浙江农业学报 ›› 2023, Vol. 35 ›› Issue (2): 394-402.DOI: 10.3969/j.issn.1004-1524.2023.02.17
阮泽斌(), 王兰鸽, 蓝王凯宁, 徐彦, 陈俊辉, 柳丹(
)
收稿日期:
2022-03-01
出版日期:
2023-02-25
发布日期:
2023-03-14
通讯作者:
柳丹
作者简介:
*柳丹,E-mail: liudan7812@aliyun.com基金资助:
RUAN Zebin(), WANG Lange, LAN Wangkaining, XU Yan, CHEN Junhui, LIU Dan(
)
Received:
2022-03-01
Online:
2023-02-25
Published:
2023-03-14
Contact:
LIU Dan
摘要:
通过分析不同减氮水平下添加生物炭处理对水稻氮素吸收、土壤养分和酶活性的影响,为稻田土壤肥力培育和氮肥减施增效提供科学依据。通过设置盆栽试验,分析了不同氮肥用量和配施生物炭共计7个处理下土壤养分、酶活性和水稻不同部位氮素含量的差异。试验结果表明:与常规施氮处理(N100)相比,化肥减量处理的土壤铵态氮含量显著(P<0.05)提升37.5%~49.2%。添加生物炭处理的土壤pH值和有效磷含量分别显著(P<0.05)提升0.23~0.31个pH单位和16.1%~29.2%。与N100相比,适量减氮和添加生物炭可显著(P<0.05)提高土壤酶活性;减氮20%的处理(N80)较N100显著(P<0.05)提升水稻茎和穗的氮含量,增幅分别为24.2%和11.1%。减氮20%并配施生物炭的处理(BN80)较N80显著(P<0.05)提升水稻根、茎、叶、穗的含氮量,同时BN80、N80和BN60(减氮40%并配施生物炭的处理)的氮肥表观利用率较N100分别显著(P<0.05)提升25.5、16.3和19.4百分点。氮肥表观利用率与α-葡萄糖苷酶、β-葡萄糖苷酶、木聚糖苷酶、N-乙酰基-β-D-氨基葡萄糖苷酶、酸性磷酸酶活性呈显著(P<0.05)正相关。BN80能够提升土壤养分含量和土壤酶活性,促进水稻氮素吸收,可作为氮肥减量增效的一种有效方式。
中图分类号:
阮泽斌, 王兰鸽, 蓝王凯宁, 徐彦, 陈俊辉, 柳丹. 氮肥减量配施生物炭对水稻氮素吸收和土壤理化性质的影响[J]. 浙江农业学报, 2023, 35(2): 394-402.
RUAN Zebin, WANG Lange, LAN Wangkaining, XU Yan, CHEN Junhui, LIU Dan. Effects of nitrogen reduction and biochar on nitrogen uptake by rice and soil physiochemical properties[J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 394-402.
处理 Treatment | pH | 有机碳 Organic carbon/ (mg·kg-1) | N (mg·kg-1) | N (mg·kg-1) | 碱解氮 Effective N/ (mg·kg-1) | 有效磷 Available P/ (mg·kg-1) | 速效钾 Available K/ (mg·kg-1) |
---|---|---|---|---|---|---|---|
CK | 5.72±0.06 b | 17.62±0.94 b | 10.14±0.52 b | 1.62±0.29 a | 258.81±6.15 a | 12.10±0.76 cd | 36.00±3.61 b |
N100 | 5.54±0.11 c | 18.35±0.82 b | 10.29±0.61 b | 1.11±0.19 a | 248.08±2.83 a | 11.06±0.40 d | 24.00±3.00 b |
BN100 | 5.95±0.08 a | 22.75±0.20 a | 10.71±0.61 b | 1.15±0.39 a | 258.81±2.46 a | 14.29±0.42 a | 67.67±1.15 a |
N80 | 5.65±0.04 bc | 18.39±1.57 b | 14.15±1.02 a | 1.29±0.24 a | 246.74±4.65 a | 11.69±0.77 cd | 32.00±4.00 b |
BN80 | 6.01±0.08 a | 19.56±3.89 b | 15.35±0.62 a | 1.66±0.14 a | 262.57±11.64 a | 13.86±0.77 ab | 94.67±4.51 a |
N60 | 5.64±0.06 bc | 15.66±0.50 b | 14.47±0.81 a | 1.52±0.35 a | 255.86±3.51 a | 7.95±1.11 e | 26.33±2.08 b |
BN60 | 6.03±0.14 a | 17.56±1.55 b | 14.59±1.36 a | 1.31±0.27 a | 259.88±12.95 a | 12.84±0.64 bc | 58.67±1.53 ab |
表1 不同处理对土壤理化性质的影响
