浙江农业学报 ›› 2021, Vol. 33 ›› Issue (5): 785-793.DOI: 10.3969/j.issn.1004-1524.2021.05.02
陈雯1(
), 张伟伟1,2,*(
), 邵淑丽1,2, 付学鹏1,2, 黄鑫1,2, 李铁1,2
收稿日期:2020-11-13
出版日期:2021-05-25
发布日期:2021-05-25
作者简介:*张伟伟,E-mail:zww121@163.com通讯作者:
张伟伟
基金资助:
CHEN Wen1(
), ZHANG Weiwei1,2,*(
), SHAO Shuli1,2, FU Xuepeng1,2, HUANG Xin1,2, LI Tie1,2
Received:2020-11-13
Online:2021-05-25
Published:2021-05-25
Contact:
ZHANG Weiwei
摘要:
miR-423-5p在细胞中具有重要的生物学功能,如在肌细胞中能影响细胞的增殖。根据miRBase及NCBI网站显示的相关信息利用分析软件对miR-423在各物种之间的同源性进行了分析。取成年西门塔尔牛体内的骨骼肌、小肠、心脏组织利用茎环荧光定量PCR进行miR-423-5p表达量检测,将牛骨骼肌卫星细胞(MDSCs)分化处理不同时长后进行检测;最后通过在线软件(TargetScan、PicTar)预测其可能结合的靶基因。结果表明,miR-423-5p在各物种间具有较高的同源性,在骨骼肌中表达量明显高于其他组织。在MDSCs中,随着细胞分化时间的延长,miR-423-5p表达量逐渐升高。miR-423-5p在12个基因mRNA的3'-UTR上含有潜在的结合位点,其中部分靶基因参与细胞的增殖、分化和凋亡。结果提示,miR-423-5p可能参与细胞的生长代谢,调节细胞的增殖与分化。
中图分类号:
陈雯, 张伟伟, 邵淑丽, 付学鹏, 黄鑫, 李铁. miR-423-5p在牛肌肉组织中表达及其靶基因预测[J]. 浙江农业学报, 2021, 33(5): 785-793.
CHEN Wen, ZHANG Weiwei, SHAO Shuli, FU Xuepeng, HUANG Xin, LI Tie. Expression of miR-423-5p in bovine muscle and predicted target genes[J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 785-793.
| 引物名称 Primer name | 引物序列 Primer sequence |
|---|---|
| bta-miR-423 RT Primer | 5'-CTC AAC TGG TGT CGT GGA GTC GGC AAT TCA GTT GAG AAA GTC TC-3' |
| bta-miR-423-5p Forward primer | 5'-ACA CTC CAG CTG GGT GAG GGG CAG AGA GCG AGA-3' |
| bta-miR-423-5p Reverse primer | 5'-CTC AAC TGG TGT CGT GGA-3' |
| 18S Forward primer | 5'-GGA CAT CTA AGG GCA TCA CAG-3' |
| 18S Reverse primer | 5'-AAT TCC GAT AAC GAA CGA GAC T-3' |
表1 bta-miR-423-5p引物序列及内参基因引物序列
Table 1 Primers sequences of bta-miR-423-5p and house-keeping genes
| 引物名称 Primer name | 引物序列 Primer sequence |
|---|---|
| bta-miR-423 RT Primer | 5'-CTC AAC TGG TGT CGT GGA GTC GGC AAT TCA GTT GAG AAA GTC TC-3' |
| bta-miR-423-5p Forward primer | 5'-ACA CTC CAG CTG GGT GAG GGG CAG AGA GCG AGA-3' |
| bta-miR-423-5p Reverse primer | 5'-CTC AAC TGG TGT CGT GGA-3' |
| 18S Forward primer | 5'-GGA CAT CTA AGG GCA TCA CAG-3' |
| 18S Reverse primer | 5'-AAT TCC GAT AAC GAA CGA GAC T-3' |
| 序号 No. | 名称 Name | 前体序列 Precursor sequence | 成熟序列 Mature sequence | 基因组位置 Genomic location | ||||
|---|---|---|---|---|---|---|---|---|
| 1 | hsa-mir- 423 | AUAAAGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUAACCCGCGC | >hsa-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >hsa-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr17: 30117079-30117172 [+] | ||||
| 2 | mmu-mir- 423 | ACUUGUGAGGAAAUAAAGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUACCCCGCGCUUG | >mmu-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >mmu-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr11: 77078064-77078172 [-] | ||||
| 3 | bta-mir- 423 | AUAAAGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUACCCCGCGC | >bta-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >bta-miR-423-3p AAGCUCGGUCUGAGGCCCCUCAGU | chr19: 21923268-21923361 [+] | ||||
| 4 | cgr-mir- 423 | GAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCC | >cgr-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >cgr-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | JH000631.1: 520509-520586 [-] | ||||
| 5 | ssc-mir- 423 | AAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUAC | >ssc-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >ssc-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr12: 48287019-48287098 [-] | ||||
