation | 0~9 |
处理Treatment | 色泽Color | 滋味Taste | 香气Smell | 组织状态Texture | 总分Total |
---|---|---|---|---|---|
HAD | 5.23±0.22 c | 10.82±0.11 c | 6.42±0.19 c | 8.88±0.21 c | 31.35±3.35 c |
SD | 14.74±0.16 b | 23.87±0.15 b | 13.29±0.13 b | 22.25±0.13 b | 74.15±0.57 b |
VFD | 17.93±0.13 a | 26.65±0.12 a | 17.94±0.16 a | 27.73±0.12 a | 90.25±1.14 a |
Table 2 Effects of drying methods on the sensory quality of yellow peach flour
处理Treatment | 色泽Color | 滋味Taste | 香气Smell | 组织状态Texture | 总分Total |
---|---|---|---|---|---|
HAD | 5.23±0.22 c | 10.82±0.11 c | 6.42±0.19 c | 8.88±0.21 c | 31.35±3.35 c |
SD | 14.74±0.16 b | 23.87±0.15 b | 13.29±0.13 b | 22.25±0.13 b | 74.15±0.57 b |
VFD | 17.93±0.13 a | 26.65±0.12 a | 17.94±0.16 a | 27.73±0.12 a | 90.25±1.14 a |
处理Treatment | L* | a* | b* | ΔΕ |
---|---|---|---|---|
鲜果Fresh fruit | 64.38±0.32 c | 8.54±0.13 a | 38.78±0.26 a | — |
SD | 89.76±0.15 a | 4.44±0.23 b | 17.95±0.32 c | 33.09±0.42 a |
VFD | 79.25±0.21 b | 8.44±0.19 a | 29.52±0.16 b | 17.52±0.13 b |
Table 3 Effects of drying methods on the color of yellow peach powder
处理Treatment | L* | a* | b* | ΔΕ |
---|---|---|---|---|
鲜果Fresh fruit | 64.38±0.32 c | 8.54±0.13 a | 38.78±0.26 a | — |
SD | 89.76±0.15 a | 4.44±0.23 b | 17.95±0.32 c | 33.09±0.42 a |
VFD | 79.25±0.21 b | 8.44±0.19 a | 29.52±0.16 b | 17.52±0.13 b |
指标Index | SD | VFD |
---|---|---|
出粉率Powder yield/% | 9.98±0.14 a | 7.83±0.12 b |
含水率Water content/% | 3.91±0.05 a | 2.69±0.02 b |
溶解时间Dissolution time/s | 85.33±0.31 a | 46.67±0.21 b |
水溶性指数 | 60.08±0.27 b | 98.21±0.16 a |
Water solubility index/% | ||
结块度Caking degree/% | 1.48±0.21 a | 1.07±0.02 b |
堆积密度 | 0.45±0.31 a | 0.21±0.11 b |
Bulk density/(g·mL-1) | ||
休止角Angle of repose (θ)/(°) | 32.48±0.17 a | 26.07±0.25 b |
持水力 | 0.69±0.23 b | 2.51±0.19 a |
Water holding capacity/(g·g-1) | ||
持油力 | 1.26±0.17 b | 3.41±0.21 a |
Oil holding capacity/(mL·g-1) |
Table 4 Effects of drying methods on physical properties of yellow peach powder
指标Index | SD | VFD |
---|---|---|
出粉率Powder yield/% | 9.98±0.14 a | 7.83±0.12 b |
含水率Water content/% | 3.91±0.05 a | 2.69±0.02 b |
溶解时间Dissolution time/s | 85.33±0.31 a | 46.67±0.21 b |
水溶性指数 | 60.08±0.27 b | 98.21±0.16 a |
Water solubility index/% | ||
结块度Caking degree/% | 1.48±0.21 a | 1.07±0.02 b |
堆积密度 | 0.45±0.31 a | 0.21±0.11 b |
Bulk density/(g·mL-1) | ||
休止角Angle of repose (θ)/(°) | 32.48±0.17 a | 26.07±0.25 b |
持水力 | 0.69±0.23 b | 2.51±0.19 a |
Water holding capacity/(g·g-1) | ||
持油力 | 1.26±0.17 b | 3.41±0.21 a |
Oil holding capacity/(mL·g-1) |
处理 Treatment | 蛋白质 Protein/% | 维生素C Vitamin C/ ( mg·kg-1) | 总酚 Total phenols/ (mg·kg-1) | TSS/% | 可滴定酸 Titratable acid/ (g·kg-1) | 糖酸比 Ratio of sugar to acid |
---|---|---|---|---|---|---|
SD | 0.32±0.02 a | 45.2±2.1 b | 56.82±0.34 b | 5.18±0.04 b | 3.2±0.1 b | 16.18±0.15 a |
VFD | 0.33±0.01 a | 79.3±1.1 a | 82.27±0.21 a | 6.98±0.13 a | 6.9±0.4 a | 10.12±0.39 b |
Table 5 Effects of drying methods on the nutritional composition of yellow peach powder
