Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (6): 1447-1457.DOI: 10.3969/j.issn.1004-1524.20230991
• Review • Previous Articles Next Articles
QI Xueli1(), LI Ying2, DUAN Junzhi3,*(
)
Received:
2023-08-21
Online:
2024-06-25
Published:
2024-07-02
CLC Number:
QI Xueli, LI Ying, DUAN Junzhi. Application of salt tolerance genes in wheat salt tolerance genetic engineering[J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1447-1457.
[1] | WINGEN L U, WEST C, LEVERINGTON-WAITE M, et al. Wheat landrace genome diversity[J]. Genetics, 2017, 205(4): 1657-1676. |
[2] | SYED A, SARWAR G, SHAH S H, et al. Soil salinity research in 21st century in Pakistan: its impact on availability of plant nutrients, growth and yield of crops[J]. Communications in Soil Science and Plant Analysis, 2021, 52(3): 183-200. |
[3] | DEINLEIN U, STEPHAN A B, HORIE T, et al. Plant salt-tolerance mechanisms[J]. Trends in Plant Science, 2014, 19(6): 371-379. |
[4] | GAO S Q, CHEN M, XIA L Q, et al. A cotton (Gossypium hirsutum) DRE-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat[J]. Plant Cell Reports, 2009, 28(2): 301-311. |
[5] | 高灿. 过表达ZmTINY2和AtNACL1基因小麦的耐盐及抗旱性分析[D]. 泰安: 山东农业大学, 2020. |
GAO C. Analysis of salt and drought tolerance of wheat overexpressing ZmTINY2 and AtNACL1 genes[D]. Tai’an: Shandong Agricultural University, 2020. (in Chinese with English abstract) | |
[6] | JIANG Q Y, HU Z, ZHANG H, et al. Overexpression of GmDREB1 improves salt tolerance in transgenic wheat and leaf protein response to high salinity[J]. The Crop Journal, 2014, 2(2/3): 120-131. |
[7] | RONG W, QI L, WANG A Y, et al. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat[J]. Plant Biotechnology Journal, 2014, 12(4): 468-479. |
[8] | XING L P, DI Z C, YANG W W, et al. Overexpression of ERF1-V from Haynaldia villosa can enhance the resistance of wheat to powdery mildew and increase the tolerance to salt and drought stresses[J]. Frontiers in Plant Science, 2017, 8: 1948. |
[9] | SAAD A S I, LI X, LI H P, et al. A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses[J]. Plant Science, 2013, 203: 33-40. |
[10] | 刘晓华, 王敏琴, 夏光敏. TaCHP耐盐转基因小麦新种质创制[J]. 植物生理学报, 2013, 49(7): 671-681. |
LIU X H, WANG M Q, XIA G M. Creation of new transgenic wheat germplasm with salt tolerance of TaCHP[J]. Plant Physiology Journal, 2013, 49(7): 671-681. (in Chinese with English abstract) | |
[11] | CHEN L P, MENG Y, YANG W B, et al. Genome-wide analysis and identification of TaRING-H2 gene family and TaSDIR1 positively regulates salt stress tolerance in wheat[J]. International Journal of Biological Macromolecules, 2023, 242: 125162. |
[12] | SONG Y S, YANG W J, FAN H, et al. TaMYB86B encodes a R2R3-type MYB transcription factor and enhances salt tolerance in wheat[J]. Plant Science, 2020, 300: 110624. |
[13] | QIU D, HU W, ZHOU Y, et al. TaASR1-D confers abiotic stress resistance by affecting ROS accumulation and ABA signalling in transgenic wheat[J]. Plant Biotechnology Journal, 2021, 19(8): 1588-1601. |
[14] | ZHANG L N, ZHAO L J, WANG L T, et al. TabZIP60 is involved in the regulation of ABA synthesis-mediated salt tolerance through interacting with TaCDPK30 in wheat (Triticum aestivum L.)[J]. Planta, 2023, 257(6): 107. |
[15] | 张惠媛, 刘永伟, 杨军峰, 等. 小麦转录因子基因TaWRKY33的耐盐性分析[J]. 中国农业科学, 2018, 51(24): 4591-4602. |
ZHANG H Y, LIU Y W, YANG J F, et al. Identification and analysis of salt tolerance of wheat transcription factor TaWRKY33 protein[J]. Scientia Agricultura Sinica, 2018, 51(24): 4591-4602. (in Chinese with English abstract) | |
