浙江农业学报 ›› 2023, Vol. 35 ›› Issue (10): 2425-2435.DOI: 10.3969/j.issn.1004-1524.20220879
高风1(), 文仕知1, 韦铄星2,*(
), 欧汉彪2, 王智慧2
收稿日期:
2022-06-13
出版日期:
2023-10-25
发布日期:
2023-10-31
作者简介:
高风(1997—),男,安徽淮南人,硕士,研究方向为水土保持。E-mail:2660124553@qq.com
通讯作者:
*韦铄星,E-mail:基金资助:
GAO Feng1(), WEN Shizhi1, WEI Shuoxing2,*(
), OU Hanbiao2, WANG Zhihui2
Received:
2022-06-13
Online:
2023-10-25
Published:
2023-10-31
摘要:
以人为恢复了13年的落叶阔叶林(DF)、落叶常绿阔叶混交林(EDF)和常绿阔叶林(EF)为研究对象,以自然封育林(ENF)为对照,测定土壤理化性质、酶活性、土壤真菌群落丰度和多样性的变化,分析真菌群落与土壤因子的相关性。结果显示,相较于ENF,人为恢复的土壤全氮、速效磷含量,及土壤蔗糖酶活性显著(P<0.05)提高。人为恢复整体上提高了土壤真菌群落的相对丰度,以子囊菌门(Ascomycota)和担子菌门(Basidiomycota)为优势菌门。土壤中的真菌以腐生营养型和病理营养型为主,相较于ENF,DF提高了病理营养型真菌的相对丰度,EDF、EF提高了共生营养型真菌的相对丰度。总的来看,相较于ENF,人为恢复可以有效提高喀斯特退化区土壤的养分含量、酶活性和真菌群落相对丰度。
中图分类号:
高风, 文仕知, 韦铄星, 欧汉彪, 王智慧. 桂西北石漠化区不同植被恢复类型对土壤理化性质、酶活与真菌群落多样性的影响[J]. 浙江农业学报, 2023, 35(10): 2425-2435.
GAO Feng, WEN Shizhi, WEI Shuoxing, OU Hanbiao, WANG Zhihui. Effet of vegetation restoration models on soil physiochemical properties, enzymes activities and fungal diversity in rocky desertification area of northwest Guangxi, China[J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2425-2435.
指标 Index | 自然封育林 Enclosure forest | 落叶阔叶林 Deciduous broad- leaved forest | 落叶常绿阔叶混交林 Evergreen deciduous broad-leaved forest | 常绿阔叶林 Evergreen broad- leaved forest |
---|---|---|---|---|
海拔Elevation/m | 291~339 | 287~337 | 288~337 | 286~337 |
坡度Slope/(°) | 33 | 24 | 24 | 24 |
坡向Aspect | 东南Southeast | 东南Southeast | 东南Southeast | 东南Southeast |
土壤类型Soil type | 钙质土Calcareous soil | 钙质土Calcareous soil | 钙质土Calcareous soil | 钙质土Calcareous soil |
恢复时间Recovery time/a | 13 | 13 | 13 | 13 |
平均树高Mean height of trees/m | — | 12.1 | 9.2 | 9.1 |
平均胸径 | — | 13.2 | 8.9 | 8.4 |
Average diameter at breast height of trees/cm | ||||
郁闭度Canopy density/% | — | 80 | 85 | 90 |
腐殖质层厚度 | 4~6 | 8~10 | 6~8 | 3~5 |
Thickness of humus layer/cm | ||||
土壤厚度Thickness of soil/cm | 50~70 | 40~60 | 40~60 | 40~60 |
物种组成Species composition | VN、MB、JN、RC | ZI、CA、LL、RC、VN | CA、DT、ZI、CP、VN、MB | QG、RC、JN、FT |
表1 样地基本概况
Table 1 Basic information of sample areas
指标 Index | 自然封育林 Enclosure forest | 落叶阔叶林 Deciduous broad- leaved forest | 落叶常绿阔叶混交林 Evergreen deciduous broad-leaved forest | 常绿阔叶林 Evergreen broad- leaved forest |
---|---|---|---|---|
海拔Elevation/m | 291~339 | 287~337 | 288~337 | 286~337 |
坡度Slope/(°) | 33 | 24 | 24 | 24 |
坡向Aspect | 东南Southeast | 东南Southeast | 东南Southeast | 东南Southeast |