处理 Treatment | 蛋白质 Protein/% | 维生素C Vitamin C/ ( mg·kg-1) | 总酚 Total phenols/ (mg·kg-1) | TSS/% | 可滴定酸 Titratable acid/ (g·kg-1) | 糖酸比 Ratio of sugar to acid |
---|---|---|---|---|---|---|
SD | 0.32±0.02 a | 45.2±2.1 b | 56.82±0.34 b | 5.18±0.04 b | 3.2±0.1 b | 16.18±0.15 a |
VFD | 0.33±0.01 a | 79.3±1.1 a | 82.27±0.21 a | 6.98±0.13 a | 6.9±0.4 a | 10.12±0.39 b |
化合物种类 Compound type | 化合物 Compound | 保留时间 Retention time/min | 不同干燥方式下的含量 Contents under varied drying methods/(μg·kg-1) | |
---|---|---|---|---|
SD | VFD | |||
烷烃Alkanes | 十二烷Dodecane | 17.920 | 7.98±1.22 b | 49.76±2.20 a |
十三烷Tridecane | 22.609 | 7.86±1.31 b | 42.35±2.87 a | |
烯烃Alkenes | 苯乙烯Styrene | 20.972 | 6.22±1.56 b | 42.82±1.99 a |
醇Alcohols | 正己醇N-Hexanol | 25.259 | — | 17.80±2.22 |
(E)-2-己烯醇(E) 2-Hexenol | 27.214 | — | 41.82±2.38 | |
2-乙基己醇2-Ethylhexanol | 29.967 | 35.74±2.22 b | 462.98±33.78 a | |
芳樟醇Linalool | 31.629 | — | 21.53±1.92 | |
醛Aldehydes | 正己醛N-Hexanal | 13.319 | 105.81±10.14 b | 148.20±19.87 a |
(E)2-己烯醛(E) 2-Hexenal | 19.317 | 5.74±1.52 b | 32.98±2.10 a | |
壬醛Nonanal | 26.674 | 101.03±26.65 b | 693.13±30.98 a | |
苯甲醛Benzaldehyde | 31.105 | 7.99±1.76 b | 38.32±2.22 a | |
2-壬烯醛2-Nonenal | 31.400 | 5.81±1.61 b | 19.00±2.64 a | |
酯Esters | 乙酸己酯Hexyl acetate | 21.711 | — | 526.80±28.27 |
乙酸顺式-3-己烯酯Cis-3-Hexene acetate | 23.685 | — | 317.99±27.76 | |
(E)-乙酸-2-己烯-1-醇酯Trans-2-Hexenyl acetate | 24.357 | — | 329.27±21.23 | |
γ-己内酯γ-Caprolactone | 36.108 | 2.58±0.31 b | 11.47±1.12 a | |
丁位癸内酯5-Decanolide | 46.676 | — | 8.98±1.93 | |
酮Ketones | 甲基庚烯酮Methyl heptanone | 24.549 | 10.58±1.20 b | 42.69±22.87 a |
大马酮Damascenone | 38.909 | 1.56±0.34 b | 36.60±1.23 a | |
香叶基丙酮Geranyl acetone | 39.463 | 9.50±1.62 b | 37.01±3.76 a |
Table 6 Effects of drying methods on main aroma components in yellow peach powder
化合物种类 Compound type | 化合物 Compound | 保留时间 Retention time/min | 不同干燥方式下的含量 Contents under varied drying methods/(μg·kg-1) | |
---|---|---|---|---|
SD | VFD | |||
烷烃Alkanes | 十二烷Dodecane | 17.920 | 7.98±1.22 b | 49.76±2.20 a |
十三烷Tridecane | 22.609 | 7.86±1.31 b | 42.35±2.87 a | |
烯烃Alkenes | 苯乙烯Styrene | 20.972 | 6.22±1.56 b | 42.82±1.99 a |
醇Alcohols | 正己醇N-Hexanol | 25.259 | — | 17.80±2.22 |
(E)-2-己烯醇(E) 2-Hexenol | 27.214 | — | 41.82±2.38 | |
2-乙基己醇2-Ethylhexanol | 29.967 | 35.74±2.22 b | 462.98±33.78 a | |
芳樟醇Linalool | 31.629 | — | 21.53±1.92 | |
醛Aldehydes | 正己醛N-Hexanal | 13.319 | 105.81±10.14 b | 148.20±19.87 a |
(E)2-己烯醛(E) 2-Hexenal | 19.317 | 5.74±1.52 b | 32.98±2.10 a | |
壬醛Nonanal | 26.674 | 101.03±26.65 b | 693.13±30.98 a | |
苯甲醛Benzaldehyde | 31.105 | 7.99±1.76 b | 38.32±2.22 a | |
2-壬烯醛2-Nonenal | 31.400 | 5.81±1.61 b | 19.00±2.64 a | |
酯Esters | 乙酸己酯Hexyl acetate | 21.711 | — | 526.80±28.27 |
乙酸顺式-3-己烯酯Cis-3-Hexene acetate | 23.685 | — | 317.99±27.76 | |
(E)-乙酸-2-己烯-1-醇酯Trans-2-Hexenyl acetate | 24.357 | — | 329.27±21.23 | |
γ-己内酯γ-Caprolactone | 36.108 | 2.58±0.31 b | 11.47±1.12 a | |