[16] | JIN X, SUN T, WANG X T, et al. Wheat CBL-interacting protein kinase 25 negatively regulates salt tolerance in transgenic wheat[J]. Scientific Reports, 2016, 6: 28884. |
[17] | IMTIAZ K, AHMED M, ANNUM N, et al. AtCIPK 16, a CBL-interacting protein kinase gene, confers salinity tolerance in transgenic wheat[J]. Frontiers in Plant Science, 2023, 14: 1127311. |
[18] | ZHENG M, LIN J C, LIU X B, et al. Histone acetyltransferase TaHAG1 acts as a crucial regulator to strengthen salt tolerance of hexaploid wheat[J]. Plant Physiology, 2021, 186(4): 1951-1969. |
[19] | 王汶龙. 小麦U-box基因TaPUB1在小麦耐盐性中的功能分析[D]. 泰安: 山东农业大学, 2019. |
WANG W L. The functions of U-box gene TaPUB1 in plant salt tolerance of wheat[D]. Tai’an: Shandong Agricultural University, 2019. (in Chinese with English abstract) | |
[20] | WANG W L, WANG W Q, WU Y Z, et al. The involvement of wheat U-box E3 ubiquitin ligase TaPUB1 in salt stress tolerance[J]. Journal of Integrative Plant Biology, 2020, 62(5): 631-651. |
[21] | LEE S C, CHOI H W, HWANG I S, et al. Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses[J]. Planta, 2006, 224(5): 1209-1225. |
[22] | YIN F L, ZENG Y L, JI J Y, et al. The halophyte Halostachys caspica AP2/ERF transcription factor HcTOE3 positively regulates freezing tolerance in Arabidopsis[J]. Frontiers in Plant Science, 2021, 12: 638788. |
[23] | CHEN K, TANG W S, ZHOU Y B, et al. AP2/ERF transcription factor GmDREB1 confers drought tolerance in transgenic soybean by interacting with GmERFs[J]. Plant Physiology and Biochemistry, 2022, 170: 287-295. |
[24] | QU Y J, NONG Q D, JIAN S G, et al. An AP2/ERF gene, HuERF1, from pitaya (Hylocereus undatus) positively regulates salt tolerance[J]. International Journal of Molecular Sciences, 2020, 21(13): 4586. |
[25] | NAKANO T, SUZUKI K, FUJIMURA T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiology, 2006, 140(2): 411-432. |
[26] | SAKUMA Y, LIU Q, DUBOUZET J G, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs transcription factors involved in dehydration-and cold-inducible gene expression[J]. Biochemical and Biophysical Research Communications, 2002, 290(3): 998-1009. |
[27] | ZHUANG J, CHEN J M, YAO Q H, et al. Discovery and expression profile analysis of AP2/ERF family genes from Triticum aestivum[J]. Molecular Biology Reports, 2011, 38(2): 745-753. |
[28] | REN Y, HUANG Z Q, JIANG H, et al. A heat stress responsive NAC transcription factor heterodimer plays key roles in rice grain filling[J]. Journal of Experimental Botany, 2021, 72(8): 2947-2964. |
[29] | MAO C J, HE J M, LIU L N, et al. OsNAC2 integrates auxin and cytokinin pathways to modulate rice root development[J]. Plant Biotechnology Journal, 2020, 18(2): 429-442. |
[30] | LI M, CHEN R, JIANG Q Y, et al. GmNAC06, a NAC domain transcription factor enhances salt stress tolerance in soybean[J]. Plant Molecular Biology, 2021, 105(3): 333-345. |
[31] | 侯思宇, 孙朝霞, 郭彬, 等. 大豆两个C2H2型转录因子基因序列特征及表达分析[J]. 植物生理学报, 2014, 50(5): 665-674. |
HOU S Y, SUN Z X, GUO B, et al. Cloning and expression analysis of two C2H2 transcription factors in soybean[J]. Plant Physiology Journal, 2014, 50(5): 665-674. (in Chinese with English abstract) | |
[32] | TIWARI V, CHATURVEDI A K, MISHRA A, et al. Introgression of the SbASR-1 gene cloned from a halophyte Salicornia brachiate enhances salinity and drought endurance in transgenic groundnut (Arachis hypogaea)and acts as a transcription factor[J]. PLoS One, 2015, 10(7): e0131567. |
