浙江农业学报 ›› 2023, Vol. 35 ›› Issue (4): 893-902.DOI: 10.3969/j.issn.1004-1524.2023.04.16
徐洋a(), 任奕林a,*(
), 王浩杰a, 黄秋航a, 邢博源a, 曹红亮b
收稿日期:
2022-10-24
出版日期:
2023-04-25
发布日期:
2023-05-05
通讯作者:
*任奕林,E-mail: renyiling@mail.hzau.edu.cn
作者简介:
徐洋(1998—),男,湖北黄冈人,硕士研究生,主要从事农产品加工技术与装备研究。E-mail:1256045619@qq.com
基金资助:
XU Yanga(), REN Yilina,*(
), WANG Haojiea, HUANG Qiuhanga, XING Boyuana, CAO Hongliangb
Received:
2022-10-24
Online:
2023-04-25
Published:
2023-05-05
摘要:
为量化评价油菜秸秆生物炭用作缓释载体的潜力,采用高温裂解法,在不同磷酸体积分数(5%、10%、15%)、热解温度(450、550、650 ℃)和保温时长(40、80、120 min)下制备生物炭,探究其表面形态、官能团组成和理化特性的变化规律,在此基础上引入灰色关联法,综合评价其用作缓释载体的潜力。结果表明,随着磷酸体积分数、热解温度和保温时长的增加,生物炭的炭得率、含水率、挥发分逐渐减小,而灰分、固定碳逐渐增大。基于灰色关联度分析结果,综合考虑各因素对产率的影响,当磷酸的体积分数为10%、热解温度为450 ℃、保温时长为80 min时,制备的生物炭用作缓释载体的潜力最大。
中图分类号:
徐洋, 任奕林, 王浩杰, 黄秋航, 邢博源, 曹红亮. 不同制备条件下油菜秸秆生物炭用作缓释载体的综合评价[J]. 浙江农业学报, 2023, 35(4): 893-902.
XU Yang, REN Yilin, WANG Haojie, HUANG Qiuhang, XING Boyuan, CAO Hongliang. Comprehensive evaluation of rape straw biochar as slow-release carrier under different preparation conditions[J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 893-902.
样品 Sample | 炭得率 Biochar yield | 全水分 Moisture content | 灰分 Ash content | 挥发分 Volatile content | 固定碳 Fixed carbon |
---|---|---|---|---|---|
5PRS-BC550-HT80 | 38.80 | 3.27 | 20.70 | 12.08 | 63.95 |
10PRS-BC550-HT80 | 37.70 | 3.13 | 22.35 | 10.52 | 64.00 |
15PRS-BC550-HT80 | 37.65 | 2.76 | 23.46 | 10.08 | 63.70 |
10PRS-BC450-HT80 | 39.00 | 5.01 | 17.57 | 17.23 | 60.19 |
10PRS-BC550-HT80 | 37.70 | 3.16 | 22.11 | 14.52 | 60.21 |
10PRS-BC650-HT80 | 36.25 | 2.79 | 24.26 | 12.63 | 60.32 |
10PRS-BC550-HT40 | 38.05 | 3.81 | 18.06 | 17.47 | 60.65 |
10PRS-BC550-HT80 | 37.70 | 3.08 | 19.11 | 10.52 | 67.29 |
10PRS-BC550-HT120 | 37.75 | 2.43 | 19.19 | 10.46 | 67.92 |
表1 不同制备条件下PRS-BC-HT的炭得率与基本物理特性
Table 1 Biochar yield and basic physical properties of PRS-BC-HT under different preparation conditions %
样品 Sample | 炭得率 Biochar yield | 全水分 Moisture content | 灰分 Ash content | 挥发分 Volatile content | 固定碳 Fixed carbon |
---|---|---|---|---|---|
5PRS-BC550-HT80 | 38.80 | 3.27 | 20.70 | 12.08 | 63.95 |
10PRS-BC550-HT80 | 37.70 | 3.13 | 22.35 | 10.52 | 64.00 |
15PRS-BC550-HT80 | 37.65 | 2.76 | 23.46 | 10.08 | 63.70 |
10PRS-BC450-HT80 | 39.00 | 5.01 | 17.57 | 17.23 | 60.19 |
10PRS-BC550-HT80 | 37.70 | 3.16 | 22.11 | 14.52 | 60.21 |
10PRS-BC650-HT80 | 36.25 | 2.79 | 24.26 | 12.63 | 60.32 |
10PRS-BC550-HT40 | 38.05 | 3.81 | 18.06 | 17.47 | 60.65 |
