浙江农业学报 ›› 2024, Vol. 36 ›› Issue (10): 2402-2415.DOI: 10.3969/j.issn.1004-1524.20231227
任世坦1,2(), 郑林2, 姜廷波1, 周博如1,*(
), 王宏芝2,*(
)
收稿日期:
2023-10-31
出版日期:
2024-10-25
发布日期:
2024-10-30
作者简介:
任世坦(1999—),男,河南濮阳人,硕士研究生,研究方向为森林保护学。E-mail:rst0428@foxmail.com
通讯作者:
基金资助:
REN Shitan1,2(), ZHENG Lin2, JIANG Tingbo1, ZHOU Boru1,*(
), WANG Hongzhi2,*(
)
Received:
2023-10-31
Online:
2024-10-25
Published:
2024-10-30
摘要:
纤维素是构成植物细胞壁的主要成分,也是自然界最丰富的可再生资源。植物纤维素由β-1,4-葡聚糖链组成,其合成是由位于质膜上的纤维素合酶复合体(cellulose synthase complex, CSC)催化完成。文章从生物化学、遗传学和进化角度分析了植物CSC结构及组装方面的最新研究成果,包括纤维素合酶(cellulose synthase, CesA)亚基的蛋白结构特征和生物学功能、CesA组装成玫瑰花环CSC核心复合体的机制,以及CSC结构与纤维素特性的关系。进一步探讨了细胞骨架等辅助蛋白和蛋白翻译后修饰在超分子CSC组装与纤维素合成调控中的作用。最后,文章展望了利用单碱基编辑技术突变植物保守结构域(plant-conserved region, PCR)、N端结构域(N-terminal domain, NTD)或跨膜结构域(transmembrane domain, TM)等结构域的关键氨基酸位点,改变纤维素合酶复合体稳定性和功能,为培育生物量增加、抗逆性增强、适合特定工业应用的新型植物提供理论基础,为植物纤维素基因工程遗传改良提供了新策略。
中图分类号:
任世坦, 郑林, 姜廷波, 周博如, 王宏芝. 植物超分子纤维素合酶复合体的结构与组装研究进展[J]. 浙江农业学报, 2024, 36(10): 2402-2415.
REN Shitan, ZHENG Lin, JIANG Tingbo, ZHOU Boru, WANG Hongzhi. Research progress on the structure and assembly of plant supramolecular cellulose synthase complexes[J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2402-2415.
图1 纤维素合酶结构与玫瑰花环结构的形成[15] A,PttCESA8纤维素合酶二级结构示意图。TM,跨膜结构域;NTD,N端结构域,包括RING结构域和可变结构域1(VR1);PCR,植物保守结构域;CSR,类型特异结构域;IF,细胞质螺旋结构。B,PttCESA8核心单体三维结构图。C,PttCESA8核心三聚体组装示意图。D,PttCESA8的低分辨率三维结构图。Stalk是由NTD组成的叶柄状结构。E,纤维素合酶18聚体组装示意图。F,玫瑰花环结构示意图。CSC的玫瑰花环结构具有6个花瓣,每个花瓣由CESA三聚体组成。
Fig.1 Structure of cellulose synthase and model of rosette formation A, Cellulose synthase secondary structure diagram of PttCESA8. TM, Transmembrane domain; NTD, N-terminal domain, including RING domain and variable domain 1 (VR1); PCR, Plant conserved domain; CSR, Class specific domain; IF, Cytoplasmic helical structure. B, Three-dimensional structure diagram of PttCESA8 core monomer. C, PttCESA8 core homotrimer assembly diagram. D, Low-resolution three-dimensional structure diagram of full-length PttCESA8. Stalk is a petiole-mounted structure composed of NTD. E, Assembly diagram of cellulose synthase 18 polymers. F, Schematic diagram of the rosette structure. CSC’s rosette structure has six petals, each of which is composed of a CesA homotrimer.