| 6 | eca-mir- 423 | AGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGU | >eca-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >eca-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr11: 43782441-43782503 [+] | ||||
| 7 | chi-mir- 423 | ACUUGUGAGGAAAUAAAGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUACCCCGCGCUUGAGUUUCUCCCC | >chi-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >chi-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr19: 21574266-21574385 [+] | ||||
| 序号 No. | 名称 Name | 前体序列 Precursor sequence | 成熟序列 Mature sequence | 基因组位置 Genomic location | ||||
| 8 | pal-mir- 423 | UGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGU | >pal-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >pal-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | KB031150.1: 20857586-20857644 [+] | ||||
| 9 | ocu-mir- 423 | UGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGU | >ocu-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >ocu-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | CM000808.1: 18146102-18146160 [-] | ||||
| 10 | dno-mir- 423 | UGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGU | >dno-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >dno-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | JH582994.1: 2753245-2753303 [-] | ||||
| 11 | rno-mir- 423 | GAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCU | >rno-miR-423-5p UGAGGGGCAGAGAGCGAGACUUUU >rno-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr10: 63098366-63098444 [+] | ||||
| 12 | cpo-mir- 423 | UGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGU | >cpo-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >cpo-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | DS562887.1: 22509141-22509199 [-] | ||||
| 13 | mml-mir- 423 | AUAAAGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUACCCCGCGC | >mml-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >mml-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr16: 24183848-24183941 [+] | ||||
| 14 | ppy-mir- 423 | AGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUACCCCGCGC | >ppy-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >ppy-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr17:4902242-24902331 [+] | ||||
表2 miR-423基因信息
Table 2 Gene information of miR-423
| 序号 No. | 名称 Name | 前体序列 Precursor sequence | 成熟序列 Mature sequence | 基因组位置 Genomic location | ||||
|---|---|---|---|---|---|---|---|---|
| 1 | hsa-mir- 423 | AUAAAGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUAACCCGCGC | >hsa-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >hsa-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr17: 30117079-30117172 [+] | ||||
| 2 | mmu-mir- 423 | ACUUGUGAGGAAAUAAAGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUACCCCGCGCUUG | >mmu-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >mmu-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr11: 77078064-77078172 [-] | ||||
| 3 | bta-mir- 423 | AUAAAGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUACCCCGCGC | >bta-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >bta-miR-423-3p AAGCUCGGUCUGAGGCCCCUCAGU | chr19: 21923268-21923361 [+] | ||||
| 4 | cgr-mir- 423 | GAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCC | >cgr-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >cgr-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | JH000631.1: 520509-520586 [-] | ||||
| 5 | ssc-mir- 423 | AAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUAC | >ssc-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >ssc-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr12: 48287019-48287098 [-] | ||||
