浙江农业学报 ›› 2022, Vol. 34 ›› Issue (10): 2095-2104.
收稿日期:
2021-03-29
出版日期:
2022-10-25
发布日期:
2022-10-26
作者简介:
孟娜(1977—),女,安徽宿州人,博士研究生,高级实验师,主要从事植物逆境生理与分子生物学研究。E-mail: dreammn@126.com
基金资助:
MENG Na1(), XUE Hui2, WEI Ming1, WEI Shenghua1
Received:
2021-03-29
Online:
2022-10-25
Published:
2022-10-26
摘要:
为了从离子响应的视角探究氯通道抑制剂缓解栽培大豆幼苗盐伤害的作用机理,以大豆栽培品种绥农35为试验材料,采用大豆幼苗期盐胁迫外加氯通道抑制剂的方法,比较不同处理幼苗的相关生理指标、解剖结构和离子组的差异。结果显示:外加不同氯离子抑制剂对盐胁迫作用效果不同,分别表现为ZnCl2能缓解栽培大豆幼苗的盐伤害作用,但尼氟灭酸(NFA)和蒽-9-羧酸(9-AC)则相反,加重了盐害作用;外加Zn2+,根部次生导管孔径回升,皮层细胞厚度减少,有利于降低根部总消耗,缩短水分和矿质离子横向运输的距离;外加Zn2+,叶部叶绿素含量、叶绿素荧光参数PSⅡ最大光化学效率(Fv/Fm)值,N
中图分类号:
孟娜, 薛辉, 魏明, 魏胜华. 氯通道抑制剂缓解栽培大豆盐伤害的离子特征[J]. 浙江农业学报, 2022, 34(10): 2095-2104.
MENG Na, XUE Hui, WEI Ming, WEI Shenghua. Ion characteristics on chloride channel blocker ameliorating salt injury to Glycine max[J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2095-2104.
图1 不同盐浓度(A)和氯离子通道抑制剂(B)栽培大豆绥农35植株表型比较从左到右依次是A ( Control, 100、140和200 mmol·L-1NaCl ), B (Control, NaCl, Zn2+, 9-AC和NFA)。
Fig.1 The appearance of Glycine max cultivar Suinong 35 under different concentrations of NaCl treatments (A) and different chloride channel inhibitors (B) From left to right, A (Control, 100, 140 and 200 mmol·L-1NaCl), B (Control, NaCl, Zn2+, 9-AC and NFA).
处理 Treatment | 叶片长度 Leaf length/cm | 叶片宽度 Leaf width/cm | 叶片面积 Leaf area/cm2 | 叶片周长 Leaf perimeter/cm | 根长 Root length/cm | 株高 Plant height/cm |
---|---|---|---|---|---|---|
对照组Control | 7.20±0.04 a | 3.64±0.009 a | 18.47±0.04 a | 17.48±0.65 a | 16.0±0.67 a | 62.0±0.67 a |
盐处理组NaCl | 4.52±0.016 c | 2.41±0.007 c | 8.09±0.14 c | 8.93±0.27 c | 12.33±0.44 b | 38.0±1.33 c |
盐+Zn2+处理组 | 5.32±0.018 b | 2.91±0.007 b | 11.70±0.23 b | 12.88±0.43 b | 17.0±1.33 a | 45.0±0.67 b |
NaCl+ Zn2+ |
表1 不同处理下栽培大豆品种绥农35植株的形态参数比较
Table 1 Comparison of morphological parameters in Glycine max cultivar Suinong 35 under different treatments
处理 Treatment | 叶片长度 Leaf length/cm | 叶片宽度 Leaf width/cm | 叶片面积 Leaf area/cm2 | 叶片周长 Leaf perimeter/cm | 根长 Root length/cm | 株高 Plant height/cm |
---|---|---|---|---|---|---|
对照组Control | 7.20±0.04 a | 3.64±0.009 a | 18.47±0.04 a | 17.48±0.65 a | 16.0±0.67 a | 62.0±0.67 a |
盐处理组NaCl | 4.52±0.016 c | 2.41±0.007 c | 8.09±0.14 c | 8.93±0.27 c | 12.33±0.44 b | 38.0±1.33 c |
盐+Zn2+处理组 | 5.32±0.018 b | 2.91±0.007 b | 11.70±0.23 b | 12.88±0.43 b | 17.0±1.33 a | 45.0±0.67 b |
NaCl+ Zn2+ |
图2 不同处理下栽培品种绥农35植株根部解剖结构和结构参数特征比较从左到右依次是:Control、NaCl、NaCl+ Zn2+。A,根部解剖结构特征;B,根部表皮细胞。px,初生木质部;sx,次生木质部;sp,次生韧皮部;st,中柱;c,皮层;ec,表皮细胞。
Fig.2 Comparison of anatomical structures and parameters of roots in Glycine max cultivar Suinong 35 under different treatments From left to right: Control, NaCl, NaCl+ Zn2+, respectively. A, Cross-sections of roots; B, Epidermis cell of roots. px, Primary xylem; sx, Second xylem; sp, Second phloem; st, Stele; c, Cortex; ec, Epidermis cell.