[33] | LI J R, DONG Y, LI C, et al. SiASR4, the target gene of SiARDP from Setaria italica, improves abiotic stress adaption in plants[J]. Frontiers in Plant Science, 2016, 7: 2053. |
[34] | MA H Z, LIU C, LI Z X, et al. ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development[J]. Plant Physiology, 2018, 178(2): 753-770. |
[35] | WANG W B, QIU X P, YANG Y X, et al. Sweetpotato bZIP transcription factor IbABF4 confers tolerance to multiple abiotic stresses[J]. Frontiers in Plant Science, 2019, 10: 630. |
[36] | NIU S K, GU X Y, ZHANG Q, et al. Grapevine bZIP transcription factor bZIP45 regulates VvANN1 and confers drought tolerance in Arabidopsis[J]. Frontiers in Plant Science, 2023, 14: 1128002. |
[37] | YU Q Y, AN L J, LI W L. The CBL-CIPK network mediates different signaling pathways in plants[J]. Plant Cell Reports, 2014, 33(2): 203-214. |
[38] | KUDLA J, XU Q, HARTER K, et al. Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(8): 4718-4723. |
[39] | KUDLA J, BATISTIC O, HASHIMOTO K. Calcium signals: the lead currency of plant information processing[J]. The Plant Cell, 2010, 22(3): 541-563. |
[40] | QUAN R D, LIN H X, MENDOZA I, et al. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress[J]. The Plant Cell, 2007, 19(4): 1415-1431. |
[41] | PANDEY G K, KANWAR P, SINGH A, et al. Calcineurin B-like protein-interacting protein kinase CIPK21 regulates osmotic and salt stress responses in Arabidopsis[J]. Plant Physiology, 2015, 169(1): 780-792. |
[42] | YIN X C, XIA Y Q, XIE Q, et al. The protein kinase complex CBL10-CIPK8-SOS1 functions in Arabidopsis to regulate salt tolerance[J]. Journal of Experimental Botany, 2020, 71(6): 1801-1814. |
[43] | HAN S K, WAGNER D. Role of chromatin in water stress responses in plants[J]. Journal of Experimental Botany, 2014, 65(10): 2785-2799. |
[44] | LIU X C, YANG S G, ZHAO M L, et al. Transcriptional repression by histone deacetylases in plants[J]. Molecular Plant, 2014, 7(5): 764-772. |
[45] | YUAN L Y, LIU X C, LUO M, et al. Involvement of histone modifications in plant abiotic stress responses[J]. Journal of Integrative Plant Biology, 2013, 55(10): 892-901. |
[46] | HOU H L, ZHENG X K, ZHANG H, et al. Histone deacetylase is required for GA-induced programmed cell death in maize aleurone layers[J]. Plant Physiology, 2017, 175(3): 1484-1496. |
[47] | ZHOU S L, JIANG W, LONG F, et al. Rice homeodomain protein WOX11 recruits a histone acetyltransferase complex to establish programs of cell proliferation of crown root meristem[J]. The Plant Cell, 2017, 29(5): 1088-1104. |
[48] | ZHENG Y, DING Y, SUN X, et al. Histone deacetylase HDA9 negatively regulates salt and drought stress responsiveness in Arabidopsis[J]. Journal of Experimental Botany, 2016, 67(6): 1703-1713. |
[49] | ZHENG M, LIU X B, LIN J C, et al. Histone acetyltransferase GCN5 contributes to cell wall integrity and salt stress tolerance by altering the expression of cellulose synthesis genes[J]. The Plant Journal, 2019, 97(3): 587-602. |
[50] | LI S, LIN Y C J, WANG P Y, et al. The AREB1 transcription factor influences histone acetylation to regulate drought responses and tolerance in Populus trichocarpa[J]. The Plant Cell, 2019, 31(3): 663-686. |
[51] | XUE Z Y, ZHI D Y, XUE G P, et al. Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+[J]. Plant Science, 2004, 167(4): 849-859. |