土壤类型Soil type | 钙质土Calcareous soil | 钙质土Calcareous soil | 钙质土Calcareous soil | 钙质土Calcareous soil |
恢复时间Recovery time/a | 13 | 13 | 13 | 13 |
平均树高Mean height of trees/m | — | 12.1 | 9.2 | 9.1 |
平均胸径 | — | 13.2 | 8.9 | 8.4 |
Average diameter at breast height of trees/cm | ||||
郁闭度Canopy density/% | — | 80 | 85 | 90 |
腐殖质层厚度 | 4~6 | 8~10 | 6~8 | 3~5 |
Thickness of humus layer/cm | ||||
土壤厚度Thickness of soil/cm | 50~70 | 40~60 | 40~60 | 40~60 |
物种组成Species composition | VN、MB、JN、RC | ZI、CA、LL、RC、VN | CA、DT、ZI、CP、VN、MB | QG、RC、JN、FT |
植被类型 | SOC/(g·kg-1) | TN/(g·kg-1) | AK/(g·kg-1) | AN/(mg·kg-1) | AP/(mg·kg-1) | pH |
---|---|---|---|---|---|---|
Vegetation type | ||||||
DF | 90.39±0.12 a | 5.26±0.09 a | 243.33±2.50 a | 354.53±2.51 a | 6.79±0.20 b | 7.57±0.13 a |
EDF | 89.84±1.00 a | 5.11±0.11 a | 160.75±0.73 c | 274.13±1.97 b | 9.13±0.35 a | 6.66±0.17 b |
EF | 87.58±1.05 b | 5.10±0.06 a | 153.74±0.79 d | 256.33±4.59 d | 4.00±0.44 c | 6.59±0.06 b |
ENF | 86.61±0.93 b | 4.56±0.28 b | 167.48±1.35 b | 263.20±2.33 c | 3.36±0.17 d | 7.72±0.09 a |
表2 不同植被恢复类型下土壤的基本理化性质
Table 2 Soil physiochemical properties under vegetation restoration models
植被类型 | SOC/(g·kg-1) | TN/(g·kg-1) | AK/(g·kg-1) | AN/(mg·kg-1) | AP/(mg·kg-1) | pH |
---|---|---|---|---|---|---|
Vegetation type | ||||||
DF | 90.39±0.12 a | 5.26±0.09 a | 243.33±2.50 a | 354.53±2.51 a | 6.79±0.20 b | 7.57±0.13 a |
EDF | 89.84±1.00 a | 5.11±0.11 a | 160.75±0.73 c | 274.13±1.97 b | 9.13±0.35 a | 6.66±0.17 b |
EF | 87.58±1.05 b | 5.10±0.06 a | 153.74±0.79 d | 256.33±4.59 d | 4.00±0.44 c | 6.59±0.06 b |
ENF | 86.61±0.93 b | 4.56±0.28 b | 167.48±1.35 b | 263.20±2.33 c | 3.36±0.17 d | 7.72±0.09 a |
图1 不同植被恢复类型下的土壤酶活性 CAT,过氧化氢酶;SAC,蔗糖酶;URE,脲酶;ALP,碱性磷酸酶。ENF,自然封育林;DF,落叶阔叶林;EDF,落叶常绿阔叶混交林;EF,常绿阔叶林。下同。柱上无相同字母的表示差异显著(P<0.05)。
Fig.1 Soil enzymes activities under vegetation restoration models CAT, Catalase; SAC, Saccharase; URE, Urease; ALP, Alkaline phosphatase. ENF, Enclosure forest; DF, Deciduous broad-leaved forest; EDF, Evergreen deciduous broad-leaved forest; EF, Evergreen broad-leaved forest. The same as below. Bars marked without the same letters indicate significant difference at P<0.05.
图2 门分类水平上真菌优势种的OTU(运算分类单元)丰度堆积柱状图
Fig.2 OTU (operational taxonomic unit) abundance accumulation histogram of soil dominant fungal species at phylum level
图3 相似性分析箱形图(左)与主坐标分析图(右) PC1,第一主成分;PC2,第二主成分。
Fig.3 Similarity analysis box diagram (left) and principal coordinate analysis diagram (right) PC1, Principle component 1; PC2, Principle component 2.