丁位癸内酯5-Decanolide | 46.676 | — | 8.98±1.93 | |
酮Ketones | 甲基庚烯酮Methyl heptanone | 24.549 | 10.58±1.20 b | 42.69±22.87 a |
大马酮Damascenone | 38.909 | 1.56±0.34 b | 36.60±1.23 a | |
香叶基丙酮Geranyl acetone | 39.463 | 9.50±1.62 b | 37.01±3.76 a |
[1] | WANG F Z, LYU J, XIE J, et al. Texture formation of dehydrated yellow peach slices pretreated by osmotic dehydration with different sugars via cell wall pectin polymers modification[J]. Food Hydrocolloids, 2023, 134: 108080. |
[2] | HORUZ E, BOZKURT H, KARATAŞ H, et al. Effects of hybrid (microwave-convectional) and convectional drying on drying kinetics, total phenolics, antioxidant capacity, vitamin C, color and rehydration capacity of sour cherries[J]. Food Chemistry, 2017, 230: 295-305. |
[3] | ZHANG Z Y, WEI Q Y, NIE M M, et al. Microstructure and bioaccessibility of different carotenoid species as affected by hot air drying: study on carrot, sweet potato, yellow bell pepper and broccoli[J]. LWT, 2018, 96: 357-363. |
[4] | JAYAPRAKASH P, MAUDHUIT A, GAIANI C, et al. Encapsulation of bioactive compounds using competitive emerging techniques: electrospraying, nano spray drying, and electrostatic spray drying[J]. Journal of Food Engineering, 2023, 339: 111260. |
[5] | NIE Y H, CHEN J H, XU J M, et al. Vacuum freeze-drying of tilapia skin affects the properties of skin and extracted gelatins[J]. Food Chemistry, 2022, 374: 131784. |
[6] | 林炎娟, 周丹蓉, 吴如健, 等. 不同干燥方式对橄榄果粉品质的影响[J]. 食品研究与开发, 2021, 42(7): 90-97. |
LIN Y J, ZHOU D R, WU R J, et al. Effects of different drying methods on the quality characteristics of olive powder[J]. Food Research and Development, 2021, 42(7): 90-97. (in Chinese with English abstract) | |
[7] | 刘岩龙, 张彩丽, 李婷婷, 等. 不同干燥方式对樱桃果粉品质的影响[J]. 食品研究与开发, 2020, 41(7): 26-30. |
LIU Y L, ZHANG C L, LI T T, et al. Effect of different drying methods on the quality of cherry powder[J]. Food Research and Development, 2020, 41(7): 26-30. (in Chinese with English abstract) | |
[8] | 张艳侠, 张立华, 孙东东, 等. 干燥方法对石榴果粉品质特性的影响[J]. 江苏农业科学, 2015, 43(8): 269-271. |
ZHANG Y X, ZHANG L H, SUN D D, et al. Effect of drying methods on quality characteristics of pomegranate fruit powder[J]. Jiangsu Agricultural Sciences, 2015, 43(8): 269-271. (in Chinese) | |
[9] | TETTEH E T, DE KOFF J P, POKHAREL B, et al. Effect of winter canola cultivar on seed yield, oil, and protein content[J]. Agronomy Journal, 2019, 111(6): 2811-2820. |
[10] | SONG M T, XU H R, XIN G A, et al. Comprehensive evaluation of Actinidia arguta fruit based on the nutrition and taste: 67 germplasm native to Northeast China[J]. Food Science and Human Wellness, 2022, 11(2): 393-404. |
[11] | ENONE B S, ETAME-LOE G M M, NGOULE C C, et al. Characterization and quantification of phenolic compounds of hydroethanolic extracts and fractions of leaves Gnetum africanum (Welv.) and Gnetum buchholzianum (Engl.) (Gnetaceae)[J]. Open Journal of Applied Sciences, 2022, 12(7): 1304-1318. |