处理 Treatment | 根直径 Root diameter/μm | 皮层厚度 Cortex thickness/μm | 皮层/根直径 Cortex/Root diameter/% | 次生导管直径 Secondary vessel diameter/μm | 中柱直径 Stele diameter/μm | 中柱/根直径 Stele/Root diameter/% |
---|---|---|---|---|---|---|
对照组Control | 2 836.70±78.42 a | 592.98±42.50 a | 20.90±1.41 b | 47.99±5.15 a | 1 471.86±57.02 a | 51.89±3.09 a |
盐处理组NaCl | 1 636.90±6.32 c | 451.01±9.09 b | 27.56±0.65 a | 38.74±3.36 b | 703.12±9.32 c | 42.95±0.60 b |
盐+Zn2+处理组 | 2 274.27±20.08 b | 603.07±33.50 a | 26.52±1.40 a | 37.36±2.92 b | 1 000.96±12.56 b | 44.01±0.74 b |
NaCl+ Zn2+ |
表2 不同处理下栽培大豆品种绥农35根部结构参数
Table 2 Root structure parameters of Glycine max cultivar Suinong 35 under different treatments
处理 Treatment | 根直径 Root diameter/μm | 皮层厚度 Cortex thickness/μm | 皮层/根直径 Cortex/Root diameter/% | 次生导管直径 Secondary vessel diameter/μm | 中柱直径 Stele diameter/μm | 中柱/根直径 Stele/Root diameter/% |
---|---|---|---|---|---|---|
对照组Control | 2 836.70±78.42 a | 592.98±42.50 a | 20.90±1.41 b | 47.99±5.15 a | 1 471.86±57.02 a | 51.89±3.09 a |
盐处理组NaCl | 1 636.90±6.32 c | 451.01±9.09 b | 27.56±0.65 a | 38.74±3.36 b | 703.12±9.32 c | 42.95±0.60 b |
盐+Zn2+处理组 | 2 274.27±20.08 b | 603.07±33.50 a | 26.52±1.40 a | 37.36±2.92 b | 1 000.96±12.56 b | 44.01±0.74 b |
NaCl+ Zn2+ |
图3 不同处理下栽培大豆绥农35植株叶部总叶绿素含量(A)和Fv/Fm (B)值数据均3个重复平均值,不同字母表示处理间差异显著(P<0.05)。下同。
Fig.3 Total chlorophyll contents (A) and Fv/Fm value (B) of Glycine max cultivar Suinong 35 under different treatments Statistical data were expressed as x -±s of three replicates. Means in bars with different letters indicated significant differences (P<0.05) among treatments according to Duncan’s multiple-range test.The same as below.