10PRS-BC550-HT80 | 37.70 | 3.08 | 19.11 | 10.52 | 67.29 |
10PRS-BC550-HT120 | 37.75 | 2.43 | 19.19 | 10.46 | 67.92 |
样品Sample | H/C | O/C | (O+N)/C |
---|---|---|---|
5PRS-BC550-HT80 | 0.036 | 0.017 | 0.023 |
10PRS-BC550-HT80 | 0.027 | 0.020 | 0.026 |
15PRS-BC550-HT80 | 0.019 | 0.028 | 0.032 |
10PRS-BC450-HT80 | 0.032 | 0.051 | 0.052 |
10PRS-BC550-HT80 | 0.027 | 0.041 | 0.046 |
10PRS-BC650-HT80 | 0.023 | 0.015 | 0.021 |
10PRS-BC550-HT40 | 0.031 | 0.043 | 0.047 |
10PRS-BC550-HT80 | 0.030 | 0.025 | 0.028 |
10PRS-BC550-HT120 | 0.027 | 0.012 | 0.014 |
表2 不同制备条件下PRS-BC-HT的原子比
Table 2 Atomic ratio of PRS-BC-HT under different preparation conditions
样品Sample | H/C | O/C | (O+N)/C |
---|---|---|---|
5PRS-BC550-HT80 | 0.036 | 0.017 | 0.023 |
10PRS-BC550-HT80 | 0.027 | 0.020 | 0.026 |
15PRS-BC550-HT80 | 0.019 | 0.028 | 0.032 |
10PRS-BC450-HT80 | 0.032 | 0.051 | 0.052 |
10PRS-BC550-HT80 | 0.027 | 0.041 | 0.046 |
10PRS-BC650-HT80 | 0.023 | 0.015 | 0.021 |
10PRS-BC550-HT40 | 0.031 | 0.043 | 0.047 |
10PRS-BC550-HT80 | 0.030 | 0.025 | 0.028 |
10PRS-BC550-HT120 | 0.027 | 0.012 | 0.014 |
样品Smple | ε1 | ε2 | ε3 | ε4 | 关联度Degree of relevance |
---|---|---|---|---|---|
5PRS-BC550-HT80 | 0.333 | 0.333 | 0.790 | 0.598 | 0.513 |
10PRS-BC550-HT80 | 0.524 | 0.344 | 0.723 | 0.464 | 0.514 |
15PRS-BC550-HT80 | 1.000 | 0.478 | 0.559 | 0.333 | 0.593 |
10PRS-BC450-HT80 | 0.405 | 1.000 | 0.333 | 1.000 | 0.685 |
10PRS-BC550-HT80 | 0.529 | 0.372 | 0.401 | 0.851 | 0.538 |
10PRS-BC650-HT80 | 0.700 | 0.351 | 0.879 | 0.475 | 0.601 |
10PRS-BC550-HT40 | 0.419 | 0.478 | 0.387 | 0.727 | 0.503 |
10PRS-BC550-HT80 | 0.446 | 0.589 | 0.597 | 0.577 | 0.552 |
10PRS-BC550-HT120 | 0.532 | 0.900 | 1.000 | 0.527 | 0.740 |
表3 不同制备条件下PRS-BC-HT的灰色关联度
Table 3 Grey correlation of PRS-BC-HT under different preparation conditions
样品Smple | ε1 | ε2 | ε3 | ε4 | 关联度Degree of relevance |
---|---|---|---|---|---|
5PRS-BC550-HT80 | 0.333 | 0.333 | 0.790 | 0.598 | 0.513 |
10PRS-BC550-HT80 | 0.524 | 0.344 | 0.723 | 0.464 | 0.514 |
15PRS-BC550-HT80 | 1.000 | 0.478 | 0.559 | 0.333 | 0.593 |
10PRS-BC450-HT80 | 0.405 | 1.000 | 0.333 | 1.000 | 0.685 |
10PRS-BC550-HT80 | 0.529 | 0.372 | 0.401 | 0.851 | 0.538 |
10PRS-BC650-HT80 | 0.700 | 0.351 | 0.879 | 0.475 | 0.601 |
10PRS-BC550-HT40 | 0.419 | 0.478 | 0.387 | 0.727 | 0.503 |
10PRS-BC550-HT80 | 0.446 | 0.589 | 0.597 | 0.577 | 0.552 |
10PRS-BC550-HT120 | 0.532 | 0.900 | 1.000 | 0.527 | 0.740 |