| 6 | eca-mir- 423 | AGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGU | >eca-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >eca-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr11: 43782441-43782503 [+] | ||||
| 7 | chi-mir- 423 | ACUUGUGAGGAAAUAAAGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUACCCCGCGCUUGAGUUUCUCCCC | >chi-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >chi-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr19: 21574266-21574385 [+] | ||||
| 序号 No. | 名称 Name | 前体序列 Precursor sequence | 成熟序列 Mature sequence | 基因组位置 Genomic location | ||||
| 8 | pal-mir- 423 | UGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGU | >pal-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >pal-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | KB031150.1: 20857586-20857644 [+] | ||||
| 9 | ocu-mir- 423 | UGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGU | >ocu-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >ocu-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | CM000808.1: 18146102-18146160 [-] | ||||
| 10 | dno-mir- 423 | UGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGU | >dno-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >dno-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | JH582994.1: 2753245-2753303 [-] | ||||
| 11 | rno-mir- 423 | GAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCU | >rno-miR-423-5p UGAGGGGCAGAGAGCGAGACUUUU >rno-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr10: 63098366-63098444 [+] | ||||
| 12 | cpo-mir- 423 | UGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGU | >cpo-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >cpo-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | DS562887.1: 22509141-22509199 [-] | ||||
| 13 | mml-mir- 423 | AUAAAGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUACCCCGCGC | >mml-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >mml-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr16: 24183848-24183941 [+] | ||||
| 14 | ppy-mir- 423 | AGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUACCCCGCGC | >ppy-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >ppy-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr17:4902242-24902331 [+] | ||||
图2 miR-423同源性分析 A,miR-423前体序列同源性预测;B,miR-423-3p成熟体序列同源性预测;C,miR-423-5p成熟体序列同源性预测。
Fig.2 Homology analysis of miR-423 A, Homology prediction of pre-miR-423; B, Homology prediction of miR-423-3p mature sequence; C, Homology prediction of miR-423-5p mature sequence.
| 序号 No | 靶基因 Target gene | 靶基因名称 The name of target gene | 与靶基因mRNA 3'UTR结合位点 The binding site on 3'UTRs of target genes mRNA |
|---|---|---|---|
| 1 | PEX26 | 过氧化物酶体生物发生因子26 Peroxisomal biogenesis factor 26 | 560~566 |
| 2 | THBS3 | 血小板反应蛋白3 Thrombospondin 3 | 76~83 |
| 3 | CLTB | 网格蛋白轻链B Clathrin light chain B | 153~159 |
| 4 | OPA3 | 线粒体外膜脂质代谢调节剂OPA3 | 171~177 |
| Outer mitochondrial membrane lipid metabolism regulator OPA3 | |||
| 5 | LYNX1 | Ly6/神经毒素1 Ly6/neurotoxin 1 | 705~711 |
| 6 | SRM | 亚精胺合酶 Spermidine synthase | 232~239 |
| 7 | VGF | VGF可诱导神经生长因子 VGF nerve growth factor inducible | 415~421 |
| 8 | CAMKK1 | 钙/钙调蛋白依赖性蛋白激酶激酶1 | 61~67 |
| Calcium/calmodulin dependent protein kinase kinase 1 | |||
| 9 | WNT9B | Wnt家庭成员9B Wnt family member 9B | 222~228 |
| 10 | PLA2G6 | 磷脂酶A2组Ⅵ Phospholipase A2 group Ⅵ | 424~430 |
| 11 | NRSN2 | 神经素2 Neurensin 2 | 843~849 |