图2 拟南芥、水稻、杨树的CesA蛋白质序列对比 拟南芥、水稻和杨树CesA蛋白序列来源于 https://phytozome-next.jgi.doe.gov/,利用MEGA6和GeneDoc软件进行序列对比。根据杨树PtCESA8结构特征对10个CesA主要功能结构域和相关突变位点分别进行了标记:RING结构域标记为藏青色;可变结构域标记为绿色;植物保守结构域(PCR)标记为蓝色;类型特异性结构域(CSR)标记为粉色;跨膜结构域(TM)标记为灰色;小红色方框标记突变位点;红色箭头标记突变体蛋白翻译提前终止位置;蓝色和黑色直线分别标记CesA的β折叠链和α螺旋结构;蓝色方框标记保守的D, D, D, QxxRW基序;红色和黑色圆圈分别标记CesA三聚体聚合和纤维素配位相关的氨基酸残基。
Fig.2 Alignment of CesA protein sequences from Arabidopsis thaliana, Oryza sativa and Populus The CesAs protein sequences of Arabidopsis, rice and poplar were obtained from https://phytozome-next.jgi.doe.gov/, and the sequence alignment was performed by MEGA6 and GeneDoc software. According to the structural characteristics of poplar PtCESA8, functionally important regions of 10 CesAs and related mutation sites were marked: RING domain is marked in navy blue; Variable region is marked in green; plant conserved domain (PCR) is marked in blue; class-specific domain (CSR) is marked in pink; transmembrane domain (TM) is marked in gray; small red box marks the mutation site; red arrow marks the premature termination position of mutant protein translation; blue and black straight lines indicate β-stands and α-helices of CesAs, respectively; blue boxes mark the conserved D, D, D, QxxRW motifs; red and black circles indicate residues implicated in CesAs trimerization and cellulose coordination, respectively.
图3 超分子纤维素合酶复合体模式图 CC,纤维素合酶伴侣蛋白;PM,质膜;MT,微管;CesA,纤维素合酶;CSI,纤维素合酶和微管的连接蛋白。
Fig.3 Model of supramolecular cellulose synthase complex CC, Companion of cellulose synthase; PM, Plasma membrane; MT, Microtubule; CesA, Cellulose synthase; CSI, POM-POM2/cellulose synthase interacting 1.
[1] | HAIGLER C H, BROWN R M. Transport of rosettes from the golgi apparatus to the plasma membrane in isolated mesophyll cells of Zinnia elegans during differentiation to tracheary elements in suspension culture[J]. Protoplasma, 1986, 134(2): 111-120. |
[2] | ANDERSON C T. We be jammin: an update on pectin biosynthesis, trafficking and dynamics[J]. Journal of Experimental Botany, 2016, 67(2): 495-502. |
[3] | ANDERSON C T, KIEBER J J. Dynamic construction, perception, and remodeling of plant cell walls[J]. Annual Review of Plant Biology, 2020, 71: 39-69. |
[4] | TSEKOS I. The sites of cellulose synthesis in algae: diversity and evolution of cellulose-synthesizing enzyme complexes[J]. Journal of Phycology, 1999, 35(4): 635-655. |
[5] | KUREK I, KAWAGOE Y, JACOB-WILK D, et al. Dimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(17): 11109-11114. |
[6] | PEAR J R, KAWAGOE Y, SCHRECKENGOST W E, et al. Higher plants contain homologs of the bacterial CelA genes encoding the catalytic subunit of cellulose synthase[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(22): 12637-12642. |
[7] | HEIDARI P, AHMADIZADEH M, IZANLO F, et al. In silico study of the CESA and CSL gene family in Arabidopsis thaliana and Oryza sativa: focus on post-translation modifications[J]. Plant Gene, 2019, 19: 100189. |
[8] | GEISLER-LEE J, GEISLER M, COUTINHO P M, et al. Poplar carbohydrate-active enzymes. gene identification and expression analyses[J]. Plant Physiology, 2006, 140(3): 946-962. |