[1] | 钟晓晓. 油菜秸秆生物炭的制备及农药负载-缓释应用研究[D]. 武汉: 华中农业大学, 2017. |
ZHONG X X. Application of biochar prepared from rape straw for pesticide loading-release[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese with English abstract) | |
[2] |
ANTAL M J, GRØNLI M. The art, science, and technology of charcoal production[J]. Industrial & Engineering Chemistry Research, 2003, 42(8): 1619-1640.
DOI URL |
[3] |
陈温福, 张伟明, 孟军. 农用生物炭研究进展与前景[J]. 中国农业科学, 2013, 46(16): 3324-3333.
DOI |
CHEN W F, ZHANG W M, MENG J. Advances and prospects in research of biochar utilization in agriculture[J]. Scientia Agricultura Sinica, 2013, 46(16): 3324-3333. (in Chinese with English abstract) | |
[4] | 李艳梅, 张兴昌, 廖上强, 等. 生物炭基肥增效技术与制备工艺研究进展分析[J]. 农业机械学报, 2017, 48(10): 1-14. |
LI Y M, ZHANG X C, LIAO S Q, et al. Research progress on synergy technologies of carbon-based fertilizer and its application[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(10): 1-14. (in Chinese with English abstract) | |
[5] |
AL-WABEL M I, HUSSAIN Q, USMAN A R A, et al. Impact of biochar properties on soil conditions and agricultural sustainability: a review[J]. Land Degradation & Development, 2018, 29(7): 2124-2161.
DOI URL |
[6] | 邢莉彬, 成洁, 耿增超, 等. 不同原料生物炭的理化特性及其作炭基肥缓释载体的潜力评价[J]. 环境科学, 2022, 43(5): 2770-2778. |
XING L B, CHENG J, GENG Z C, et al. Physicochemical properties of biochars prepared from different feedstocks and evaluation of its potential as a slow-release carriers for biochar-based fertilizers[J]. Environmental Science, 2022, 43(5): 2770-2778. (in Chinese with English abstract) | |
[7] | 钟磊, 栗高源, 陈冠益, 等. 我国农作物秸秆分布特征与秸秆炭基肥制备应用研究进展[J]. 农业资源与环境学报, 2022, 39(3): 575-585. |
ZHONG L, LI G Y, CHEN G Y, et al. Research progress on the distribution characteristics of crop straws and the preparation and application of straw carbon-based fertilizers in China[J]. Journal of Agricultural Resources and Environment, 2022, 39(3): 575-585. (in Chinese with English abstract) | |
[8] |
HUANG F, GAO L Y, WU R R, et al. Qualitative and quantitative characterization of adsorption mechanisms for Cd2+ by silicon-rich biochar[J]. Science of the Total Environment, 2020, 731: 139163.
DOI URL |
[9] |
MAHDI Z, EL HANANDEH A, YU Q J. Preparation, characterization and application of surface modified biochar from date seed for improved lead, copper, and nickel removal from aqueous solutions[J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103379.