[52] | CHEN L H, ZHANG B, XU Z Q. Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum)[J]. Transgenic Research, 2008, 17(1): 121-132. |
[53] | MUNNS R, JAMES R A, XU B, et al. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene[J]. Nature Biotechnology, 2012, 30(4): 360-364. |
[54] | BYRT C S, XU B, KRISHNAN M, et al. The Na+ transporter, TaHKT1;5-D, limits shoot Na(+) accumulation in bread wheat[J]. The Plant Journal, 2014, 80(3): 516-526. |
[55] | MIAN A, OOMEN R J F J, ISAYENKOV S, et al. Over-expression of an Na+-and K+-permeable HKT transporter in barley improves salt tolerance[J]. The Plant Journal, 2011, 68(3): 468-479. |
[56] | YU G H, ZHANG X, MA H X. Changes in the physiological parameters of SbPIP1-transformed wheat plants under salt stress[J]. International Journal of Genomics, 2015, 2015: 384356. |
[57] | 余桂红, 孙晓波, 张旭, 等. 转SbPIP1基因小麦植株的获得及发芽期耐盐性鉴定[J]. 分子植物育种, 2012, 10(4): 398-403. |
YU G H, SUN X B, ZHANG X, et al. Obtaining of transgenic wheat plants with SbPIP1 gene and preliminary assay of salt tolerance[J]. Molecular Plant Breeding, 2012, 10(4): 398-403. (in Chinese with English abstract) | |
[58] | AYADI M, BRINI F, MASMOUDI K. Overexpression of a wheat aquaporin gene, TdPIP 2;1, enhances salt and drought tolerance in transgenic durum wheat cv. Maali[J]. International Journal of Molecular Sciences, 2019, 20(10): 2389. |
[59] | SU P S, YAN J, LI W, et al. A member of wheat class Ⅲ peroxidase gene family, TaPRX-2A, enhanced the tolerance of salt stress[J]. BMC Plant Biology, 2020, 20(1): 392. |
[60] | 王亮. 小麦过氧化物酶基因TaPrx的遗传转化及耐旱耐盐功能鉴定[D]. 泰安: 山东农业大学, 2015. |
WANG L. Genetic transformation of TaPrx gene in wheat and identification of its drought and salt tolerance[D]. Tai’an: Shandong Agricultural University, 2015. (in Chinese with English abstract) | |
[61] | WANG M C, ZHAO X, XIAO Z, et al. A wheat superoxide dismutase gene TaSOD2 enhances salt resistance through modulating redox homeostasis by promoting NADPH oxidase activity[J]. Plant Molecular Biology, 2016, 91(1/2): 115-130. |
[62] | XIAO G L, ZHAO M M, LIU Q H, et al. TaBAS1 encoding a typical 2-Cys peroxiredoxin enhances salt tolerance in wheat[J]. Frontiers in Plant Science, 2023, 14: 1152375. |
[63] | 刘清华. TaFLS转基因小麦耐盐能力分析[D]. 济南: 山东大学, 2021. |
LIU Q H. Analysis of salt tolerance of TaFLS transgenic wheat[D]. Jinan: Shandong University, 2021. (in Chinese with English abstract) | |
[64] | YANG Z F, MU Y H, WANG Y Q, et al. Characterization of a novel TtLEA2 gene from tritipyrum and its transformation in wheat to enhance salt tolerance[J]. Frontiers in Plant Science, 2022, 13: 830848. |
[65] | HABIB I, SHAHZAD K, RAUF M, et al. Dehydrin responsive HVA1 driven inducible gene expression enhanced salt and drought tolerance in wheat[J]. Plant Physiology and Biochemistry, 2022, 180: 124-133. |
[66] | ANWAR A, WANG K, WANG J, et al. Expression of Arabidopsis Ornithine Aminotransferase (AtOAT) encoded gene enhances multiple abiotic stress tolerances in wheat[J]. Plant Cell Reports, 2021, 40(7): 1155-1170. |
[67] | BEN-SAAD R, BEN-RAMDHAN W, ZOUARI N, et al. Marker-free transgenic durum wheat cv. Karim expressing the AlSAP gene exhibits a high level of tolerance to salinity and dehydration stresses[J]. Molecular Breeding, 2012, 30(1): 521-533. |
[68] | YU T F, XU Z S, GUO J K, et al. Improved drought tolerance in wheat plants overexpressing a synthetic bacterial cold shock protein gene SeCspA[J]. Scientific Reports, 2017, 7: 44050. |
[69] | 赵红莉. 过表达ZmTDP1基因小麦的耐盐和抗旱性分析[D]. 泰安: 山东农业大学, 2020. |