| 12 | SYP | 突触素 Synaptophysin | 1 329~1 335 |
表3 miR-423-5p靶基因预测结果
Table 3 Prediction of miR-423 target gene
| 序号 No | 靶基因 Target gene | 靶基因名称 The name of target gene | 与靶基因mRNA 3'UTR结合位点 The binding site on 3'UTRs of target genes mRNA |
|---|---|---|---|
| 1 | PEX26 | 过氧化物酶体生物发生因子26 Peroxisomal biogenesis factor 26 | 560~566 |
| 2 | THBS3 | 血小板反应蛋白3 Thrombospondin 3 | 76~83 |
| 3 | CLTB | 网格蛋白轻链B Clathrin light chain B | 153~159 |
| 4 | OPA3 | 线粒体外膜脂质代谢调节剂OPA3 | 171~177 |
| Outer mitochondrial membrane lipid metabolism regulator OPA3 | |||
| 5 | LYNX1 | Ly6/神经毒素1 Ly6/neurotoxin 1 | 705~711 |
| 6 | SRM | 亚精胺合酶 Spermidine synthase | 232~239 |
| 7 | VGF | VGF可诱导神经生长因子 VGF nerve growth factor inducible | 415~421 |
| 8 | CAMKK1 | 钙/钙调蛋白依赖性蛋白激酶激酶1 | 61~67 |
| Calcium/calmodulin dependent protein kinase kinase 1 | |||
| 9 | WNT9B | Wnt家庭成员9B Wnt family member 9B | 222~228 |
| 10 | PLA2G6 | 磷脂酶A2组Ⅵ Phospholipase A2 group Ⅵ | 424~430 |
| 11 | NRSN2 | 神经素2 Neurensin 2 | 843~849 |
| 12 | SYP | 突触素 Synaptophysin | 1 329~1 335 |
| [1] | 林君. miR-423在肝癌细胞增殖及周期转换中的作用及其分子机制[D]. 福州:福建医科大学, 2011. |
| LIN J. The study on function and mechanism of miR-423 in the cell proliferation and cell cycle of liver cancer[D]. Fuzhou: Fujian Medical University, 2011. (in Chinese with English abstract) | |
| [2] |
SETHI S, SETHI S, BLUTH M H. Clinical implication of MicroRNAs in molecular pathology: an update for 2018[J]. Clinics in Laboratory Medicine, 2018,38(2):237-251.
DOI URL |
| [3] |
ZHANG S F, CHEN N. Regulatory role of MicroRNAs in muscle atrophy during exercise intervention[J]. International Journal of Molecular Sciences, 2018,19(2):405.
DOI URL |
| [4] |
EULALIO A, MANO M, DAL FERRO M, et al. Functional screening identifies miRNAs inducing cardiac regeneration[J]. Nature, 2012,492(7429):376-381.
DOI URL |
| [5] | 罗丹, 朱潇邦, 蒋明, 等. 肺动脉平滑肌细胞自噬与合成分泌功能的关系[J]. 实用医学杂志, 2019,35(7):1048-1051. |
| LUO D, ZHU X B, JIANG M, et al. The relationship between autophagy and synthetic secretory function of pulmonary artery smooth muscle cells[J]. The Journal of Practical Medicine, 2019,35(7):1048-1051.(in Chinese with English abstract) | |
| [6] | 余盈娟, 袁玉丰, 林琳. 胰岛素对结肠平滑肌细胞增殖及其表达干细胞因子的影响[J]. 世界华人消化杂志, 2011,19(7):674-679. |
| YU Y J, YUAN Y F, LIN L. Insulin regulates the expression of stem cell factor in rat colonic smooth muscle cells[J]. World Chinese Journal of Digestology, 2011,19(7):674-679.(in Chinese with English abstract) | |
| [7] | 刘秀娟. microRNAs在骨骼肌发育、损伤与再生中的调控作用[J]. 南京体育学院学报, 2019,2(12):38-47. |
| LIU X J. The regulation role of MicroRNAs in skeletal muscle development, injury and regeneration[J]. Journal of Nanjing Sports Institute, 2019,2(12):38-47.(in Chinese with English abstract) | |
| [8] | 黄建芳. 猪miRNA-423-5p靶向SRF基因调控肌肉发育的初步研究[D]. 南宁: 广西大学, 2016. |
| HUANG J F. Regulation of miRNA-423-5p on muscle development by targeting SRF gene in pig[D]. Nanning: Guangxi University, 2016. (in Chinese with English abstract) | |
| [9] | 赵曦雯, 张玉梅. MiR-92a通过靶向抑制PTEN的表达促进血管平滑肌细胞的增殖以及迁移[J]. 成都医学院学报, 2019,14(2):163-168. |
| ZHAO X W, ZHANG Y M. MiR-92a promotes the proliferation and migration of vascular smooth muscle cells by targeting the inhibition of PTEN expression[J]. Journal of Chengdu Medical College, 2019,14(2):163-168.(in Chinese with English abstract) | |
| [10] |
YANG F, CHEN Q S, HE S P, et al. miR-22 is a novel mediator of vascular smooth muscle cell phenotypic modulation and neointima formation[J]. Circulation, 2018,137(17):1824-1841.