Table 1 Effects of different treatments on physicochemical properties of soil
处理 Treatment | pH | 有机碳 Organic carbon/ (mg·kg-1) | N (mg·kg-1) | N (mg·kg-1) | 碱解氮 Effective N/ (mg·kg-1) | 有效磷 Available P/ (mg·kg-1) | 速效钾 Available K/ (mg·kg-1) |
---|---|---|---|---|---|---|---|
CK | 5.72±0.06 b | 17.62±0.94 b | 10.14±0.52 b | 1.62±0.29 a | 258.81±6.15 a | 12.10±0.76 cd | 36.00±3.61 b |
N100 | 5.54±0.11 c | 18.35±0.82 b | 10.29±0.61 b | 1.11±0.19 a | 248.08±2.83 a | 11.06±0.40 d | 24.00±3.00 b |
BN100 | 5.95±0.08 a | 22.75±0.20 a | 10.71±0.61 b | 1.15±0.39 a | 258.81±2.46 a | 14.29±0.42 a | 67.67±1.15 a |
N80 | 5.65±0.04 bc | 18.39±1.57 b | 14.15±1.02 a | 1.29±0.24 a | 246.74±4.65 a | 11.69±0.77 cd | 32.00±4.00 b |
BN80 | 6.01±0.08 a | 19.56±3.89 b | 15.35±0.62 a | 1.66±0.14 a | 262.57±11.64 a | 13.86±0.77 ab | 94.67±4.51 a |
N60 | 5.64±0.06 bc | 15.66±0.50 b | 14.47±0.81 a | 1.52±0.35 a | 255.86±3.51 a | 7.95±1.11 e | 26.33±2.08 b |
BN60 | 6.03±0.14 a | 17.56±1.55 b | 14.59±1.36 a | 1.31±0.27 a | 259.88±12.95 a | 12.84±0.64 bc | 58.67±1.53 ab |
处理 Treatment | AG | BG | NAG | LAP | CB | XYL | PHOS |
---|---|---|---|---|---|---|---|
CK | 18.19±0.35 c | 60.74±0.26 c | 36.16±1.48 c | 9.56±0.37 a | 23.34±0.30 b | 34.04±1.47 c | 305.09±19.65 b |
N100 | 21.40±0.50 bc | 64.12±3.35 bc | 38.37±0.64 c | 10.21±0.15 a | 24.04±0.60 b | 35.23±3.34 bc | 300.21±6.08 b |
BN100 | 25.10±1.38 ab | 68.39±1.82 ab | 40.94±4.03 bc | 11.33±0.52 a | 27.11±1.88 a | 41.17±3.03 ab | 349.19±17.52 a |
N80 | 23.29±2.21 abc | 68.33±3.22 ab | 43.82±1.45 ab | 10.08±2.64 a | 23.17±1.13 b | 37.89±1.04 bc | 307.28±18.06 b |
BN80 | 27.05±2.31 a | 72.43±2.87 a | 47.73±3.48 a | 11.49±2.27 a | 26.74±0.68 a | 44.82±3.65 a | 361.96±31.49 a |
N60 | 25.08±3.34 ab | 63.70±1.44 bc | 41.95±1.75 b | 10.47±0.94 a | 22.44±0.34 b | 36.06±2.87 bc | 306.80±23.21 b |
BN60 | 26.45±1.18 a | 68.98±3.10 ab | 42.74±2.31 b | 10.91±0.66 a | 26.76±3.00 a | 41.06±3.04 ab | 358.76±3.41 a |
表2 不同处理对土壤酶活性的影响
Table 2 Effects of different treatments on soil enzymes activities nmol·g-1·h-1
处理 Treatment | AG | BG | NAG | LAP | CB | XYL | PHOS |
---|---|---|---|---|---|---|---|
CK | 18.19±0.35 c | 60.74±0.26 c | 36.16±1.48 c | 9.56±0.37 a | 23.34±0.30 b | 34.04±1.47 c | 305.09±19.65 b |
N100 | 21.40±0.50 bc | 64.12±3.35 bc | 38.37±0.64 c | 10.21±0.15 a | 24.04±0.60 b | 35.23±3.34 bc | 300.21±6.08 b |