[9] | YOON H S, HACKETT J D, CINIGLIA C, et al. A molecular timeline for the origin of photosynthetic eukaryotes[J]. Molecular Biology and Evolution, 2004, 21(5): 809-818. |
[10] | HAIGLER C H, ROBERTS A W. Structure/function relationships in the rosette cellulose synthesis complex illuminated by an evolutionary perspective[J]. Cellulose, 2019, 26(1): 227-247. |
[11] | KUMAR M, TURNER S. Plant cellulose synthesis: CESA proteins crossing Kingdoms[J]. Phytochemistry, 2015, 112: 91-99. |
[12] | RAMÍREZ-RODRÍGUEZ E A, MCFARLANE H E. Insights from the structure of a plant cellulose synthase trimer[J]. Trends in Plant Science, 2021, 26(1): 4-7. |
[13] | PURUSHOTHAM P, HO R, ZIMMER J. Architecture of a catalytically active homotrimeric plant cellulose synthase complex[J]. Science, 2020, 369(6507): 1089-1094. |
[14] | CHAN J, COEN E. Interaction between autonomous and microtubule guidance systems controls cellulose synthase trajectories[J]. Current Biology, 2020, 30(5): 941-947. |
[15] | MCFARLANE H E, MUTWIL-ANDERWALD D, VERBANČIČ J, et al. A G protein-coupled receptor-like module regulates cellulose synthase secretion from the endomembrane system in Arabidopsis[J]. Developmental Cell, 2021, 56(10): 1484-1497. |
[16] | PANCALDI F, VAN LOO E N, SCHRANZ M E, et al. Genomic architecture and evolution of the cellulose synthase gene superfamily as revealed by phylogenomic analysis[J]. Frontiers in Plant Science, 2022, 13: 870818. |
[17] | CARROLL A, SPECHT C D. Understanding plant cellulose synthases through a comprehensive investigation of the cellulose synthase family sequences[J]. Frontiers in Plant Science, 2011, 2: 5. |
[18] | KUMAR M, THAMMANNAGOWDA S, BULONE V, et al. An update on the nomenclature for the cellulose synthase genes in Populus[J]. Trends in Plant Science, 2009, 14(5): 248-254. |
[19] | PERSSON S, PAREDEZ A, CARROLL A, et al. Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(39): 15566-15571. |
[20] | FAGARD M, DESNOS T, DESPREZ T, et al. PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis[J]. The Plant Cell, 2000, 12(12): 2409-2424. |
[21] | ARIOLI T, PENG L, BETZNER A S, et al. Molecular analysis of cellulose biosynthesis in Arabidopsis[J]. Science, 1998, 279(5351): 717-720. |
[22] | SCHEIBLE W R, ESHED R, RICHMOND T, et al. Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis Ixr1 mutants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(18): 10079-10084. |
[23] | TAYLOR N G, SCHEIBLE W R, CUTLER S, et al. The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis[J]. The Plant Cell, 1999, 11(5): 769-780. |
[24] | TAYLOR N G, LAURIE S, TURNER S R. Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis[J]. The Plant Cell, 2000, 12(12): 2529-2540. |
[25] | TURNER S R, SOMERVILLE C R. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall[J]. The Plant Cell, 1997, 9(5): 689-701. |
[26] | TAYLOR N G, HOWELLS R M, HUTTLY A K, et al. Interactions among three distinct CesA proteins essential for cellulose synthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(3): 1450-1455. |
[27] | TIMMERS J, VERNHETTES S, DESPREZ T, et al. Interactions between membrane-bound cellulose synthases involved in the synthesis of the secondary cell wall[J]. FEBS Letters, 2009, 583(6): 978-982. |