ZHAO H L. Analysis of salt tolerance and drought resistance of wheat overexpressing ZmTDP1 gene[D]. Tai’an: Shandong Agricultural University, 2020. (in Chinese with English abstract) | |
[70] | XIONG X X, LIU Y, ZHANG L L, et al. G-protein β-subunit gene TaGB1-B enhances drought and salt resistance in wheat[J]. International Journal of Molecular Sciences, 2023, 24(8): 7337. |
[71] | YUE W J, ZHANG H B, SUN X M, et al. The landscape of autophagy-related (ATG) genes and functional characterization of TaVAMP727 to autophagy in wheat[J]. International Journal of Molecular Sciences, 2022, 23(2): 891. |
[72] | WANG W Q, YANG Y, DENG Y M, et al. Overexpression of isochorismate synthase enhances salt tolerance in barley[J]. Plant Physiology and Biochemistry, 2021, 162: 139-149. |
[73] | HE C X, YAN J Q, SHEN G X, et al. Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field[J]. Plant & Cell Physiology, 2005, 46(11): 1848-1854. |
[74] | SEN A. Integrative expressional regulation of TaHKT2;1, TaNa+/H+ vacuolar antiporter, and TaSOS1 genes improve salt tolerance in gamma-ray induced bread wheat mutants[J]. Cereal Research Communications, 2021, 49(4): 599-606. |
[75] | WANG W Y, LIU Y Q, DUAN H R, et al. SsHKT1;1 is coordinated with SsSOS1 and SsNHX1 to regulate Na+ homeostasis in Suaeda salsa under saline conditions[J]. Plant and Soil, 2020, 449(1): 117-131. |
[76] | LI S J, WU G Q, LIN L Y. AKT1, HAK5, SKOR, HKT1;5, SOS1 and NHX1 synergistically control Na+ and K+ homeostasis in sugar beet (Beta vulgaris L.) seedlings under saline conditions[J]. Journal of Plant Biochemistry and Biotechnology, 2022, 31(1): 71-84. |
[77] | GARCIADEBLÁS B, SENN M E, BAÑUELOS M A, et al. Sodium transport and HKT transporters: the rice model[J]. The Plant Journal, 2003, 34(6): 788-801. |
[78] | MØLLER I S, GILLIHAM M, JHA D, et al. Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis[J]. The Plant Cell, 2009, 21(7): 2163-2178. |
[79] | PLETT D, SAFWAT G, GILLIHAM M, et al. Improved salinity tolerance of rice through cell type-specific expression of AtHKT1;1[J]. PLoS One, 2010, 5(9): e12571. |
[80] | MAUREL C, VERDOUCQ L, LUU D T, et al. Plant aquaporins: membrane channels with multiple integrated functions[J]. Annual Review of Plant Biology, 2008, 59: 595-624. |
[81] | GUSTAVSSON S, LEBRUN A S, NORDÉN K, et al. A novel plant major intrinsic protein in Physcomitrella patens most similar to bacterial glycerol channels[J]. Plant Physiology, 2005, 139(1): 287-295. |
[82] | DANIELSON J A H, JOHANSON U. Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens[J]. BMC Plant Biology, 2008, 8: 45. |
[83] | ISHIBASHI K, MORISHITA Y, TANAKA Y. The evolutionary aspects of aquaporin family[J]. Advances in Experimental Medicine and Biology, 2017, 969: 35-50. |
[84] | YU J, CANG J, LU Q W, et al. ABA enhanced cold tolerance of wheat ‘dn1’ via increasing ROS scavenging system[J]. Plant Signaling & Behavior, 2020, 15(8): 1780403. |
[1] | LI Jingjing, LI Chuang, LU Yanan, ZHENG Wenming. Identification and expression analysis of Thionin-like gene family in wheat [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 729-737. |
[2] | XUE Xianbin, JIA Qiong, CHEN Zhengfeng, LI Ruiyuan, CHEN Qingfu, SHI Taoxiong. Comprehensive evaluation of agronomic characteristics of recombinant inbred lines of Tartary buckwheat based on principal component analysis [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 748-759. |