BN100 | 25.10±1.38 ab | 68.39±1.82 ab | 40.94±4.03 bc | 11.33±0.52 a | 27.11±1.88 a | 41.17±3.03 ab | 349.19±17.52 a |
N80 | 23.29±2.21 abc | 68.33±3.22 ab | 43.82±1.45 ab | 10.08±2.64 a | 23.17±1.13 b | 37.89±1.04 bc | 307.28±18.06 b |
BN80 | 27.05±2.31 a | 72.43±2.87 a | 47.73±3.48 a | 11.49±2.27 a | 26.74±0.68 a | 44.82±3.65 a | 361.96±31.49 a |
N60 | 25.08±3.34 ab | 63.70±1.44 bc | 41.95±1.75 b | 10.47±0.94 a | 22.44±0.34 b | 36.06±2.87 bc | 306.80±23.21 b |
BN60 | 26.45±1.18 a | 68.98±3.10 ab | 42.74±2.31 b | 10.91±0.66 a | 26.76±3.00 a | 41.06±3.04 ab | 358.76±3.41 a |
图1 不同处理对水稻各部位氮含量的影响 同一部位柱上无相同字母的表示处理间差异显著(P<0.05)。
Fig.1 Effect of different treatments on nitrogen content in various parts of rice Bars marked without the same letters in the same part indicated significant difference at P<0.05.
图2 不同处理对水稻地上部氮积累量的影响 图中数据以盆计。柱上无相同字母的表示处理间差异显著(P<0.05)。
Fig.2 Effect of different treatments on nitrogen accumulation in aboveground parts of rice Data in the above figure was recorded by pot. Bars marked without the same letters indicated significant difference at P<0.05.
处理 Treatment | 氮肥表观利用率 Apparent nitrogen use efficiency |
---|---|
N100 | 32.6±2.6 c |
BN100 | 36.9±4.8 c |
N80 | 48.9±5.3 b |
BN80 | 58.1±4.9 a |
N60 | 31.1±4.2 c |
BN60 | 52.0±3.1 ab |
表3 减氮配施生物炭对水稻氮肥表观利用率的影响
Table 3 Effect of nitrogen reduction combined with biochar on apparent nitrogen use efficiency of rice %
处理 Treatment | 氮肥表观利用率 Apparent nitrogen use efficiency |
---|---|
N100 | 32.6±2.6 c |
BN100 | 36.9±4.8 c |
N80 | 48.9±5.3 b |
BN80 | 58.1±4.9 a |
N60 | 31.1±4.2 c |
BN60 | 52.0±3.1 ab |
图3 土壤胞外酶活性、土壤养分含量与水稻氮素吸收的相关性 OC,土壤有机碳;AN,土壤铵态氮;NN,土壤硝态氮;EN,土壤碱解氮;AP,土壤有效磷;AK,土壤速效钾;RN,根氮含量;SN,茎氮含量;LN,叶氮含量;PN,穗氮含量;NC,地上部氮积累量;NUE,氮肥表观利用率。“*”表示显著(P<0.05)相关。
Fig.3 Correlation of soil extracellular enzymes activities, soil nutrients contents and nitrogen uptake in rice OC, Soil organic carbon; AN, Soil ammonium nitrogen; NN, Soil nitrate nitrogen; EN, Soil effective N; AP, Soil available P; AK, Soil available K; RN, Nitrogen content in root; SN, Nitrogen content in stem; LN, Nitrogen content in leaf; PN, Nitrogen content in panicle; NC, Nitrogen accumulation in aboveground parts; NUE, Apparent nitrogen use efficiency. “*” indicates significant correlation at P<0.05.