图4 不同处理下测定栽培大豆绥农35植株根、茎和叶部Cl-(A)和 NO 3 -(B)含量
Fig.4 Contents of Cl-(A) and NO 3 -(B) of roots, stems and leaves in Glycine max cultivar Suinong 35 under different treatments
处理 Treatments | K/(g· kg-1) | Na/(g· kg-1) | Ca/(g· kg-1) | Mg/(g· kg-1) | Fe/(mg· kg-1) | Mn/(mg· kg-1) | Cu/(mg· kg-1) | Zn/(mg· kg-1) | Mo/(mg· kg-1) |
---|---|---|---|---|---|---|---|---|---|
对照组 Control | 43.181± 0.691 b | 1.115± 0.088 b | 10.108± 0.800 a | 3.448± 0.273 a | 309.248± 4.087 b | 189.023± 2.593 a | 12.878± 0.666 b | 87.122± 3.273 c | 2.812± 0.193 a |
盐处理组 NaCl | 64.190± 2.653 a | 21.671± 0.738 a | 10.565± 1.126 a | 3.308± 0.174 a | 241.392± 8.566 c | 111.332± 5.287 c | 13.753± 0.907 b | 102.387± 1.947 b | 1.586± 0.280 b |
盐+Zn2+处理组 NaCl+ Zn2+ | 62.221± 1.280 a | 21.565± 1.647 a | 9.333± 0.280 a | 3.714± 0.186 a | 495.529± 9.173 a | 148.938± 2.387 b | 19.747± 0.745 a | 147.867± 7.561 a | 0.737± 0.113 c |
表3 不同处理下栽培大豆绥农35叶部元素含量
Table 3 Element contents in leaves of Glycine max cultivar Suinong 35 under different treatments
处理 Treatments | K/(g· kg-1) | Na/(g· kg-1) | Ca/(g· kg-1) | Mg/(g· kg-1) | Fe/(mg· kg-1) | Mn/(mg· kg-1) | Cu/(mg· kg-1) | Zn/(mg· kg-1) | Mo/(mg· kg-1) |
---|---|---|---|---|---|---|---|---|---|
对照组 Control | 43.181± 0.691 b | 1.115± 0.088 b | 10.108± 0.800 a | 3.448± 0.273 a | 309.248± 4.087 b | 189.023± 2.593 a | 12.878± 0.666 b | 87.122± 3.273 c | 2.812± 0.193 a |
盐处理组 NaCl | 64.190± 2.653 a | 21.671± 0.738 a | 10.565± 1.126 a | 3.308± 0.174 a | 241.392± 8.566 c | 111.332± 5.287 c | 13.753± 0.907 b | 102.387± 1.947 b | 1.586± 0.280 b |
盐+Zn2+处理组 NaCl+ Zn2+ | 62.221± 1.280 a | 21.565± 1.647 a | 9.333± 0.280 a | 3.714± 0.186 a | 495.529± 9.173 a | 148.938± 2.387 b | 19.747± 0.745 a | 147.867± 7.561 a | 0.737± 0.113 c |
[1] |
MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59(1): 651-681.
DOI URL |
[2] | 武维华. 植物生理学[M]. 2版. 北京: 科学出版社, 2008: 520. |
[3] |
LUO Q Y, YU B J, LIU Y L. Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G.soja under NaCl stress[J]. Journal of Plant Physiology, 2005, 162(9): 1003-1012.
DOI URL |
[4] | TEAKLE N L, TYERMAN S D. Mechanisms of Cl- transport contributing to salt tolerance[J]. Plant, Cell & Environment, 2010, 33(4): 566-589. |
[5] |
PARIDA A K, DAS A B. Salt tolerance and salinity effects on plants: a review[J]. Ecotoxicology and Environmental Safety, 2005, 60(3): 324-349.
PMID |
[6] |
朱晓林, 魏小红, 王宝强, 等. c-GMP诱导对盐胁迫下番茄的转录组分析[J]. 浙江农业学报, 2020, 32(10): 1788-1797.
DOI |
ZHU X L, WEI X H, WANG B Q, et al. Transcriptome analysis of tomato under salt stress induced by c-GMP[J]. Acta Agriculturae Zhejiangensis, 2020, 32(10): 1788-1797. (in Chinese with English abstract)
DOI |
|
[7] |
OSAKABE Y, YAMAGUCHI-SHINOZAKI K, SHINOZAKI K, et al. ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity[J]. New Phytologist, 2014, 202(1): 35-49.
DOI PMID |
[8] |
LAHNER B, GONG J M, MAHMOUDIAN M, et al. Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana[J]. Nature Biotechnology, 2003, 21(10): 1215-1221.
DOI URL |
[9] | 丁广大, 刘佳, 石磊, 等. 植物离子组学: 植物营养研究的新方向[J]. 植物营养与肥料学报, 2010, 16(2): 479-484. |
DING G D, LIU J, SHI L, et al. Plant inomics: a new field in plant nutrition[J]. Plant Nutrition and Fertilizer Science, 2010, 16(2): 479-484. (in Chinese with English abstract) | |
[10] |
NGUYEN C T, AGORIO A, JOSSIER M, et al. Characterization of the chloride channel-like, AtCLCg, involved in chloride tolerance in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2016, 57(4): 764-775.
DOI URL |
[11] |
WONG T H, LI M W, YAO X Q, et al. The GmCLC1 protein from soybean functions as a chloride ion transporter[J]. Journal of Plant Physiology, 2013, 170(1): 101-104.