DOI URL |
[10] | 董良杰, 李金铭, 赵博骏, 等. 硝酸改性秸秆水热炭结构表征与铅吸附机制研究[J]. 农业机械学报, 2021, 52(5): 267-278. |
DONG L J, LI J M, ZHAO B J, et al. Structure characterization and Pb2+ adsorption mechanism of nitric acid modified hydrochars from straw[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5): 267-278. (in Chinese with English abstract) | |
[11] | 王震宇, 刘国成, XING M, 等. 不同热解温度生物炭对Cd(Ⅱ)的吸附特性[J]. 环境科学, 2014, 35(12): 4735-4744. |
WANG Z Y, LIU G C, XING M, et al. Adsorption of Cd(Ⅱ) varies with biochars derived at different pyrolysis temperatures[J]. Environmental Science, 2014, 35(12): 4735-4744. (in Chinese with English abstract) | |
[12] |
KWAK J H, ISLAM M S, WANG S Y, et al. adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation[J]. Chemosphere, 2019, 231: 393-404.
DOI URL |
[13] |
CHEN B L, ZHOU D D, ZHU L Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures[J]. Environmental Science & Technology, 2008, 42(14): 5137-5143.
DOI URL |
[14] | 简敏菲, 高凯芳, 余厚平. 不同裂解温度对水稻秸秆制备生物炭及其特性的影响[J]. 环境科学学报, 2016, 36(5): 1757-1765. |
JIAN M F, GAO K F, YU H P. Effects of different pyrolysis temperatures on the preparation and characteristics of bio-char from rice straw[J]. Acta Scientiae Circumstantiae, 2016, 36(5): 1757-1765. (in Chinese with English abstract) | |
[15] | 吴晓东, 邢泽炳, 谷晓霞, 等. 炭化温度对柠条生物炭结构和性能的影响[J]. 太阳能学报, 2021, 42(12): 297-303. |
WU X D, XING Z B, GU X X, et al. Impact of carbonization temperature on structure and properties of Caragana korshinskii Kom biochar[J]. Acta Energiae Solaris Sinica, 2021, 42(12): 297-303. (in Chinese with English abstract) | |
[16] |
OGUNGBENRO A E, QUANG D V, AL-ALI K, et al. Activated carbon from date seeds for CO2 capture applications[J]. Energy Procedia, 2017, 114: 2313-2321.
DOI URL |
[17] | 牛文娟, 阮桢, 钟菲, 等. 保温时间与粒度对稻秆和棉秆热解产物组成及能量转化影响[J]. 农业工程学报, 2018, 34(22): 212-219. |
NIU W J, RUAN Z, ZHONG F, et al. Effects of holding time and particle size on physicochemical properties and energy conversion of pyrolysis product conponent of rice straw and cotton stalk[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(22): 212-219. (in Chinese with English abstract) | |
[18] | 刘朝霞, 刘鸣, 牛文娟, 等. 保温时间对不同秸秆生物炭肥料化利用理化特性的影响[J]. 华中农业大学学报, 2020, 39(4): 182-192. |
LIU Z X, LIU M, NIU W J, et al. Effects of holding time on physical and chemical properties of utilizing different straw biochar fertilizer[J]. Journal of Huazhong Agricultural University, 2020, 39(4): 182-192. (in Chinese with English abstract) | |
[19] | 刘新, 冷言冰, 谷仕艳, 等. 油菜秸杆外壳对水溶液中六价铬的吸附作用[J]. 中国环境科学, 2015, 35(6): 1740-1748. |
LIU X, LENG Y B, GU S Y, et al. Adsorption of Cr(Ⅵ) in the aqueous solution by rape straw shell powder[J]. China Environmental Science, 2015, 35(6): 1740-1748. (in Chinese with English abstract) | |
[20] | 白敬, 徐友, 魏新华, 等. 基于光谱特性分析的冬油菜苗期田间杂草识别[J]. 农业工程学报, 2013, 29(20): 128-134. |
BAI J, XU Y, WEI X H, et al. Weed identification from winter rape at seedling stage based on spectrum characteristics analysis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(20): 128-134. (in Chinese with English abstract) | |
[21] | 毕于运. 秸秆资源评价与利用研究[D]. 北京: 中国农业科学院, 2010. |
BI Y Y. Study on straw resources evaluation and utilization in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. (in Chinese with English abstract) | |
[22] |
LI Y F, HONG C, WANG Z Q, et al. Fractal characteristics of biochars derived from Penicillin v potassium residue pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2019, 141: 104636.