[1] | 张维乐, 戴志刚, 任涛, 等. 不同水旱轮作体系秸秆还田与氮肥运筹对作物产量及养分吸收利用的影响[J]. 中国农业科学, 2016, 49(7): 1254-1266. |
ZHANG W L, DAI Z G, REN T, et al. Effects of nitrogen fertilization managements with residues incorporation on crops yield and nutrients uptake under different paddy-upland rotation systems[J]. Scientia Agricultura Sinica, 2016, 49(7): 1254-1266. (in Chinese with English abstract) | |
[2] | 崔玉亭, 程序, 韩纯儒, 等. 苏南太湖流域水稻经济生态适宜施氮量研究[J]. 生态学报, 2000, 20(4): 659-662. |
CUI Y T, CHENG X, HAN C R, et al. The economic and ecological satisfactory amount of nitrogen fertilizer using on rice in Tai Lake Watershed[J]. Acta Ecologica Sinica, 2000, 20(4): 659-662. (in Chinese with English abstract) | |
[3] | 巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势[J]. 植物营养与肥料学报, 2014, 20(4): 783-795. |
JU X T, GU B J. Status-quo, problem and trend of nitrogen fertilization in China[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 783-795. (in Chinese with English abstract) | |
[4] | 刘兆辉, 薄录吉, 李彦, 等. 氮肥减量施用技术及其对作物产量和生态环境的影响综述[J]. 中国土壤与肥料, 2016(4): 1-8. |
LIU Z H, BO L J, LI Y, et al. Effect of nitrogen fertilizer reduction on crop yield and ecological environment: a review[J]. Soil and Fertilizer Sciences in China, 2016(4): 1-8. (in Chinese with English abstract) | |
[5] | GLASER B, LEHMANN J, ZECH W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal: a review[J]. Biology and Fertility of Soils, 2002, 35(4): 219-230. |
[6] | XU G, LV Y C, SUN J N, et al. Recent advances in biochar applications in agricultural soils: benefits and environmental implications[J]. CLEAN: Soil, Air, Water, 2012, 40(10): 1093-1098. |
[7] | CHINTALA R, SCHUMACHER T E, MCDONALD L M, et al. Phosphorus sorption and availability from biochars and soil/biochar mixtures[J]. CLEAN: Soil, Air, Water, 2014, 42(5): 626-634. |
[8] | LAIRD D A, FLEMING P, DAVIS D D, et al. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil[J]. Geoderma, 2010, 158(3/4): 443-449. |
[9] | VAN ZWIETEN L, KIMBER S, MORRIS S, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J]. Plant and Soil, 2010, 327(1/2): 235-246. |
[10] | DOYDORA S A, CABRERA M L, DAS K C, et al. Release of nitrogen and phosphorus from poultry litter amended with acidified biochar[J]. International Journal of Environmental Research and Public Health, 2011, 8(5): 1491-1502. |
[11] | 屈田华, 李永夫, 张少博, 等. 生物质炭输入影响土壤氮素转化与氧化亚氮排放的研究进展[J]. 浙江农林大学学报, 2021, 38(5): 926-936. |
QU T H, LI Y F, ZHANG S B, et al. Effects of biochar application on soil nitrogen transformation and N2O emissions: a review[J]. Journal of Zhejiang A & F University, 2021, 38(5): 926-936. (in Chinese with English abstract) | |
[12] | ZHANG A F, LIU Y M, PAN G X, et al. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain[J]. Plant and Soil, 2012, 351(1/2): 263-275. |