[12] | 刘贵阁, 钟耀广, 乔勇进, 等. 干燥方式对黄桃果脯品质的影响[J]. 食品与机械, 2022, 38(9): 165-170. |
LIU G G, ZHONG Y G, QIAO Y J, et al. Effects of drying methods on the quality of preserved yellow peach[J]. Food & Machinery, 2022, 38(9): 165-170. (in Chinese with English abstract) | |
[13] | QADRI T, NAIK H R, HUSSAIN S Z, et al. Spray dried apple powder: qualitative, rheological, structural characterization and its sorption isotherm[J]. LWT, 2022, 165: 113694. |
[14] | 李伟, 郜海燕, 陈杭君, 等. 不同干燥方式对杨梅果粉品质的影响[J]. 食品科学, 2017, 38(13): 77-82. |
LI W, GAO H Y, CHEN H J, et al. Effect of drying methods on quality characteristics of bayberry powder[J]. Food Science, 2017, 38(13): 77-82. (in Chinese with English abstract) | |
[15] | JAFARI S M, GHALEGI GHALENOEI M, DEHNAD D. Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice powder[J]. Powder Technology, 2017, 311: 59-65. |
[16] | GOULA A M, ADAMOPOULOS K G. Spray drying of tomato pulp in dehumidified air: II: the effect on powder properties[J]. Journal of Food Engineering, 2005, 66(1): 35-42. |
[17] | QUEK S Y, CHOK N K, SWEDLUND P. The physicochemical properties of spray-dried watermelon powders[J]. Chemical Engineering and Processing: Process Intensification, 2007, 46(5): 386-392. |
[18] | BHUSARI S N, MUZAFFAR K, KUMAR P. Effect of carrier agents on physical and microstructural properties of spray dried tamarind pulp powder[J]. Powder Technology, 2014, 266: 354-364. |
[19] | FONGIN S, ALVINO GRANADOS A E, HARNKARNSUJARIT N, et al. Effects of maltodextrin and pulp on the water sorption, glass transition, and caking properties of freeze-dried mango powder[J]. Journal of Food Engineering, 2019, 247: 95-103. |
[20] | 符群, 钟明旭, 王萍. 不同干燥方式对黑果腺肋花楸果粉品质的影响[J]. 中南林业科技大学学报, 2021, 41(1): 180-187. |
FU Q, ZHONG M X, WANG P. Effect of drying methods on quality characteristics of Aronia melanocarpa powder[J]. Journal of Central South University of Forestry & Technology, 2021, 41(1): 180-187. (in Chinese with English abstract) | |
[21] | RICHTER REIS F, MARQUES C, DE MORAES A C S, et al. Trends in quality assessment and drying methods used for fruits and vegetables[J]. Food Control, 2022, 142: 109254. |
[22] | 王莹, 王辉, 王富, 等. 干燥方式对秋葵超微粉理化特性及抗氧化活性的影响[J]. 食品科学, 2018, 39(19): 114-119. |
WANG Y, WANG H, WANG F, et al. Effect of drying methods on physicochemical properties and antioxidant activity of superfine okra powder[J]. Food Science, 2018, 39(19): 114-119. (in Chinese with English abstract) | |
[23] | 王储炎, 阎晓明, 任子旭, 等. 不同干燥方式对桑椹果粉物理特性的影响[J]. 蚕业科学, 2013, 39(2): 340-345. |
WANG C Y, YAN X M, REN Z X, et al. Effects of different drying methods on physical properties of mulberry fruit powder[J]. Science of Sericulture, 2013, 39(2): 340-345. (in Chinese with English abstract) | |
[24] | 陈晓旭, 易建勇, 毕金峰, 等. 不同联合干燥方式对火龙果粉品质的影响[J]. 食品与发酵工业, 2015, 41(1): 106-112. |