DOI URL |
[23] |
HUANG H L, RIZWAN M, LI M, et al. Comparative efficacy of organic and inorganic silicon fertilizers on antioxidant response, Cd/Pb accumulation and health risk assessment in wheat (Triticum aestivum L.)[J]. Environmental Pollution, 2019, 255: 113146.
DOI URL |
[24] | 李萍, 胡传鹏, 杨卫正, 等. 带横向外凸筋多楔轮旋压成形规律及工艺研究[J]. 哈尔滨工业大学学报, 2018, 50(11): 153-159. |
LI P, HU C P, YANG W Z, et al. Study on spinning forming process of multi-wedge belt pulley with transverse outer ribs[J]. Journal of Harbin Institute of Technology, 2018, 50(11): 153-159. (in Chinese with English abstract) | |
[25] | 辛善志. 基于组分的生物质热分解及交互作用机制研究[D]. 武汉: 华中科技大学, 2014. |
XIN S Z. Study on the mechanism of biomass pyrolysis and the interactions based on its components[D]. Wuhan: Huazhong University of Science and Technology, 2014. (in Chinese with English abstract) | |
[26] | 丁思惠, 方升佐, 田野, 等. 不同热解温度下杨树各组分生物质炭的理化特性分析与评价[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 193-200. |
DING S H, FANG S Z, TIAN Y, et al. Analysis and evaluation on physicochemical properties of poplar biochar at different pyrolysis temperatures[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2020, 44(6): 193-200. (in Chinese with English abstract) | |
[27] | 吕娟, 王明峰, 蒋恩臣, 等. 不同热解温度下稻壳炭的理化特性分析[J]. 可再生能源, 2017, 35(10): 1448-1453. |
LYU J, WANG M F, JIANG E C, et al. Analysis on the physicochemical properties of the rice husk carbon produced at different pyrolysis temperature[J]. Renewable Energy Resources, 2017, 35(10): 1448-1453. (in Chinese with English abstract) | |
[28] | 葛丽炜, 夏颖, 刘书悦, 等. 热解温度和时间对马弗炉制备生物炭的影响[J]. 沈阳农业大学学报, 2018, 49(1): 95-100. |
GE L W, XIA Y, LIU S Y, et al. Effect of pyrolysis temperature and time on biochar production in a muffle furnace[J]. Journal of Shenyang Agricultural University, 2018, 49(1): 95-100. (in Chinese with English abstract) | |
[29] | 杨芳. 秸秆炭热化工特性分析及FT-MIR模型构建[D]. 武汉: 华中农业大学, 2017. |
YANG F. The thermal chemistry analysis and FT-MIR model building of straw biochar[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese with English abstract) | |
[30] |
LI J, ZHAO P T, LI T, et al. Pyrolysis behavior of hydrochar from hydrothermal carbonization of pinewood sawdust[J]. Journal of Analytical and Applied Pyrolysis, 2020, 146: 104771.
DOI URL |
[31] | 韦思业. 不同生物质原料和制备温度对生物炭物理化学特征的影响[D]. 广州: 中国科学院广州地球化学研究所, 2017. |
WEI S Y. Influence of biomass feedstocks and pyrolysis temperatures on physical and chemical properties of biochar[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2017. (in Chinese with English abstract) | |
[32] | 冯一尘. 基于生物炭性质分析和机器学习模型的重金属吸附效率预测[D]. 西安: 西北大学, 2020. |
FENG Y C. Prediction of heavy metal adsorption efficiency based on biochar properties analysis and machine learning model[D]. Xi’an: Northwest University, 2020. (in Chinese with English abstract) | |
[33] |
XIA Y, YANG T X, ZHU N M, et al. Enhanced adsorption of Pb(Ⅱ) onto modified hydrochar: modeling and mechanism analysis[J]. Bioresource Technology, 2019, 288: 121593.