[13] | 孙瑞莲, 赵秉强, 朱鲁生, 等. 长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用[J]. 植物营养与肥料学报, 2003, 9(4): 406-410. |
SUN R L, ZHAO B Q, ZHU L S, et al. Effects of long-term fertilization on soil enzyme activities and its role in adjusting-controlling soil fertility[J]. Plant Nutrition and Fertilizing Science, 2003, 9(4): 406-410. (in Chinese with English abstract) | |
[14] | 赵军, 耿增超, 尚杰, 等. 生物炭及炭基硝酸铵对土壤微生物量碳、氮及酶活性的影响[J]. 生态学报, 2016, 36(8): 2355-2362. |
ZHAO J, GENG Z C, SHANG J, et al. Effects of biochar and biochar-based ammonium nitrate fertilizers on soil microbial biomass carbon and nitrogen and enzyme activities[J]. Acta Ecologica Sinica, 2016, 36(8): 2355-2362. (in Chinese with English abstract) | |
[15] | 宋震震, 李絮花, 李娟, 等. 有机肥和化肥长期施用对土壤活性有机氮组分及酶活性的影响[J]. 植物营养与肥料学报, 2014, 20(3): 525-533. |
SONG Z Z, LI X H, LI J, et al. Long-term effects of mineral versus organic fertilizers on soil labile nitrogen fractions and soil enzyme activities in agricultural soil[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(3): 525-533. (in Chinese with English abstract) | |
[16] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
[17] | 董桂春, 陈琛, 袁秋梅, 等. 氮肥处理对氮素高效吸收水稻根系性状及氮肥利用率的影响[J]. 生态学报, 2016, 36(3): 642-651. |
DONG G C, CHEN C, YUAN Q M, et al. The effect of nitrogen fertilizer treatments on root traits and nitrogen use efficiency in indica rice varieties with high nitrogen absorption efficiency[J]. Acta Ecologica Sinica, 2016, 36(3): 642-651. (in Chinese with English abstract) | |
[18] | GERMAN D P, WEINTRAUB M N, GRANDY A S, et al. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies[J]. Soil Biology and Biochemistry, 2011, 43(7): 1387-1397. |
[19] | 吴愉萍, 王明湖, 席杰君, 等. 不同农业废弃物生物炭及施用量对土壤pH值和保水保氮能力的影响[J]. 中国土壤与肥料, 2019(1): 87-92. |
WU Y P, WANG M H, XI J J, et al. The effects of different agricultural waste biochars and application rates on soil pH, water holding capacity and N adsorption[J]. Soil and Fertilizer Sciences in China, 2019(1): 87-92. (in Chinese with English abstract) | |
[20] | 陈温福, 张伟明, 孟军. 农用生物炭研究进展与前景[J]. 中国农业科学, 2013, 46(16): 3324-3333. |
CHEN W F, ZHANG W M, MENG J. Advances and prospects in research of biochar utilization in agriculture[J]. Scientia Agricultura Sinica, 2013, 46(16): 3324-3333. (in Chinese with English abstract) | |
[21] | BOLAN N S, HEDLEY M J, WHITE R E. Processes of soil acidification during nitrogen cycling with emphasis on legume based pastures[J]. Plant and Soil, 1991, 134(1): 53-63. |
[22] | 田冬, 高明, 徐畅. 土壤水分和氮添加对3种质地紫色土氮矿化及土壤pH的影响[J]. 水土保持学报, 2016, 30(1): 255-261. |
TIAN D, GAO M, XU C. Effects of soil moisture and nitrogen addition on nitrogen mineralization and soil pH in purple soil of three different textures[J]. Journal of Soil and Water Conservation, 2016, 30(1): 255-261. (in Chinese with English abstract) | |