CHEN X X, YI J Y, BI J F, et al. Effect of different combined drying methods on the quality characteristics of pitaya powder[J]. Food and Fermentation Industries, 2015, 41(1): 106-112. (in Chinese with English abstract) | |
[25] | 叶丽琴, 孙萌, 张忠爽, 等. 不同发育阶段欧李果实糖酸变化规律研究及相关性分析[J]. 食品工业科技, 2017, 38(5): 98-102. |
YE L Q, SUN M, ZHANG Z S, et al. Analysis on the changes and correlations of sugar and organic acid contents in Chinese dwarf cherry [Cerasus humilis (Bge.) Sok.] during different development stages[J]. Science and Technology of Food Industry, 2017, 38(5): 98-102. (in Chinese with English abstract) | |
[26] | 张琴, 周丹丹, 彭菁, 等. 油桃采后结合态香气变化规律及其与可溶性糖的关联性[J]. 食品科学, 2021, 42(6): 206-214. |
ZHANG Q, ZHOU D D, PENG J, et al. Changes of bound aroma compounds and their relationship between soluble sugars in nectarines during postharvest storage[J]. Food Science, 2021, 42(6): 206-214. (in Chinese with English abstract) | |
[27] | YANG C, DUAN W Y, XIE K L, et al. Effect of salicylic acid treatment on sensory quality, flavor-related chemicals and gene expression in peach fruit after cold storage[J]. Postharvest Biology and Technology, 2020, 161: 111089. |
[28] | LENG P, HU H W, CUI A H, et al. HS-GC-IMS with PCA to analyze volatile flavor compounds of honey peach packaged with different preservation methods during storage[J]. LWT, 2021, 149: 111963. |
[29] | NIJDAM J J, LANGRISH T A G. An investigation of milk powders produced by a laboratory-scale spray dryer[J]. Drying Technology, 2005, 23(5): 1043-1056. |
[30] | CAPARINO O A, TANG J, NINDO C I, et al. Effect of drying methods on the physical properties and microstructures of mango (Philippine ‘Carabao’ var.) powder[J]. Journal of Food Engineering, 2012, 111(1): 135-148. |
[1] | YUE Zongwei, LI Jiaxiao, SUN Xiangyang, LIU Guoliang, LI Suyan, WANG Chenchen, ZHA Guichao, WEI Ningxian. Effects of chemical fertilizer combined with organic fertilizer on soil properties, cherry fruit quality and yield [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2192-2201. |
[2] | ZHANG Bo, LIU Zeci, WANG Jie, LI Zhaozhuang, LI Lushan, HU Linli, YU Jihua. Effects of different fertilizer formulations of agricultural wastes on growth, yield and quality of cabbage [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1782-1792. |
[3] | ZHANG Ning, TAO Ronghao, LIU Peishi, HU Hanxiu, GAO Linlin, GUO Long, ZHU Zunyou, MA Youhua. Effects of organic fertilizer coupled with chemical fertilizer on growth and quality of tea and soil fertility [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1844-1852. |
[4] | WANG Di, YANG Hanmei, LI Yangqian, JIA Mengting, ZOU Liang, YANG Fan. Multidimensional evaluation of “variety, quality, efficiency and application” of Tartary buckwheat and research progress of high-value utilization of active ingredients [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1960-1974. |
[5] | TIAN Yugang, WAN Sumei, LIN Jiao, CHEN Guodong, LI Hao, HU Yukai, LI Yanfang, HU Shoulin, MAO Tingyong, ZHAO Shuzhen. Effect of mulch types and irrigation amounts on photosynthetic parameters, yield and quality of cotton [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1523-1531. |