DOI URL |
[12] |
WHITE P. Chloride in soils and its uptake and movement within the plant: a review[J]. Annals of Botany, 2001, 88(6): 967-988.
DOI URL |
[13] | 屈娅娜, 於丙军. 氯离子通道抑制剂对盐胁迫下野生和栽培大豆幼苗离子含量等生理指标的影响[J]. 南京农业大学学报, 2008, 31(2): 17-21. |
QU Y N, YU B J. Effects of chloride channel blockers on ion contents and other physiological indexes of Glycine soja and Glycine max seedlings under NaCl stress[J]. Journal of Nanjing Agricultural University, 2008, 31(2): 17-21. (in Chinese with English abstract) | |
[14] | 商静, 许嘉阳, 范艺宽, 等. 高氯土壤条件下烤烟对Cl-通道抑制剂的生理响应[J]. 植物营养与肥料学报, 2017, 23(2): 460-467. |
SHANG J, XU J Y, FAN Y K, et al. Physiological responses of flue-cured tobacco under the high chloride to chloride channel inhibitors[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(2): 460-467. (in Chinese with English abstract) | |
[15] | 王灵燕. 钠盐和氯盐胁迫对甘薯幼苗生长及光合作用的效应[D]. 济南: 山东师范大学, 2012. |
WANG L Y. Effect of sodium and chloride salt stress on the growth and photosynthesis of sweet potato seedlings[D]. Jinan: Shandong Normal University, 2012. (in Chinese with English abstract) | |
[16] | 付春旭, 姜成喜, 付亚书, 等. 高产、优质大豆新品种绥农35的选育与示范推广[J]. 大豆科技, 2013(3): 31-33. |
FU C X, JIANG C X, FU Y S, et al. Breeding, demonstration and popularization of a new soybean cultivar Suinong 35 with high yield and good quality[J]. Soybean Science & Technology, 2013(3): 31-33. (in Chinese) | |
[17] | 孙启高, 宋书银, 王宇飞, 等. 介绍双子叶植物叶结构分类术语[J]. 植物分类学报, 1997, 35(3): 275-288. |
SUN Q G, SONG S Y, WANG Y F, et al. Introduction to terminology of classification of dicotyledonous leaf architecture[J]. Acta Phytotaxonomica Sinica, 1997, 35(3): 275-288. (in Chinese with English abstract) | |
[18] | 孟娜, 黄嘉宏, 贾瑞, 等. 盐逆境下氯离子通道抑制剂对栽培大豆离子吸收、转运和含量的影响[J]. 西北农业学报, 2020, 29(12): 1814-1821. |
MENG N, HUANG J H, JIA R, et al. Effect of chloride channel blockers on ion absorption, transport and content of Glycine max seedlings under NaCl induced stress[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2020, 29(12): 1814-1821. (in Chinese with English abstract) | |
[19] | 周强, 李萍, 曹金花, 等. 测定植物体内氯离子含量的滴定法和分光光度法比较[J]. 植物生理学通讯, 2007, 43(6): 1163-1166. |
ZHOU Q, LI P, CAO J H, et al. Comparison on titration and spectrophotometric methods for determination of chloride content in plants[J]. Plant Physiology Communications, 2007, 43(6): 1163-1166. (in Chinese) | |
[20] | 王学奎. 植物生理生化实验原理和技术[M]. 2版. 北京: 高等教育出版社, 2006. |
[21] | 孟娜, 徐航, 魏明, 等. 叶面喷施烯效唑对盐胁迫下大豆幼苗生理及解剖结构的影响[J]. 西北植物学报, 2017, 37(10): 1988-1995. |
MENG N, XU H, WEI M, et al. Effect of foliar uniconazole spraying under salt stress on physiological and anatomical characteristics in Glycine max[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(10): 1988-1995. (in Chinese with English abstract) | |
[22] |
MENG N, YU B J, GUO J S. Ameliorative effects of inoculation with Bradyrhizobium japonicum on Glycine max and Glycine soja seedlings under salt stress[J]. Plant Growth Regulation, 2016, 80(2): 137-147.
DOI URL |
[23] |
ARDINI F, SOGGIA F, ABELMOSCHI M L, et al. Effect of heat stress on the ionomic profile of Nicotiana langsdorffii wild-type and mutant genotypes[J]. International Journal of Environmental Analytical Chemistry, 2016, 96(5): 460-473.