[23] | KIMETU J M, LEHMANN J. Stability and stabilisation of biochar and green manure in soil with different organic carbon contents[J]. Soil Research, 2010, 48(7): 577. |
[24] | 张千丰, 王光华. 生物炭理化性质及对土壤改良效果的研究进展[J]. 土壤与作物, 2012, 1(4): 219-226. |
ZHANG Q F, WANG G H. Research progress of physiochemical properties of biochar and its effects as soil amendments[J]. Soil and Crop, 2012, 1(4): 219-226. (in Chinese with English abstract) | |
[25] | 武玉, 徐刚, 吕迎春, 等. 生物炭对土壤理化性质影响的研究进展[J]. 地球科学进展, 2014, 29(1): 68-79. |
WU Y, XU G, LÜ Y C, et al. Effects of biochar amendment on soil physical and chemical properties: current status and knowledge gaps[J]. Advances in Earth Science, 2014, 29(1): 68-79. (in Chinese with English abstract) | |
[26] | 张文玲, 李桂花, 高卫东. 生物质炭对土壤性状和作物产量的影响[J]. 中国农学通报, 2009, 25(17): 153-157. |
ZHANG W L, LI G H, GAO W D. Effect of biomass charcoal on soil character and crop yield[J]. Chinese Agricultural Science Bulletin, 2009, 25(17): 153-157. (in Chinese with English abstract) | |
[27] | 章明奎, BAYOU W D, 唐红娟. 生物质炭对土壤有机质活性的影响[J]. 水土保持学报, 2012, 26(2): 127-131. |
ZHANG M K, BAYOU W D, TANG H J. Effects of biochar’s application on active organic carbon fractions in soil[J]. Journal of Soil and Water Conservation, 2012, 26(2): 127-131. (in Chinese with English abstract) | |
[28] | 汪峰, 李国安, 王丽丽, 等. 减量施氮对大棚黄瓜产量和品质的影响[J]. 应用生态学报, 2017, 28(11): 3627-3633. |
WANG F, LI G A, WANG L L, et al. Examining the effects of reduced nitrogen fertilization on the yield and fruit quality of greenhouse cultivated cucumber[J]. Chinese Journal of Applied Ecology, 2017, 28(11): 3627-3633. (in Chinese with English abstract) | |
[29] | SPOKAS K A, NOVAK J M, VENTEREA R T. Biochar’s role as an alternative N-fertilizer: ammonia capture[J]. Plant and Soil, 2012, 350(1/2): 35-42. |
[30] | 于春晓, 张丽莉, 杨立杰, 等. 减氮配施抑制剂及鸡粪提高尿素氮在稻田土壤中的转化及利用[J]. 植物营养与肥料学报, 2021, 27(9): 1581-1591. |
YU C X, ZHANG L L, YANG L J, et al. Combining N-inhibitor and chicken manure with reduced N fertilizer to improve the conversion and utilization of fertilizer N in a paddy soil[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(9): 1581-1591. (in Chinese with English abstract) | |
[31] | GASKIN J W, STEINER C, HARRIS K, et al. Effect of low-temperature pyrolysis conditions on biochar for agricultural use[J]. Transactions of the ASABE, 2008, 51(6): 2061-2069. |
[32] | SINGH B, SINGH B P, COWIE A L. Characterisation and evaluation of biochars for their application as a soil amendment[J]. Soil Research, 2010, 48(7): 516. |
[33] | 邱莉萍, 刘军, 王益权, 等. 土壤酶活性与土壤肥力的关系研究[J]. 植物营养与肥料学报, 2004, 10(3): 277-280. |