[6] | YANG Kun, HOU Guanjun, ZHAO Xiuxia, FANG Ting, WANG Lijun. Effects of aquatic animals-plants synergistic purification system on water quality and economic benefit in mandarin fish pond [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1709-1719. |
[7] | BU Yuanpeng, LIU Na, ZHANG Guwen, FENG Zhijuan, WANG Bin, GONG Yaming, XU Linying. Diversity evaluation of agronomic traits and construction of core collection and taste quality evaluation system in vegetable soybean germplasm resources [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1307-1314. |
[8] | CHAI Guanqun, ZHOU Wei, LIANG Hong, FAN Feifei, ZHU Dayan, FAN Chengwu. Effect of foliar spraying of zinc fertilizer and citric acid on yield, quality and Cd absorption and transport ation of pepper [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1069-1079. |
[9] | XIAO Lihan, XIN Meiguo, LU Wenjing, YE Qin, ZHANG Cen, XIAO Chaogeng, CHEN Di. Effects of different storage conditions on quality of royal jelly from three pollen sources [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1161-1167. |
[10] | MA Yihu, ZENG Xiaoyuan, HE Xianbiao, ZHOU Naidi, CHEN Jian. Response of grain yield and quality of high quality rice to climate factors at different sowing dates in southeastern Zhejiang Province, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 736-751. |
[11] | ZENG Xiaochun, LI Suicheng, SHI Guanqing, XING Zeyu. Comprehensive evaluation of China’s regional agricultural quality development level based on entropy weight TOPSIS under background of carbon peaking and carbon neutrality goals: from perspective of change speed [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 962-972. |
[12] | WANG Jinfeng, ZHOU Qi, LYU Yulong, CHEN Zhuomei. Effects of intercropping tea with landscape trees on ecosystem of tea garden and tea production [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 523-533. |
[13] | WANG Longwei, BAI Junyan, JIA Xiaoping, LEI Ying, CHEN Mengke, FAN Hongdeng, LU Xiaoning, HE Yuhan, ZENG Fanlin, ZHANG Rongkai. Association analysis between GnRH-1 gene polymorphism and egg quality in quail [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 565-574. |
[14] | LIN Yong, DAI Weiwei, BAO Encai, WANG Qiang, BAI Zongchun, XIA Liru, ZHANG Yao, SUN Yulun, OUYANG Lihu. Optimization and computational fluid dynamics analysis of fan operation for cascading cage-rearing meat duck house in summer [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 666-675. |
[15] | ZHANG Yanbin, GENG Bin, LIANG Ying, XU Tiaojuan, XU Baogen, ZENG Xin, ZHANG Yueyue. Research on promotion mechanism of “standard land” reform to high quality development of modern agriculture [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 688-697. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||