DOI URL |
[34] | 李飞跃, 汪建飞, 谢越, 等. 热解温度对生物质炭碳保留量及稳定性的影响[J]. 农业工程学报, 2015, 31(4): 266-271. |
LI F Y, WANG J F, XIE Y, et al. Effects of pyrolysis temperature on carbon retention and stability of biochar[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(4): 266-271. (in Chinese with English abstract) | |
[35] |
SINGH B, SINGH B P, COWIE A L. Characterisation and evaluation of biochars for their application as a soil amendment[J]. Soil Research, 2010, 48(7): 516.
DOI URL |
[36] |
ASAI H, SAMSON B K, STEPHAN H M, et al. Biochar amendment techniques for upland rice production in Northern Laos[J]. Field Crops Research, 2009, 111(1/2): 81-84.
DOI URL |
[37] |
HONG P, LIU X, ZHANG X, et al. Hierarchically porous carbon derived from the activation of waste chestnut shells by potassium bicarbonate (KHCO3) for high-performance supercapacitor electrode[J]. International Journal of Energy Research, 2020, 44(2): 988-999.
DOI URL |
[38] |
PRAHAS D, KARTIKA Y, INDRASWATI N, et al. Activated carbon from jackfruit peel waste by H3PO4 chemical activation: pore structure and surface chemistry characterization[J]. Chemical Engineering Journal, 2008, 140(1/2/3): 32-42.
DOI URL |
[39] |
CHEN B L, JOHNSON E J, CHEFETZ B, et al. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: role of polarity and accessibility[J]. Environmental Science & Technology, 2005, 39(16): 6138-6146.
DOI URL |
[40] | ACCARDIDEY A M. Black carbon in marine sediments: quantification and implications for the sorption of polycyclic aromatic hydrocarbons[D]. Cambridge, MA, US: The Massachusetts Institute of Technology, 2003. |
[41] |
ZENG H T, ZENG H H, ZHANG H, et al. Efficient adsorption of Cr (Ⅵ) from aqueous environments by phosphoric acid activated eucalyptus biochar[J]. Journal of Cleaner Production, 2021, 286: 124964.
DOI URL |
[42] | 王明峰, 陈志文, 蒋恩臣, 等. 桉树热解产物热物性参数演变特性研究[J]. 农业机械学报, 2018, 49(3): 317-321. |
WANG M F, CHEN Z W, JIANG E C, et al. Thermal parameters properties evolution of eucalyptus pyrolysis bio-char[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(3): 317-321. (in Chinese with English abstract) | |
[43] |
WANG K F, PENG N, LU G N, et al. Effects of pyrolysis temperature and holding time on physicochemical properties of swine-manure-derived biochar[J]. Waste and Biomass Valorization, 2020, 11(2): 613-624.