DOI URL |
[24] |
CHIMUNGU J G, BROWN K M, LYNCH J P. Reduced root cortical cell file number improves drought tolerance in maize[J]. Plant Physiology, 2014, 166(4): 1943-1955.
DOI PMID |
[25] |
CHIMUNGU J G, BROWN K M, LYNCH J P. Reduced root cortical cell file number improves drought tolerance in maize[J]. Plant Physiology, 2014, 166(4): 1943-1955.
DOI PMID |
[26] | 王继安, 宁海龙, 罗秋香, 等. 大豆品种间叶绿素含量、RUBP活性、希尔反应活力及其与产量间的关系[J]. 东北农业大学学报, 2004, 35(2): 129-134. |
WANG J A, NING H L, LUO Q X, et al. The content of chlorophyll, the activity of RUBP and Hill and their correlations with yield[J]. Journal of Northeast Agricultural University, 2004, 35(2): 129-134. (in Chinese with English abstract) | |
[27] |
MARWOOD C A, SOLOMON K R, GREENBERG B M. Chlorophyll fluorescence as a bioindicator of effects on growth in aquatic macrophytes from mixtures of polycyclic aromatic hydrocarbons[J]. Environmental Toxicology and Chemistry, 2001, 20(4): 890-898.
PMID |
[28] |
BETHKE P C, DREW M C. Stomatal and nonstomatal components to inhibition of photosynthesis in leaves of Capsicum annuum during progressive exposure to NaCl salinity[J]. Plant Physiology, 1992, 99(1): 219-226.
DOI URL |
[29] |
TAVAKKOLI E, FATEHI F, COVENTRY S, et al. Additive effects of Na+ and Cl- ions on barley growth under salinity stress[J]. Journal of Experimental Botany, 2011, 62(6): 2189-2203.
DOI URL |
[30] | El-FOULY M M, MOBARAK Z M, SALAMA Z A. Micronutrients (Fe, Mn, Zn) foliar spray for increasing salinity tolerance in wheat Triticum aestivum L[J]. African Journal of Plant Science, 2011, 5(5), 314-322. |
[31] |
IQBAL M N, RASHEED R, ASHRAF M Y, et al. Exogenously applied zinc and copper mitigate salinity effect in maize (Zea mays L.) by improving key physiological and biochemical attributes[J]. Environmental Science and Pollution Research, 2018, 25(24): 23883-23896.
DOI URL |
[32] | 安振锋, 方正. 植物锰营养研究进展[J]. 河北农业科学, 2002, 6(4): 35-41. |
AN Z F, FANG Z. The advance of manganese nutrition in plant[J]. Journal of Hebei Agricultural Sciences, 2002, 6(4): 35-41. (in Chinese with English abstract) | |
[33] |
ZHU J K. Plant salt tolerance[J]. Trends in Plant Science, 2001, 6(2): 66-71.
PMID |
[34] |
陆安桥, 张峰举, 王学琴, 等. 盐胁迫对苗期湖南稷子K+、Na+含量与分布的影响[J]. 浙江农业学报, 2021, 33(3): 396-403.
DOI |
LU A Q, ZHANG F J, WANG X Q, et al. Effects of NaCl and Na2SO4stress on content and distribution of K+and Na+of Echinochloa frumentacea seedlings[J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 396-403. (in Chinese with English abstract) | |
[35] | 汪洪, 汪立刚, 周卫, 等. 干旱条件下土壤中锌的有效性及与植物水分利用的关系[J]. 植物营养与肥料学报, 2007, 13(6): 1178-1184. |
WANG H, WANG L G, ZHOU W, et al. Soil zinc availability under water stress condition and its relationship with plant water utilization: a review[J]. Plant Nutrition and Fertilizer Science, 2007, 13(6): 1178-1184. (in Chinese with English abstract) | |
[36] | 王小玲, 高柱, 黄益宗, 等. 铜胁迫对3种草本植物生长和重金属积累的影响[J]. 生态毒理学报, 2014, 9(4): 699-706. |
WANG X L, GAO Z, HUANG Y Z, et al. Effects of copper stress on three kinds of herbaceous plants growth and heavy metal accumulation[J]. Asian Journal of Ecotoxicology, 2014, 9(4): 699-706. (in Chinese with English abstract) | |
[37] | 刘鹏. 钼胁迫对植物的影响及钼与其它元素相互作用的研究进展[J]. 农业环境保护, 2002, 21(3): 276-278. |
LIU P. Effects of stress of molybdenum on plants and interaction between molybdenum and other elements[J]. Agro-Environmental Protection, 2002, 21(3): 276-278. (in Chinese with English abstract) | |
[38] |
SCHMUTZ J, CANNON S B, SCHLUETER J, et al. Genome sequence of the palaeopolyploid soybean[J]. Nature, 2010, 463(7278): 178-183.