图5 土壤养分与酶活性、真菌群落的网络分析图 SOC,土壤有机碳;TN,全氮;AK,速效钾;AN,速效氮;AP,速效磷。图中绿色圆点代表真菌主导菌门,圆点大小表示其相对丰度大小,红色圆点代表土壤酶活性指标,灰色圆点代表土壤养分指标,蓝线表示显著(P<0.05)正相关,红线表示显著(P<0.05)负相关,红、蓝颜色的深浅代表相关系数的高低。
Fig.5 Network analysis of soil nutrients, enzymes activities and fungal communities SOC, Soil organic carbon; TN, Total nitrogen; AK, Available potassium; AN, Available nitrogen; AP, Available phosphorus. The green dots in the figure represent the dominant species of fungi. The size of the dots indicates the relative abundance of the dominant species. The red dots represent the indicators of soil enzymes activities, and the grey dots represent the indicators of soil nutrients. The blue lines indicate significant (P<0.05) positive correlations, and the red lines indicate significant (P<0.05) negative correlations, and the redder or bluer indicates higher correlation coefficients.
[1] | REYNOLDS J F, SMITH D S, LAMBIN E F, et al. Global desertification: building a science for dryland development[J]. Science, 2007, 316(5826): 847-851. |
[2] | XU E Q, ZHANG H Q, LI M X. Mining spatial information to investigate the evolution of Karst rocky desertification and its human driving forces in Changshun, China[J]. Science of the Total Environment, 2013, 458/459/460: 419-426. |
[3] | BEIMFORDE C, FELDBERG K, NYLINDER S, et al. Estimating the Phanerozoic history of the Ascomycota lineages: combining fossil and molecular data[J]. Molecular Phylogenetics and Evolution, 2014, 78: 386-398. |
[4] | 解雪峰, 濮励杰, 王琪琪, 等. 滨海滩涂围垦区不同围垦年限土壤酶活性变化及其与理化性质关系[J]. 环境科学, 2018, 39(3): 1404-1412. |
XIE X F, PU L J, WANG Q Q, et al. Response of soil enzyme activities and their relationships with physicochemical properties to different aged coastal reclamation areas, Eastern China[J]. Environmental Science, 2018, 39(3): 1404-1412. (in Chinese with English abstract) | |
[5] | 杨万勤, 王开运. 森林土壤酶的研究进展[J]. 林业科学, 2004, 40(2): 152-159. |
YANG W Q, WANG K Y. Advances in forest soil enzymology[J]. Scientia Silvae Sinicae, 2004, 40(2): 152-159. (in Chinese with English abstract) | |
[6] | 吴丽芳, 王紫泉, 王妍, 等. 喀斯特高原不同石漠化程度土壤C、N、P化学计量特征和酶活性的关系[J]. 生态环境学报, 2019, 28(12): 2332-2340. |
WU L F, WANG Z Q, WANG Y, et al. Relationship between soil C, N, P stoichiometric characteristics and enzyme activity in Karst Plateau soils with different degree of rocky desertification[J]. Ecology and Environmental Sciences, 2019, 28(12): 2332-2340. (in Chinese with English abstract) | |
[7] | 潘复静, 王克林, 张伟, 等. 喀斯特不同恢复阶段植物根际土养分和酶活性的季节性变化和根际效应[J]. 桂林理工大学学报, 2020, 40(1): 209-217. |
PAN F J, WANG K L, ZHANG W, et al. Seasonal changes and rhizosphere effects of soil nutrients and enzymatic activities in two vegetation successions of Karst ecosystem[J]. Journal of Guilin University of Technology, 2020, 40(1): 209-217. (in Chinese with English abstract) | |