[28] | SULLIVAN S, RALET M C, BERGER A, et al. CESA5 is required for the synthesis of cellulose with a role in structuring the adherent mucilage of Arabidopsis seeds[J]. Plant Physiology, 2011, 156(4): 1725-1739. |
[29] | STORK J, HARRIS D, GRIFFITHS J, et al. CELLULOSE SYNTHASE9 serves a nonredundant role in secondary cell wall synthesis in Arabidopsis epidermal testa cells[J]. Plant Physiology, 2010, 153(2): 580-589. |
[30] | FUJITA M, HIMMELSPACH R, WARD J, et al. The anisotropy1 D604N mutation in the Arabidopsis cellulose synthase1 catalytic domain reduces cell wall crystallinity and the velocity of cellulose synthase complexes[J]. Plant Physiology, 2013, 162(1): 74-85. |
[31] | BEECKMAN T, PRZEMECK G K H, STAMATIOU G, et al. Genetic complexity of cellulose synthase a gene function in Arabidopsis embryogenesis[J]. Plant Physiology, 2002, 130(4): 1883-1893. |
[32] | CAÑO-DELGADO A I, METZLAFF K, BEVAN M W. The eli1 mutation reveals a link between cell expansion and secondary cell wall formation in Arabidopsis thaliana[J]. Development, 2000, 127(15): 3395-3405. |
[33] | CAÑO-DELGADO A, PENFIELD S, SMITH C, et al. Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana[J]. The Plant Journal, 2003, 34(3): 351-362. |
[34] | BROWN D M, ZEEF L A H, ELLIS J, et al. Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics[J]. The Plant Cell, 2005, 17(8): 2281-2295. |
[35] | BOSCA S, BARTON C J, TAYLOR N G, et al. Interactions between MUR10/CesA7-dependent secondary cellulose biosynthesis and primary cell wall structure[J]. Plant Physiology, 2006, 142(4): 1353-1363. |
[36] | ZHONG R Q, MORRISON W H 3rd, FRESHOUR G D, et al. Expression of a mutant form of cellulose synthase AtCesA7 causes dominant negative effect on cellulose biosynthesis[J]. Plant Physiology, 2003, 132(2): 786-795. |
[37] | MA X Z, LI C M, HUANG R, et al. Rice brittle Culm19 encoding cellulose synthase subunit CESA4 causes dominant brittle phenotype but has No distinct influence on growth and grain yield[J]. Rice, 2021, 14(1): 95. |
[38] | YAN C J, YAN S, ZENG X H, et al. Fine mapping and isolation of Bc7(t), allelic to OsCesA4[J]. Journal of Genetics and Genomics, 2007, 34(11): 1019-1027. |
[39] | WANG D F, QIN Y L, FANG J J, et al. A missense mutation in the zinc finger domain of OsCESA7 deleteriously affects cellulose biosynthesis and plant growth in rice[J]. PLoS One, 2016, 11(4): e0153993. |
[40] | TANAKA K, MURATA K, YAMAZAKI M, et al. Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall[J]. Plant Physiology, 2003, 133(1): 73-83. |
[41] | KOTAKE T, AOHARA T, HIRANO K, et al. Rice brittle culm 6 encodes a dominant-negative form of CesA protein that perturbs cellulose synthesis in secondary cell walls[J]. Journal of Experimental Botany, 2011, 62(6): 2053-2062. |
[42] | WANG D F, YUAN S J, YIN L, et al. A missense mutation in the transmembrane domain of CESA9 affects cell wall biosynthesis and plant growth in rice[J]. Plant Science, 2012, 196: 117-124. |