DOI URL |
| [11] |
SHEN H, LU S Y, DONG L L, et al. Hsa-miR-320d and hsa-miR-582, miRNA biomarkers of aortic dissection, regulate apoptosis of vascular smooth muscle cells[J]. Journal of Cardiovascular Pharmacology, 2018,71(5):275-282.
DOI URL |
| [12] |
GE J, ZHU J Y, XIA B, et al. miR-423-5p inhibits myoblast proliferation and differentiation by targeting Sufu[J]. Journal of Cellular Biochemistry, 2018,119(9):7610-7620.
DOI URL |
| [13] |
LI H T, ZHANG H, CHEN Y, et al. MiR-423-3p enhances cell growth through inhibition of p21Cip1/Waf1 in colorectal cancer[J]. Cellular Physiology and Biochemistry, 2015,37(3):1044-1054.
DOI URL |
| [14] |
DEY B K, GAGAN J, DUTTA A. miR-206 and-486 induce myoblast differentiation by downregulating Pax7[J]. Molecular and Cellular Biology, 2011,31(1):203-214.
DOI URL |
| [15] |
CHEN J F, MANDEL E M, MICHAEL THOMSON J, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation[J]. Nature Genetics, 2006,38(2):228-233.
DOI URL |
| [16] |
CESANA M, DE CACCHIARELLI D, LEGNINI I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA[J]. Cell, 2011,147(2):358-369.
DOI URL |
| [17] |
HUANG M B, XU H, XIE S J, et al. Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis[J]. PLoS One, 2011,6(12):e29173.
DOI URL |
| [18] |
FENG Y, CAO J H, LI X Y, et al. Inhibition of miR-214 expression represses proliferation and differentiation of C2C12 myoblasts[J]. Cell Biochemistry and Function, 2011,29(5):378-383.
DOI URL |
| [19] | 盛熙晖, 邓桂馨, 倪和民, 等. microRNAs调控动物骨骼肌发育的研究进展[J]. 畜牧兽医学报, 2015,46(2):179-185. |
| SHENG X H, DENG G X, NI H M, et al. Research progress on MicroRNAs regulating animal skeletal muscle development[J]. Chinese Journal of Animal and Veterinary Sciences, 2015,46(2):179-185.(in Chinese with English abstract) | |
| [20] |
MCDANELD T G, SMITH T P L, DOUMIT M E, et al. MicroRNA transcriptome profiles during swine skeletal muscle development[J]. BMC Genomics, 2009,10:77.
DOI URL |
| [21] | 宋广忠, 万双双, 周茜, 等. miR-423-5p在小鼠急性肝衰竭模型中的功能研究[J]. 科技视界, 2019(17):214-215. |
| SONG G Z, WAN S S, ZHOU Q, et al. Studying the function of MiR-423-5p in the mouse model of acute hepatic failure model[J]. Science & Technology Vision, 2019(17):214-215.(in Chinese with English abstract) | |
| [22] |
KONG P F, ZHU X F, GENG Q R, et al. The microRNA-423-3p-bim axis promotes cancer progression and activates oncogenic autophagy in gastric cancer[J]. Molecular Therapy, 2017,25(4):1027-1037.