[8] | ANDERSON C R, CONDRON L M, CLOUGH T J, et al. Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus[J]. Pedobiologia-International Journal of Soil Biology, 2011, 54(5): 309-320. |
[9] | 薛飞. 茂兰喀斯特森林凋落物特性及对土壤的影响[D]. 贵阳: 贵州师范大学, 2021. |
XUE F. Characteristics of litter in Maolan Karst forest and its influence on soil[D]. Guiyang: Guizhou Normal University, 2021. (in Chinese with English abstract) | |
[10] | 裴广廷, 孙建飞, 贺同鑫, 等. 长期人为干扰对桂西北喀斯特草地土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2021, 45(1): 74-84. |
PEI G T, SUN J F, HE T X, et al. Effects of long-term human disturbances on soil microbial diversity and community structure in a Karst grassland ecosystem of northwestern Guangxi, China[J]. Chinese Journal of Plant Ecology, 2021, 45(1): 74-84. (in Chinese with English abstract) | |
[11] | 陈惠君, 莫雅芳, 封红梅, 等. 喀斯特峰丛洼地不同森林类型土壤真菌群落结构及影响因素[J]. 农业现代化研究, 2021, 42(6): 1146-1157. |
CHEN H J, MO Y F, FENG H M, et al. Soil fungal community structure and influencing factors of different forest types in Karst peak-cluster depression[J]. Research of Agricultural Modernization, 2021, 42(6): 1146-1157. (in Chinese with English abstract) | |
[12] | 曾庆飞, 陈莹, 杨春燕, 等. 贵州高原石漠化灌丛草地土壤真菌群落结构及多样性研究[J]. 中国草地学报, 2015, 37(5): 96-102. |
ZENG Q F, CHEN Y, YANG C Y, et al. Community structure and genetic diversity analysis of soil fungi in shrubby grasslands in Guizhou Plateau[J]. Chinese Journal of Grassland, 2015, 37(5): 96-102. (in Chinese with English abstract) | |
[13] | LU Z X, WANG P, OU H B, et al. Effects of different vegetation restoration on soil nutrients, enzyme activities, and microbial communities in degraded Karst landscapes in southwest China[J]. Forest Ecology and Management, 2022, 508: 120002. |
[14] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
[15] | HUANG C B, ZENG Y X, WANG L C, et al. Responses of soil nutrients to vegetation restoration in China[J]. Regional Environmental Change, 2020, 20(3): 82. |
[16] | TABATABAI M A. Soil enzymes[M]// MILLERR H, KEENEYD.R. Methods of soil analysis: part 2: chemical and microbiological properties. Madison: Soil Science Society of America, 1982: 903-947. |
[17] | 陈彩虹, 叶道碧. 4种人工林土壤酶活性与养分的相关性研究[J]. 中南林业科技大学学报, 2010, 30(6): 64-68. |
CHEN C H, YE D B. Study on the relationship between soil enzymes and nutrient of four artificial forests in Changsha urban-rural fringe[J]. Journal of Central South University of Forestry & Technology, 2010, 30(6): 64-68. (in Chinese with English abstract) | |
[18] | 陈堆全. 木荷凋落物分解及对土壤作用规律的研究[J]. 福建林业科技, 2001, 28(2): 35-38. |
CHEN D Q. Studies on the decomposition of Schima superba litter and on the law of it on the soil effect[J]. Journal of Fujian Forestry Science and Technology, 2001, 28(2): 35-38. (in Chinese with English abstract) | |