QIU L P, LIU J, WANG Y Q, et al. Research on relationship between soil enzyme activities and soil fertility[J]. Plant Nutrition and Fertilizing Science, 2004, 10(3): 277-280. (in Chinese with English abstract) | |
[34] | 刘善江, 夏雪, 陈桂梅, 等. 土壤酶的研究进展[J]. 中国农学通报, 2011, 27(21): 1-7. |
LIU S J, XIA X, CHEN G M, et al. Study progress on functions and affecting factors of soil enzymes[J]. Chinese Agricultural Science Bulletin, 2011, 27(21): 1-7. (in Chinese with English abstract) | |
[35] | 杜林森, 唐美铃, 祝贞科, 等. 长期施肥对不同深度稻田土壤碳氮水解酶活性的影响特征[J]. 环境科学, 2018, 39(8): 3901-3909. |
DU L S, TANG M L, ZHU Z K, et al. Effects of long-term fertilization on enzyme activities in profile of paddy soil profiles[J]. Environmental Science, 2018, 39(8): 3901-3909. (in Chinese with English abstract) | |
[36] | 李其胜, 赵贺, 汪志鹏, 等. 有机肥替代部分化肥对稻麦轮作土壤养分利用和酶活性的影响[J]. 土壤通报, 2020, 51(4): 912-919. |
LI Q S, ZHAO H, WANG Z P, et al. Effects of organic fertilizer replacing partial chemical fertilizer on nutrient utilization and soil enzyme activity in a rice-wheat cropping system[J]. Chinese Journal of Soil Science, 2020, 51(4): 912-919. (in Chinese with English abstract) | |
[37] | PAZ-FERREIRO J, FU S L, MÉNDEZ A, et al. Interactive effects of biochar and the earthworm Pontoscolex corethrurus on plant productivity and soil enzyme activities[J]. Journal of Soils and Sediments, 2014, 14(3): 483-494. |
[38] | 孟繁昊, 高聚林, 于晓芳, 等. 生物炭配施氮肥改善表层土壤生物化学性状研究[J]. 植物营养与肥料学报, 2018, 24(5): 1214-1226. |
MENG F H, GAO J L, YU X F, et al. Inprovent of biochemical property of surface soil by combined application of biochar with nitrogen fertilizer[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1214-1226. (in Chinese with English abstract) | |
[39] | 郭乾坤, 梁国庆, 周卫, 等. 长期有机培肥提高红壤性水稻土生物学特性及水稻产量的微生物学机制[J]. 植物营养与肥料学报, 2020, 26(3): 492-501. |
GUO Q K, LIANG G Q, ZHOU W, et al. Microbiological mechanism of long-term organic fertilization on improving soil biological properties and double rice yields in red paddy soil[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(3): 492-501. (in Chinese with English abstract) | |
[40] | 曲晶晶, 郑金伟, 郑聚锋, 等. 小麦秸秆生物质炭对水稻产量及晚稻氮素利用率的影响[J]. 生态与农村环境学报, 2012, 28(3): 288-293. |
QU J J, ZHENG J W, ZHENG J F, et al. Effects of wheat-straw-based biochar on yield of rice and nitrogen use efficiency of late rice[J]. Journal of Ecology and Rural Environment, 2012, 28(3): 288-293. (in Chinese with English abstract) | |
[41] | 李伟, 代镇, 张光鑫, 等. 生物炭和氮肥配施提高𪣻土团聚体稳定性及作物产量[J]. 植物营养与肥料学报, 2019, 25(5): 782-791. |
LI W, DAI Z, ZHANG G X, et al. Combination of biochar and nitrogen fertilizer to improve soil aggregate stability and crop yield in Lou soil[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(5): 782-791. (in Chinese with English abstract) | |
[42] | 杨天昱. 生物炭基肥对水稻产量及稻田土壤肥力特性的影响[D]. 沈阳: 沈阳农业大学, 2020: 26-28. |