[3] | NIU Yu, LI Jing, WANG Junwen, LI Ruirui, TIAN Qiang, WU Yue, YU Jihua. Research progress of anthocyanin biosynthesis, regulation, bioactivity and detection in higher plants [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 978-996. |
[4] | ZHANG Luhe, WANG Duofeng, ZHANG De, ZHANG Guangzhong, ZHAO Tong, LYU Binyan, ZHANG Yangjun, LI Yi. Identification and bioinformatics analysis of novel-miR16 target gene ZjTCP4 in Chinese jujube [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 534-543. |
[5] | CHEN Shangyu, SONG Xuewei, QI Zhenyu, ZHOU Yanhong, YU Jingquan, XIA Xiaojian. The genetic basis of plant shoot branching and the hormonal, metabolic and environmental regulation [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 690-703. |
[6] | LOU Yuangen, LI Chuang, LI Jingjing, XING Guozhen, LU Yanan, ZHENG Wenming. Identification and analysis of HP gene family in wheat [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2023-2032. |
[7] | SONG Chuansheng, KANG Xiaofei, FAN Qingzhong, WANG Jungang, SHI Xue, ZHANG Ziru, TAN Qingqing, ZENG Xiaojiao, LIU Fang, LI Yingsai, HOU Changyue. Cloning, sequence analysis, prokaryotic expression of thymidine kinase from jujube witches’-broom phytoplasma [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1763-1772. |
[8] | WANG Di, YANG Hanmei, LI Yangqian, JIA Mengting, ZOU Liang, YANG Fan. Multidimensional evaluation of “variety, quality, efficiency and application” of Tartary buckwheat and research progress of high-value utilization of active ingredients [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1960-1974. |
[9] | YU Guihong, SONG Guicheng, ZHANG Peng, WANG Huadun, FAN Xiangyun. Comprehensive evaluation of waterlogging tolerance of 18 wheat varieties at jointing stage [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1235-1242. |
[10] | LIU Guangrui, ZONG Yuan, LI Yun, CAO Dong, LIU Baolong, BAO Xuemei, LI Jianmin. Cloning and functional research of MYB transcription factor AsMYB44 from Angelica sinensis [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1253-1264. |
[11] | YANG Kai, CHEN Kai, LI Hongmei, ZHAO Zhongjuan, HU Jindong, LI Jishun, YANG Hetong. Biocontrol efficacy and action mechanism of Trichoderma harzianum LTR-2 and Arthrobacter ureafaciens DnL1-1 against crown rot of wheat [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1385-1395. |
[12] | REN Kaiming, WANG Ben, YANG Wenjun, FAN Yonghui, ZHANG Wenjing, MA Shangyu, HUANG Zhenglai. Effects of nitrogen on physiological growth, quality and yield of weak gluten wheat after rice stubble [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 769-779. |
[13] | LU Shuai, LUO Xiaogang, LIU Quanwei, ZHANG Yi, MENG Yanghao, LI Jie, ZHANG Jinglai. Effect of organic-inorganic compound fertilizer on wheat growth, nutrients and heavy metal content of soil and wheat [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 922-930. |
[14] | XU Yaozhao, ZENG Xiucun, WANG Zhenchao, DANG Shizhuo, LIU Yongjing. Effects of NaCl stress on seed germination and physiological characteristics of winter oilseed rape [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 499-508. |
[15] | BAI Weiwei, ZHAO Xueni, LUO Bin, ZHAO Wei, HUANG Shuo, ZHANG Han. Study of YOLOv5-based germination detection method for wheat seeds [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 445-454. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 400
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 176
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||