[43] | XU W J, CHENG H, ZHU S R, et al. Functional understanding of secondary cell wall cellulose synthases in Populus trichocarpa via the Cas9/gRNA-induced gene knockouts[J]. The New Phytologist, 2021, 231(4): 1478-1495. |
[44] | YE Y F, WANG S X, WU K, et al. A semi-dominant mutation in OsCESA9 improves salt tolerance and favors field straw decay traits by altering cell wall properties in rice[J]. Rice, 2021, 14(1): 19. |
[45] | CHEN Z Z, HONG X H, ZHANG H R, et al. Disruption of the cellulose synthase gene, AtCesA8/IRX1 enhances drought and osmotic stress tolerance in Arabidopsis[J]. The Plant Journal, 2005, 43(2): 273-283. |
[46] | SONG X Q, LIU L F, JIANG Y J, et al. Disruption of secondary wall cellulose biosynthesis alters cadmium translocation and tolerance in rice plants[J]. Molecular Plant, 2013, 6(3): 768-780. |
[47] | HEIM D R, ROBERTS J L, PIKE P D, et al. A second locus, ixr B1 in Arabidopsis thaliana, that confers resistance to the herbicide isoxaben[J]. Plant Physiology, 1990, 92(3): 858-861. |
[48] | DESPREZ T, VERNHETTES S, FAGARD M, et al. Resistance against herbicide isoxaben and cellulose deficiency caused by distinct mutations in same cellulose synthase isoform CESA6[J]. Plant Physiology, 2002, 128(2): 482-490. |
[49] | ZHANG B C, DENG L W, QIAN Q, et al. A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice[J]. Plant Molecular Biology, 2009, 71(4/5): 509-524. |
[50] | ELLIS C, TURNER J G. The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens[J]. The Plant Cell, 2001, 13(5): 1025-1033. |
[51] | LI F C, XIE G S, HUANG J F, et al. OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice[J]. Plant Biotechnology Journal, 2017, 15(9): 1093-1104. |
[52] | NAYERI S, BAGHBAN KOHNEHROUZ B, AHMADIKHAH A, et al. CRISPR/Cas9-mediated PCR domain-specific engineering of CESA4 heterodimerization capacity alters cell wall architecture and improves saccharification efficiency in poplar[J]. Plant Biotechnology Journal, 2022, 20(6): 1197-1212. |
[53] | LI F C, LIU S T, XU H, et al. A novel FC17/CESA4 mutation causes increased biomass saccharification and lodging resistance by remodeling cell wall in rice[J]. Biotechnology for Biofuels, 2018, 11: 298. |
[54] | RÖMLING U, GALPERIN M Y. Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions[J]. Trends in Microbiology, 2015, 23(9): 545-557. |
[55] | MORGAN J L W, MCNAMARA J T, FISCHER M, et al. Observing cellulose biosynthesis and membrane translocation in crystallo[J]. Nature, 2016, 531(7594): 329-334. |
[56] | MORGAN J L W, MCNAMARA J T, ZIMMER J. Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP[J]. Nature Structural & Molecular Biology, 2014, 21(5): 489-496. |
[57] | MORGAN J L W, STRUMILLO J, ZIMMER J. Crystallographic snapshot of cellulose synthesis and membrane translocation[J]. Nature, 2013, 493(7431): 181-186. |
[58] | NICOLAS W J, GHOSAL D, TOCHEVA E I, et al. Structure of the bacterial cellulose ribbon and its assembly-guiding cytoskeleton by electron cryotomography[J]. Journal of Bacteriology, 2021, 203(3): e00371-20. |
[59] | HU S Q, GAO Y G, TAJIMA K, et al. Structure of bacterial cellulose synthase subunit D octamer with four inner passageways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(42): 17957-17961. |