DOI URL |
[1] | 李文辰, 刘鑫, 齐泽铮, 于璐, 王芳. 灰皮支黑豆GmPUB24基因的生物信息学与胞囊线虫诱导表达分析[J]. 浙江农业学报, 2022, 34(6): 1124-1132. |
[2] | 麻仲花, 吴娜, 陈娟, 赵匆, 闫承宏, 刘吉利. 盐胁迫与供磷水平对柳枝稷苗期生理特性的影响[J]. 浙江农业学报, 2022, 34(6): 1205-1216. |
[3] | 李丽艳, 谭海霞, 李婧, 王连龙, 杜迎辉, 徐志文. 耐盐促生芽孢杆菌的筛选及其对盐胁迫下燕麦生长的影响[J]. 浙江农业学报, 2022, 34(6): 1268-1276. |
[4] | 熊昕宜, 许泽玉, 何念佳, 何俊博, 陈正礼, 黄超, 刘文涛, 罗启慧. 大豆异黄酮干预肥胖大鼠肝氧化应激及炎症反应[J]. 浙江农业学报, 2022, 34(5): 942-948. |
[5] | 刘晨, 徐浩博, 斯钰阳, 李亚鹏, 郭玉婷, 杜长霞. 基于转录组学的植物响应盐胁迫调控机制研究进展[J]. 浙江农业学报, 2022, 34(4): 870-878. |
[6] | 杨昕霞, 唐满生, 张斌. 大豆PP2C家族基因鉴定与响应盐胁迫的转录组分析[J]. 浙江农业学报, 2022, 34(2): 207-220. |
[7] | 周贝宁, 毛恋, 花壮壮, 芦建国. 碱性盐胁迫对夏蜡梅生长与离子分布的影响[J]. 浙江农业学报, 2022, 34(1): 79-88. |
[8] | 周贝宁, 毛恋, 花壮壮, 芦建国. 碱性盐胁迫对夏蜡梅光合荧光特性影响[J]. 浙江农业学报, 2021, 33(8): 1416-1425. |
[9] | 杨昕霞, 张斌. 大豆LAZ1基因家族鉴定与GmLAZ1-9基因的功能研究[J]. 浙江农业学报, 2021, 33(4): 586-594. |
[10] | 陆安桥, 张峰举, 王学琴, 许兴. 盐胁迫对苗期湖南稷子K +、Na +含量与分布的影响[J]. 浙江农业学报, 2021, 33(3): 396-403. |
[11] | 张伟梅, 张古文, 冯志娟, 刘娜, 王斌, 卜远鹏. 菜用大豆籽粒中蔗糖的遗传与调控机制研究进展[J]. 浙江农业学报, 2021, 33(12): 2446-2456. |
[12] | 夏江英, 杨菊, 宋天浩, 庞莲凤, 叶婷, 任志华, 邓俊良. 维生素C对β-伴大豆球蛋白诱导的仔猪肠上皮细胞炎性损伤的保护作用[J]. 浙江农业学报, 2021, 33(11): 2017-2025. |
[13] | 杨菊, 邓俊良, 夏江英, 宋天浩, 庞莲凤, 任志华. 维生素A对大豆7S球蛋白致仔猪肠上皮细胞屏障功能损伤的影响[J]. 浙江农业学报, 2021, 33(11): 2026-2033. |
[14] | 赵华, 任晴雯, 王熙予, 李珍妮, 唐秀梅, 蒋丽慧, 刘鹏, 邢承华. 丛枝菌根真菌对盐胁迫下番茄抗氧化酶活性和光合特性的影响[J]. 浙江农业学报, 2021, 33(11): 2075-2084. |
[15] | 徐玥, 胥雅馨, 黄兴军, 吴树, 陈国栋, 吴全忠, 翟云龙. 根瘤菌接种方式对复播大豆干物质积累与产量的影响[J]. 浙江农业学报, 2021, 33(10): 1808-1816. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 560
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1165
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||