DOI |
[44] | JIA Y M, HU Z Y, MU J, et al. Preparation of biochar as a coating material for biochar-coated urea[J]. Science of the Total Environment, 2020, 731: 139063. |
[45] | BALIGAR V C, FAGERIA N K. Nutrient use efficiency in plants: an overview[M]// Nutrient use efficiency:from basics to advances. New Delhi: Springer India, 2015: 1-14. |
[46] | 汤嘉雯, 陈金焕, 王凯男, 等. 加拿大一枝黄花生物炭对Cd2+的吸附特性及机理[J]. 农业环境科学学报, 2019, 38(6): 1339-1348. |
TANG J W, CHEN J H, WANG K N, et al. Characteristics and mechanism of cadmium adsorption by Solidago canadensis-derived biochar[J]. Journal of Agro-Environment Science, 2019, 38(6): 1339-1348. (in Chinese with English abstract) |
[1] | 阮泽斌, 王兰鸽, 蓝王凯宁, 徐彦, 陈俊辉, 柳丹. 氮肥减量配施生物炭对水稻氮素吸收和土壤理化性质的影响[J]. 浙江农业学报, 2023, 35(2): 394-402. |
[2] | 王薇薇, 梅燚, 吴永成, 万红建, 陈长军, 郑青松, 郑佳秋. 玉米芯生物炭对辣椒连作土壤性质和辣椒生长的影响[J]. 浙江农业学报, 2023, 35(1): 156-163. |
[3] | 宋碧清, 杨晓东, 郑昀晔, 王国平, 徐盛春, 赵燕, 赵珊珊, 马宇轩, 李素娟. 不同烟草品种烟籽油理化性质及脂肪酸和挥发性成分评价[J]. 浙江农业学报, 2022, 34(6): 1152-1161. |
[4] | 李文略, 骆霞虹, 柳婷婷, 金关荣, 葛亚英, 陈常理, 安霞. 不同类型向日葵籽粒的理化性质[J]. 浙江农业学报, 2022, 34(4): 671-677. |
[5] | 崔文芳, 陈静, 鲁富宽, 秦丽, 秦德志, 王利平, 高聚林. 生物炭结合氮肥减量对玉米产量和氮效率的影响[J]. 浙江农业学报, 2022, 34(2): 248-254. |
[6] | 林智文, 张鹏, 吴天昊, 单颖, 邹刚华, 赵凤亮, 郑桂萍. 秸秆直接还田与炭化还田对热带土壤-水稻系统氨挥发的影响[J]. 浙江农业学报, 2022, 34(12): 2689-2699. |
[7] | 高志远, 杨淑娜, 王朝丽, 王智豪, 奚昕琰, 何娟, 贾惠娟. 不同熏蒸方式对连作桃园土壤的影响[J]. 浙江农业学报, 2022, 34(10): 2251-2258. |
[8] | 吴佩聪, 张鹏, 单颖, 邹刚华, 丁哲利, 朱治强, 赵凤亮. 秸秆炭化还田对热带土壤-水稻体系氨挥发的影响[J]. 浙江农业学报, 2021, 33(4): 678-687. |
[9] | 徐民民, 黄莹, 李波, 徐艳, 张帅, 姚岭芸, 王政. 生物炭对小麦根际和根内微生物群落结构的影响[J]. 浙江农业学报, 2021, 33(3): 516-525. |
[10] | 周文志, 孙向阳, 李素艳, 张乐. 生物有机材料对滨海盐碱土的改良效果[J]. 浙江农业学报, 2019, 31(4): 607-615. |
[11] | 黄惠群, 蔡文昌, 张健瑜, 李灿, 曾和平. 炭化温度对牛粪生物炭结构性质的影响[J]. 浙江农业学报, 2018, 30(9): 1561-1568. |
[12] | 索桂芳, 吕豪豪, 汪玉瑛, 刘玉学, 何莉莉, 杨生茂. 炭基微生物肥料制备工艺及性质分析[J]. 浙江农业学报, 2018, 30(7): 1218-1228. |
[13] | 王代懿, 张丰松, 潘娟, 刘登璐, 苟体忠. 水稻秸秆生物炭对雄烯二酮在土壤中吸附与降解行为的影响[J]. 浙江农业学报, 2018, 30(4): 632-639. |
[14] | 杨颖, 唐伟敏, 陆胜民. 加工条件对细菌纤维素凝胶理化性质的影响[J]. 浙江农业学报, 2018, 30(4): 661-665. |
[15] | 徐多多, 王海洋, 孙濛濛, 韩苗苗, 赵鑫, 高其品. 平菇等六种食用真菌糖蛋白的理化性质及对顺铂诱导肾细胞损伤恢复的作用[J]. 浙江农业学报, 2016, 28(9): 1538-1543. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||