DOI URL |
| [23] | LI J, SUN H J, LIU T, et al. MicroRNA-423 promotes proliferation, migration and invasion and induces chemoresistance of endometrial cancer cells[J]. Experimental and Therapeutic Medicine, 2018,16(5):4213-4224. |
| [24] |
WANG J, REN Q L, HUA L S, et al. Comprehensive analysis of differentially expressed mRNA, lncRNA and circRNA and their CeRNA networks in the longissimus dorsi muscle of two different pig breeds[J]. International Journal of Molecular Sciences, 2019,20(5):1107.
DOI URL |
| [25] |
CHENG X F, LI L, SHI G L, et al. MEG3 promotes differentiation of porcine satellite cells by sponging miR-423-5p to relieve inhibiting effect on SRF[J]. Cells, 2020,9(2):449.
DOI URL |
| [26] |
CHANG C C, VENØ M T, CHEN L, et al. Global MicroRNA profiling in human bone marrow skeletal—stromal or mesenchymal-stem cells identified candidates for bone regeneration[J]. Molecular Therapy, 2018,26(2):593-605.
DOI URL |
| [27] |
SIENGDEE P, TRAKOOLJUL N, MURANI E, et al. MicroRNAs regulate cellular ATP levels by targeting mitochondrial energy metabolism genes during C2C12 myoblast differentiation[J]. PLoS One, 2015,10(5):e0127850.
DOI URL |
| [28] | 罗海静, 沈洋, 曲世玮, 等. miR-2400在牛各组织中表达及其靶基因预测[J]. 基因组学与应用生物学, 2020,39(9):3929-3934. |
| LUO H J, SHEN Y, QU S W, et al. The expression of miR-2400 in bovine tissues and predicted target genes[J]. Genomics and Applied Biology, 2020,39(9):3929-3934.(in Chinese with English abstract) | |
| [29] | 马喜山, 唐中林, 肖冲, 等. THBS3基因在长白猪和通城猪不同组织和不同时期骨骼肌中的表达分析[J]. 中国畜牧兽医, 2016,43(4):1032-1038. |
| MA X S, TANG Z L, XIAO C, et al. Expression analysis of THBS3 gene in different tissues and skeletal muscles at different periods from Landrace and Tongcheng pigs[J]. China Animal Husbandry & Veterinary Medicine, 2016,43(4):1032-1038.(in Chinese with English abstract) | |
| [30] |
FU X W, SONG P F, SPINDEL E R. Role of Lynx1 and related Ly6 proteins as modulators of cholinergic signaling in normal and neoplastic bronchial epithelium[J]. International Immunopharmacology, 2015,29(1):93-98.
DOI URL |
| [31] |
TAKEUCHI H, INAGAKI S, MOROZUMI W, et al. VGF nerve growth factor inducible is involved in retinal ganglion cells death induced by optic nerve crush[J]. Scientific Reports, 2018,8:16443.
DOI URL |
| [32] | YANG D X, ZHANG W B, PADHIAR A, et al. NPAS3 regulates transcription and expression of VGF: implications for neurogenesis and psychiatric disorders[J]. Frontiers in Molecular Neuroscience, 2016,9:109. |
| [33] |
KARNER C M, DAS A, MA Z D, et al. Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development[J]. Development (Cambridge, England), 2011,138(7):1247-1257.