YANG T Y. Effects of biochar-based fertilizer on rice yield and paddy soil fertility characteristics[D]. Shenyang: Shenyang Agricultural University, 2020: 26-28. (in Chinese with English abstract) | |
[43] | 易琼, 张秀芝, 何萍, 等. 氮肥减施对稻-麦轮作体系作物氮素吸收、利用和土壤氮素平衡的影响[J]. 植物营养与肥料学报, 2010, 16(5): 1069-1077. |
YI Q, ZHANG X Z, HE P, et al. Effects of reducing N application on crop N uptake, utilization, and soil N balance in rice-wheat rotation system[J]. Plant Nutrition and Fertilizer Science, 2010, 16(5): 1069-1077. (in Chinese with English abstract) | |
[44] | 郑小龙, 吴家森, 陈裴裴, 等. 不同施肥与生物质炭配施对水稻田面水氮磷流失及产量的影响[J]. 水土保持学报, 2013, 27(4): 39-43. |
ZHENG X L, WU J S, CHEN P P, et al. Effects of reducing nitrogen and biomass carbon fertilization on loss of nitrogen and phosphorus in surface water of paddy field and grain production[J]. Journal of Soil and Water Conservation, 2013, 27(4): 39-43. (in Chinese with English abstract) | |
[45] | 史登林, 王小利, 刘安凯, 等. 生物炭氮替代部分化肥氮对黄壤水稻的生物效应[J]. 中国土壤与肥料, 2021(2): 199-205. |
SHI D L, WANG X L, LIU A K, et al. Biological effect of biochar nitrogen replacing partial fertilizer nitrogen on rice in yellow soil[J]. Soil and Fertilizer Sciences in China, 2021(2): 199-205. (in Chinese with English abstract) |
[1] | 王薇薇, 梅燚, 吴永成, 万红建, 陈长军, 郑青松, 郑佳秋. 玉米芯生物炭对辣椒连作土壤性质和辣椒生长的影响[J]. 浙江农业学报, 2023, 35(1): 156-163. |
[2] | 胡开博, 杨清夏, 李扬, 吴开贤, 赵平, 龙光强. 化肥减氮配施氨基酸肥料对春玉米生产的影响[J]. 浙江农业学报, 2022, 34(4): 661-670. |
[3] | 崔文芳, 陈静, 鲁富宽, 秦丽, 秦德志, 王利平, 高聚林. 生物炭结合氮肥减量对玉米产量和氮效率的影响[J]. 浙江农业学报, 2022, 34(2): 248-254. |
[4] | 林智文, 张鹏, 吴天昊, 单颖, 邹刚华, 赵凤亮, 郑桂萍. 秸秆直接还田与炭化还田对热带土壤-水稻系统氨挥发的影响[J]. 浙江农业学报, 2022, 34(12): 2689-2699. |
[5] | 张金萍, 陈照明, 王强, 马军伟, 俞巧钢, 叶静, 马进川, 孙万春. 缓释肥占基肥比例对单季晚稻分蘖和氮素吸收利用的影响[J]. 浙江农业学报, 2022, 34(10): 2259-2267. |
[6] | 吴佩聪, 张鹏, 单颖, 邹刚华, 丁哲利, 朱治强, 赵凤亮. 秸秆炭化还田对热带土壤-水稻体系氨挥发的影响[J]. 浙江农业学报, 2021, 33(4): 678-687. |
[7] | 徐民民, 黄莹, 李波, 徐艳, 张帅, 姚岭芸, 王政. 生物炭对小麦根际和根内微生物群落结构的影响[J]. 浙江农业学报, 2021, 33(3): 516-525. |
[8] | 周文志, 孙向阳, 李素艳, 张乐. 生物有机材料对滨海盐碱土的改良效果[J]. 浙江农业学报, 2019, 31(4): 607-615. |
[9] | 刘琛, 张莉, 林义成, 郭彬, 傅庆林, 李华, 丁能飞. 不同施肥模式下苕溪流域水稻田和蔬菜地氮磷流失规律[J]. 浙江农业学报, 2019, 31(2): 297-306. |
[10] | 马鹏, 杨志远, 李郁, 林郸, 孙永健, 马均. 轮作体系下麦/油减量施氮与水稻氮肥运筹对作物产量和氮素吸收的影响[J]. 浙江农业学报, 2019, 31(11): 1769-1778. |
[11] | 黄惠群, 蔡文昌, 张健瑜, 李灿, 曾和平. 炭化温度对牛粪生物炭结构性质的影响[J]. 浙江农业学报, 2018, 30(9): 1561-1568. |
[12] | 索桂芳, 吕豪豪, 汪玉瑛, 刘玉学, 何莉莉, 杨生茂. 炭基微生物肥料制备工艺及性质分析[J]. 浙江农业学报, 2018, 30(7): 1218-1228. |
[13] | 王代懿, 张丰松, 潘娟, 刘登璐, 苟体忠. 水稻秸秆生物炭对雄烯二酮在土壤中吸附与降解行为的影响[J]. 浙江农业学报, 2018, 30(4): 632-639. |
[14] | 刘全凤, 刘永震, 曹金锋, 杨振立, 翟玉柱, 赖德强, 孙一, 刘贞贞. 控释氮肥用量对环渤海潮土区棉花产量及氮肥利用率的影响[J]. 浙江农业学报, 2018, 30(2): 275-279. |
[15] | 林肖庆1,2,吕豪豪2,3,刘玉学2,3,汪玉瑛2,3,杨生茂1,2,3,*. 生物质原料及炭化温度对生物炭产率与性质的影响[J]. 浙江农业学报, 2016, 28(7): 1216-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||