[19] | 姜雪薇, 马大龙, 臧淑英, 等. 高通量测序分析大兴安岭典型森林土壤细菌和真菌群落特征[J]. 微生物学通报, 2021, 48(4): 1093-1105. |
JIANG X W, MA D L, ZANG S Y, et al. Characteristics of soil bacterial and fungal community of typical forest in the Greater Khingan Mountains based on high-throughput sequencing[J]. Microbiology China, 2021, 48(4): 1093-1105. (in Chinese with English abstract) | |
[20] | SUI X, ZHANG R T, FREY B, et al. Soil physicochemical properties drive the variation in soil microbial communities along a forest successional series in a degraded wetland in northeastern China[J]. Ecology and Evolution, 2021, 11(5): 2194-2208. |
[21] | 刘立玲, 周光益, 党鹏, 等. 湘西石漠化区3种造林模式土壤真菌群落结构差异[J]. 生态学报, 2022, 42(10): 4150-4159. |
LIU L L, ZHOU G Y, DANG P, et al. Differences of soil fungal community structure under three afforestation modes in rocky desertification region of Western Hunan Province[J]. Acta Ecologica Sinica, 2022, 42(10): 4150-4159. (in Chinese with English abstract) | |
[22] | 郭城. 石漠化地区不同植被恢复模式下土壤微生物群落结构研究[D]. 贵阳: 贵州师范大学, 2021. |
GUO C. Study on soil microbial community structure under different vegetation restoration models in rocky desertification area[D]. Guiyang: Guizhou Normal University, 2021. (in Chinese with English abstract) | |
[23] | 王涛, 郭洋, 苏建宇, 等. 贺兰山丁香对土壤理化性质、酶活性和微生物多样性的影响[J]. 北京林业大学学报, 2020, 42(4): 91-101. |
WANG T, GUO Y, SU J Y, et al. Effects of Syringa pinnatifolia var. alanshanica on soil physicochemical properties, enzyme activities and microbial diversity[J]. Journal of Beijing Forestry University, 2020, 42(4): 91-101. (in Chinese with English abstract) | |
[24] | 胡华英, 张燕林, 褚昭沛, 等. 红壤侵蚀区不同植被恢复阶段土壤酶活性和微生物多样性变化[J]. 应用与环境生物学报, 2021, 27(3): 734-741. |
HU H Y, ZHANG Y L, CHU Z P, et al. Changes in soil enzyme activity and microbial diversity at different vegetation restoration stages in eroded red soil[J]. Chinese Journal of Applied and Environmental Biology, 2021, 27(3): 734-741. (in Chinese with English abstract) | |
[25] | 张树萌, 黄懿梅, 倪银霞, 等. 宁南山区人工林草对土壤真菌群落的影响[J]. 中国环境科学, 2018, 38(4): 1449-1458. |
ZHANG S M, HUANG Y M, NI Y X, et al. Effects of artificial forest and grass on soil fungal community at southern Ningxia Mountain[J]. China Environmental Science, 2018, 38(4): 1449-1458. (in Chinese with English abstract) | |
[26] | 张旭升. 不同植被修复模式下土壤真菌的研究及纳米材料对土壤理化性质和酶活性的影响[D]. 太原: 山西大学, 2021. |
ZHANG X S. Study on soil fungi under different vegetation restoration patterns and the effect of nanomaterials on soil physical and chemical properties and enzyme activities[D]. Taiyuan: Shanxi University, 2021. (in Chinese with English abstract) | |
[27] | 彭辉, 周红敏, 张弓乔, 等. 不同林龄红豆树土壤真菌群落组成和多样性[J]. 中南林业科技大学学报, 2021, 41(11): 129-135. |