[60] | SUNAGAWA N, FUJIWARA T, YODA T, et al. Cellulose complementing factor (Ccp) is a new member of the cellulose synthase complex (terminal complex) in Acetobacter xylinum[J]. Journal of Bioscience and Bioengineering, 2013, 115(6): 607-612. |
[61] | MUELLER S C, BROWN R M J. Evidence for an intramembrane component associated with a cellulose microfibril-synthesizing complex in higher plants[J]. The Journal of Cell Biology, 1980, 84(2): 315-326. |
[62] | HILL J L J, HAMMUDI M B, MING T E. The Arabidopsis cellulose synthase complex: a proposed hexamer of CESA trimers in an equimolar stoichiometry[J]. The Plant Cell, 2014, 26(12): 4834-4842. |
[63] | PURUSHOTHAM P, CHO S H, DÍAZ-MORENO S M, et al. A single heterologously expressed plant cellulose synthase isoform is sufficient for cellulose microfibril formation in vitro[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(40): 11360-11365. |
[64] | VANDAVASI V G, PUTNAM D K, ZHANG Q, et al. A structural study of CESA1 catalytic domain of Arabidopsis cellulose synthesis complex: evidence for CESA trimers[J]. Plant Physiology, 2016, 170(1): 123-135. |
[65] | JARVIS M C. Cellulose biosynthesis: counting the chains[J]. Plant Physiology, 2013, 163(4): 1485-1486. |
[66] | NEWMAN R H, HILL S J, HARRIS P J. Wide-angle X-ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls[J]. Plant Physiology, 2013, 163(4): 1558-1567. |
[67] | NIXON B T, MANSOURI K, SINGH A, et al. Comparative structural and computational analysis supports eighteen cellulose synthases in the plant cellulose synthesis complex[J]. Scientific Reports, 2016, 6: 28696. |
[68] | WILSON T H, KUMAR M, TURNER S R. The molecular basis of plant cellulose synthase complex organisation and assembly[J]. Biochemical Society Transactions, 2021, 49(1): 379-391. |
[69] | MORCILLO R J, SINGH S K, HE D X, et al. Rhizobacterium-derived diacetyl modulates plant immunity in a phosphate-dependent manner[J]. The EMBO Journal, 2020, 39(2): e102602. |
[70] | MORRIS J L, PUTTICK M N, CLARK J W, et al. The timescale of early land plant evolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(10): 2274-2283. |
[71] | ROBERTS A W, ROBERTS E M, HAIGLER C H. Moss cell walls: structure and biosynthesis[J]. Frontiers in Plant Science, 2012, 3: 166. |
[72] | KUMAR M, ATANASSOV I, TURNER S. Functional analysis of cellulose synthase (CESA) protein class specificity[J]. Plant Physiology, 2017, 173(2): 970-983. |
[73] | GARDINER J C, TAYLOR N G, TURNER S R. Control of cellulose synthase complex localization in developing xylem[J]. The Plant Cell, 2003, 15(8): 1740-1748. |
[74] | RUSHTON P S, OLEK A T, MAKOWSKI L, et al. Rice cellulose synthase A8 plant-conserved region is a coiled-coil at the catalytic core entrance[J]. Plant Physiology, 2017, 173(1): 482-494. |
[75] | SETHAPHONG L, DAVIS J K, SLABAUGH E, et al. Prediction of the structures of the plant-specific regions of vascular plant cellulose synthases and correlated functional analysis[J]. Cellulose, 2016, 23(1): 145-161. |
[76] | SETHAPHONG L, HAIGLER C H, KUBICKI J D, et al. Tertiary model of a plant cellulose synthase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(18): 7512-7517. |