DOI URL |
| [34] | KAMEI C N, GALLEGOS T F, LIU Y, et al. Wnt signaling mediates new nephron formation during zebrafish kidney regeneration[J]. Development, 2019,146(8): dev168294. |
| [1] | 张悦宇, 黄美琦, 张琳, 齐颖, 李秋玲. bta-miR-146b对热应激奶牛乳腺上皮细胞乳蛋白合成信号通路的影响[J]. 浙江农业学报, 2025, 37(6): 1212-1220. |
| [2] | 钱明珠, 王申锋, 常晓冉, 胡俊英, 朱红标, 王新平. 河南省2株牛肠道病毒全基因组序列测定与分析[J]. 浙江农业学报, 2025, 37(3): 548-558. |
| [3] | 王健霖, 田兴苗, 王景松, 戴莎莎, 郭亚男, 何生虎, 李继东. 牛支原体可视化重组酶聚合酶扩增检测方法的建立[J]. 浙江农业学报, 2024, 36(8): 1811-1819. |
| [4] | 张晋, 吴晓丽, 田雨薇, 赵珂, 李欢欢, 达色, 次仁达杰, 陈黎洪, 唐宏刚. 超声波辅助酶解牦牛血粉提取氯化血红素的响应面工艺优化及品质表征[J]. 浙江农业学报, 2024, 36(6): 1357-1367. |
| [5] | 才冬杰, 申子凡, 左之才, 田斌, 叶刚, 李伟强, 卜庆龙. 绞股蓝皂苷体外抗牛病毒性腹泻病毒的作用[J]. 浙江农业学报, 2024, 36(12): 2687-2695. |
| [6] | 汪梦竹, 杨光美, 吴玉湖, 杨宣叶, 王慧慧, 曹小安, 李勇, 马忠仁, 马晓霞. 三株分离于新生小牛的牛病毒性腹泻病毒株的基因组特征[J]. 浙江农业学报, 2023, 35(8): 1814-1822. |
| [7] | 宋雅萍, 雷召雄, 赵毅昂, 姜超, 王兴平, 罗仍卓么, 马云, 魏大为. 牛FoxO1基因CDS区克隆及其在脂肪细胞分化过程中的表达分析[J]. 浙江农业学报, 2023, 35(5): 1016-1027. |
| [8] | 李娅楠, 冶文兴, 朱相德, 陈林, 徐晓锋, 张力莉. 基于LC-MS/MS技术研究稻草替代部分玉米青贮对奶牛血浆代谢产物的影响[J]. 浙江农业学报, 2023, 35(2): 266-274. |
| [9] | 杨秋蕾, 魏旭东, 马志杰, 陈生梅, 晁生玉, 乌兰巴特尔. 基于mtDNA Cyt b序列变异探究柴达木黄牛的母系遗传多样性及遗传背景[J]. 浙江农业学报, 2023, 35(2): 285-292. |
| [10] | 李艳艳, 卜建华, 韩丽云, 王川川, 母童. 奶牛乳脂代谢关键候选基因的鉴定与功能分析[J]. 浙江农业学报, 2023, 35(12): 2794-2808. |
| [11] | 戴莎莎, 马小静, 王景松, 田兴苗, 王健霖, 李继东. 重组牛疱疹病毒1型转移载体的构建与初步应用[J]. 浙江农业学报, 2023, 35(10): 2311-2320. |
| [12] | 杨迪, 张乃群, 王雪勇, 张军, 王新军. 基于数量性状的伏牛山野生中华猕猴桃资源综合评价[J]. 浙江农业学报, 2023, 35(10): 2354-2363. |
| [13] | 吕倩, 骆巧, 罗雪, 陈久兵, 马莉, 罗正中, 姚学萍, 余树民, 沈留红, 曹随忠. 基于高通量测序技术分析奶牛场垫沙和橡胶垫卧床中的菌群差异[J]. 浙江农业学报, 2022, 34(7): 1377-1385. |
| [14] | 刘鹏程, 张继, 邱淦远, 龚俞, 李雪松, 李维, 张依裕, 刘若余. 关岭牛TBC1D7基因单核苷酸多态性筛查及生物信息学分析[J]. 浙江农业学报, 2022, 34(7): 1402-1411. |
| [15] | 李姗, 黄方园, 张玉龙, 才冬杰, 左之才. 四川省部分地区肉牛源产超广谱β-内酰胺酶肺炎克雷伯菌的分离鉴定与耐药性分析[J]. 浙江农业学报, 2022, 34(5): 923-933. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||