PENG H, ZHOU H M, ZHANG G Q, et al. Composition structure and diversity of soil fungi community in Ormosia hosiei plantations at different ages[J]. Journal of Central South University of Forestry & Technology, 2021, 41(11): 129-135. (in Chinese with English abstract) | |
[28] | CHESWORTH W. Chemical equilibria in soils[J]. Geochimica et Cosmochimica Acta, 1980, 44(9): 1394-1395. |
[29] | 蔡芸霜, 张建兵, 钟丽雯, 等. 桂西北峰丛洼地农作区土壤真菌多样性对不同耕作模式的响应[J]. 生态学报, 2021, 41(12): 4886-4899. |
CAI Y S, ZHANG J B, ZHONG L W, et al. Response of the fungal diversity to different tillage modes in the farming areas of Karst peak-cluster depressions, southwest China[J]. Acta Ecologica Sinica, 2021, 41(12): 4886-4899. (in Chinese with English abstract) | |
[30] | WANG J C, RHODES G, HUANG Q W, et al. Plant growth stages and fertilization regimes drive soil fungal community compositions in a wheat-rice rotation system[J]. Biology and Fertility of Soils, 2018, 54(6): 731-742. |
[31] | 李鹏飞, 张兴昌, 郝明德, 等. 植被恢复对黄土高原矿区重构土壤理化性质、酶活性以及真菌群落的影响[J]. 水土保持通报, 2019, 39(5): 1-7. |
LI P F, ZHANG X C, HAO M D, et al. Effects of vegetation restoration on soil physicochemical properties, enzyme activities, and fungal community of reconstructed soil in a mining area on Loess Plateau[J]. Bulletin of Soil and Water Conservation, 2019, 39(5): 1-7. (in Chinese with English abstract) |
[1] | 岳宗伟, 李嘉骁, 孙向阳, 刘国梁, 李素艳, 王晨晨, 查贵超, 魏宁娴. 化肥有机肥配施对土壤性质、樱桃果实品质和产量的影响[J]. 浙江农业学报, 2023, 35(9): 2192-2201. |
[2] | 吴传美, 何季, 吴文珊, 蔡俊, 向仰州. 间作对刺梨园土壤团聚体化学计量特征和养分贡献率的影响[J]. 浙江农业学报, 2023, 35(5): 1132-1143. |
[3] | 鲁帅, 罗晓刚, 刘全伟, 张屹, 孟洋昊, 李洁, 张景来. 有机无机复混肥对小麦生长、土壤养分和重金属含量的影响[J]. 浙江农业学报, 2023, 35(4): 922-930. |
[4] | 张宇昊, 马卫华, 刘晋佳, 马秀梅, 姜玉锁. 亚致死剂量呋虫胺对意大利蜜蜂采集蜂免疫解毒相关基因表达和酶活性的影响[J]. 浙江农业学报, 2023, 35(3): 575-581. |
[5] | 阮泽斌, 王兰鸽, 蓝王凯宁, 徐彦, 陈俊辉, 柳丹. 氮肥减量配施生物炭对水稻氮素吸收和土壤理化性质的影响[J]. 浙江农业学报, 2023, 35(2): 394-402. |
[6] | 杨胜竹, 李响, 李朝文, 陈海念, 刘丽, 陆引罡, 曹卓洋. 贵州省烟草青枯病害区根际土壤养分及酶活性特征分析[J]. 浙江农业学报, 2023, 35(1): 146-155. |
[7] | 闫梅, 姚彦东, 牟开萍, 淡媛媛, 李伟泰, 廖伟彪. 脱落酸通过提高抗氧化酶活性与基因表达参与富氢水增强番茄幼苗抗旱性[J]. 浙江农业学报, 2022, 34(9): 1901-1910. |
[8] | 金侯定, 郑春颖, 华斌, 俞晨良, 李柯豫, 喻卫武. 香榧扦插生根解剖学与生理相关酶活性[J]. 浙江农业学报, 2022, 34(9): 1955-1966. |
[9] | 孙文艳, 刘小刚, 张文慧, 李慧永, 吴朗, 杨启良, 熊国美. 基于根区土壤质量指数优化小粒种咖啡滴灌施肥方案[J]. 浙江农业学报, 2022, 34(3): 566-573. |
[10] | 陆玲鸿, 马媛媛, 古咸彬, 肖金平, 宋根华, 张慧琴. 猕猴桃果实软化过程中细胞壁多糖物质含量与果胶降解相关酶活性变化[J]. 浙江农业学报, 2022, 34(12): 2648-2658. |
[11] | 张健利, 王振华, 陈睿, 王东旺, 梁永辉, 刘茹华. 水肥互作对滴灌红枣产量、品质与土壤养分的影响[J]. 浙江农业学报, 2022, 34(11): 2428-2437. |
[12] | 高志远, 杨淑娜, 王朝丽, 王智豪, 奚昕琰, 何娟, 贾惠娟. 不同熏蒸方式对连作桃园土壤的影响[J]. 浙江农业学报, 2022, 34(10): 2251-2258. |
[13] | 范琳娟, 刘子荣, 徐雪亮, 王奋山, 彭德良, 姚英娟. 6种杀线剂对重茬山药土壤微生物数量、酶活性和养分含量的影响[J]. 浙江农业学报, 2021, 33(3): 506-515. |
[14] | 程晶, 刘济明, 王姝, 王灯, 李丽霞, 徐国瑞, 陈梦, 黄路婷. 喀斯特特有植物罗甸小米核桃响应土壤水分的表型可塑性[J]. 浙江农业学报, 2021, 33(2): 259-269. |
[15] | 隋夕然, 王妍, 刘云根, 张雅洁, 吴丽芳. 典型喀斯特区云南松林土壤养分和细菌群落对海拔的响应[J]. 浙江农业学报, 2021, 33(12): 2348-2357. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||