[77] | GONNEAU M, DESPREZ T, GUILLOT A, et al. Catalytic subunit stoichiometry within the cellulose synthase complex[J]. Plant Physiology, 2014, 166(4): 1709-1712. |
[78] | POLKO J K, KIEBER J J. The regulation of cellulose biosynthesis in plants[J]. The Plant Cell, 2019, 31(2): 282-296. |
[79] | ZHANG X Y, DOMINGUEZ P G, KUMAR M, et al. Cellulose synthase stoichiometry in aspen differs from Arabidopsis and Norway spruce[J]. Plant Physiology, 2018, 177(3): 1096-1107. |
[80] | CROWELL E F, BISCHOFF V, DESPREZ T, et al. Pausing of golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis[J]. The Plant Cell, 2009, 21(4): 1141-1154. |
[81] | MARSH J A, TEICHMANN S A. Structure, dynamics, assembly, and evolution of protein complexes[J]. Annual Review of Biochemistry, 2015, 84: 551-575. |
[82] | TURNER S, KUMAR M. Cellulose synthase complex organization and cellulose microfibril structure[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376(2112): 20170048. |
[83] | ZHANG T, ZHENG Y Z, COSGROVE D J. Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy[J]. The Plant Journal, 2016, 85(2): 179-192. |
[84] | VERBANČIČ J, HUANG J J, MCFARLANE H E. Analysis of cellulose synthase activity in Arabidopsis using spinning disk microscopy[J]. STAR Protocols, 2021, 2(4): 100863. |
[85] | ENDLER A, KESTEN C, SCHNEIDER R, et al. A mechanism for sustained cellulose synthesis during salt stress[J]. Cell, 2015, 162(6): 1353-1364. |
[86] | LI S D, LEI L, SOMERVILLE C R, et al. Cellulose synthase interactive protein 1 (CSI1) links microtubules and cellulose synthase complexes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(1): 185-190. |
[87] | LIU Z Y, SCHNEIDER R, KESTEN C, et al. Cellulose-microtubule uncoupling proteins prevent lateral displacement of microtubules during cellulose synthesis in Arabidopsis[J]. Developmental Cell, 2016, 38(3): 305-315. |
[88] | VAIN T, CROWELL E F, TIMPANO H, et al. The cellulase KORRIGAN is part of the cellulose synthase complex[J]. Plant Physiology, 2014, 165(4): 1521-1532. |
[89] | NICOL F, HIS I, JAUNEAU A, et al. A plasma membrane-bound putative endo-1, 4-beta-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis[J]. The EMBO Journal, 1998, 17(19): 5563-5576. |
[90] | SÁNCHEZ-RODRÍGUEZ C, BAUER S, HÉMATY K, et al. Chitinase-like1/Pom-Pom1 and its homolog CTL2 are glucan-interacting proteins important for cellulose biosynthesis in Arabidopsis[J]. The Plant Cell, 2012, 24(2): 589-607. |
[91] | ZHANG Y, NIKOLOVSKI N, SORIEUL M, et al. Golgi-localized STELLO proteins regulate the assembly and trafficking of cellulose synthase complexes in Arabidopsis[J]. Nature Communications, 2016, 7: 11656. |
[92] | NÜHSE T S, BOTTRILL A R, JONES A M E, et al. Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses[J]. The Plant Journal, 2007, 51(5): 931-940. |
[93] | NÜHSE T S, STENSBALLE A, JENSEN O N, et al. Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database[J]. The Plant Cell, 2004, 16(9): 2394-2405. |
[94] | CHEN S L, EHRHARDT D W, SOMERVILLE C R. Mutations of cellulose synthase (CESA1) phosphorylation sites modulate anisotropic cell expansion and bidirectional mobility of cellulose synthase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(40): 17188-17193. |
[95] | SÁNCHEZ-RODRÍGUEZ C, KETELAAR K, SCHNEIDER R, et al. BRASSINOSTEROID INSENSITIVE2 negatively regulates cellulose synthesis in Arabidopsis by phosphorylating cellulose synthase 1[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(13): 3533-3538. |
[96] | HEMSLEY P A. S-acylation in plants: an expanding field[J]. Biochemical Society Transactions, 2020, 48(2): 529-536. |
[97] | HEMSLEY P A. An outlook on protein S-acylation in plants: what are the next steps?[J]. Journal of Experimental Botany, 2017, 68(12): 3155-3164. |
[98] | HURST C H, HEMSLEY P A. Current perspective on protein S-acylation in plants: more than just a fatty anchor?[J]. Journal of Experimental Botany, 2015, 66(6): 1599-1606. |
[99] | CHAMBERLAIN L H, SHIPSTON M J. The physiology of protein S-acylation[J]. Physiological Reviews, 2015, 95(2): 341-376. |
[100] | KUMAR M, WIGHTMAN R, ATANASSOV I, et al. S-acylation of the cellulose synthase complex is essential for its plasma membrane localization[J]. Science, 2016, 353(6295): 166-169. |
[101] | PEDERSEN G B, BLASCHEK L, FRANDSEN K E H, et al. Cellulose synthesis in land plants[J]. Molecular Plant, 2023, 16(1): 206-231. |
[102] | MAIR A, XU S L, BRANON T C, et al. Proximity labeling of protein complexes and cell-type-specific organellar proteomes in Arabidopsis enabled by TurboID[J]. eLife, 2019, 8: e47864. |
[103] | SAHU I D, LORIGAN G A. Probing structural dynamics of membrane proteins using electron paramagnetic resonance spectroscopic techniques[J]. Biophysica, 2021, 1(2): 106-125. |
[104] | SLABAUGH E, DAVIS J K, HAIGLER C H, et al. Cellulose synthases: new insights from crystallography and modeling[J]. Trends in Plant Science, 2014, 19(2): 99-106. |
[1] | 张鑫鹏, 王信, 孙健, 伊国云, 李松龄. 一株假单胞菌的分离鉴定及其在青海地区堆肥中的应用潜力[J]. 浙江农业学报, 2022, 34(2): 343-351. |
[2] | 王一然, 康志超, 朱国鹏, 王洋, 其格其, 于洪文. 耐低温玉米秸秆降解菌群的优化及其效果[J]. 浙江农业学报, 2022, 34(12): 2720-2727. |
[3] | 侯竞涵, 万映伶, 刘爱青, 洪爱英, 刘燕. 芍药不同品种发育过程中花茎细胞壁成分变化[J]. 浙江农业学报, 2022, 34(10): 2220-2229. |
[4] | 冯欣欣, 李凤兰, 徐永清, 李磊, 贺付蒙, 冯艳忠, 袁强, 刘娣. 新疆寒冷地区腐木中产纤维素酶菌株的筛选与低温产酶特性[J]. 浙江农业学报, 2021, 33(8): 1468-1476. |
[5] | 李倩, 许之扬, 阮文权. 黄孢原毛平革菌后处理深度提升醋糟产甲烷潜力[J]. 浙江农业学报, 2020, 32(5): 904-911. |
[6] | 徐苏云, 崔铭昊, 燕燕, 李勤锋, 王宇磊. 非密闭系统中芦笋老茎的水解特性研究[J]. 浙江农业学报, 2020, 32(1): 134-140. |
[7] | 马艳雯, 高华利, 李倩文, 于俊杰, 吕志伟. 硫色曲霉SQ-3固态发酵产酶条件的优化[J]. 浙江农业学报, 2019, 31(6): 970-976. |
[8] | 曹艳, 夏其乐, 陈剑兵, 单之初. 以浸米水为原料生产细菌纤维素[J]. 浙江农业学报, 2019, 31(11): 1918-1925. |
[9] | 杨颖, 唐伟敏, 陆胜民. 加工条件对细菌纤维素凝胶理化性质的影响[J]. 浙江农业学报, 2018, 30(4): 661-665. |
[10] | 杨颖, 唐伟敏, 邢建荣, 郑美瑜, 陆胜民. 以橘渣为原料间歇振荡法生产细菌纤维素[J]. 浙江农业学报, 2018, 30(2): 307-313. |
[11] | 赵孟良, 钟启文, 刘明池, 李莉. 二十二份引进菊芋种质资源的叶片性状分析[J]. 浙江农业学报, 2017, 29(7): 1151-1157. |
[12] | 邱秀文, 周桂香, 王慧娟, 杨丽丽. 纤维素分解菌的分离筛选及其对秸秆的分解特性[J]. 浙江农业学报, 2017, 29(4): 637-643. |
[13] | 王安可1,毕毓芳1,杨慧敏1,吴再兴1,虞毅2,张汝民3,王玉魁1,*. CCCSNs对几种木腐菌的抑菌性评价[J]. 浙江农业学报, 2015, 27(9): 1606-. |
[14] | 徐珂,柯乐芹*,肖建中,张东旭. 杏鲍菇多糖超声辅助酶法提取条件优化[J]. 浙江农业学报, 2015, 27(4): 647-. |
[15] | 赵连娣1,孟顺利1,史兆国1,*,张力2,韩大勇2,刘海霞2,夏沛琦2. 绿色木霉液态发酵产纤维素酶条件的优化 [J]. 浙江农业学报, 2015, 27(3): 442-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||