浙江农业学报 ›› 2024, Vol. 36 ›› Issue (12): 2885-2894.DOI: 10.3969/j.issn.1004-1524.20231397
叶涛(), 孙钦玉, 陈伟立, 单文书, 连文旭, 牛婷婷, 张家侠(
)
收稿日期:
2023-12-14
出版日期:
2024-12-25
发布日期:
2024-12-27
作者简介:
叶涛(1990—),男,安徽歙县人,硕士,研究方向为茶园病虫草害绿色防控。E-mail:13855926606@163.com
通讯作者:
*张家侠,E-mail:zhangjiaxia035@163.com
基金资助:
YE Tao(), SUN Qinyu, CHEN Weili, SHAN Wenshu, LIAN Wenxu, NIU Tingting, ZHANG Jiaxia(
)
Received:
2023-12-14
Online:
2024-12-25
Published:
2024-12-27
摘要:
含有1个亮氨酸拉链结构的bZIP转录因子是植物病原真菌中最重要的转录因子家族之一,该家族基因在植物病原真菌的生长发育、应激反应和响应胁迫、次生代谢等方面发挥着重要的调控作用。文章综述了植物病原真菌bZIP基因家族成员的结构特征、功能及其调控次生代谢和响应胁迫等方面的研究进展,可为深入研究bZIP转录因子在生长发育、抗逆、次生代谢等方面的分子调控机制及针对病原菌的防治方面提供指导。目前研究多集中于单一bZIP转录因子的功能解析,而对多个转录因子协同调控机制、下游靶基因的筛选,以及bZIP转录因子对信号通路的影响等方面尚缺乏系统性探索。因此,未来研究应加强对bZIP转录因子家族功能的全面解析,聚焦“一对多”甚至“多对多”调控网络的构建,以及病原真菌与寄主互作中的关键作用,推动该领域的研究快速发展。
中图分类号:
叶涛, 孙钦玉, 陈伟立, 单文书, 连文旭, 牛婷婷, 张家侠. 植物病原真菌bZIP基因家族研究进展[J]. 浙江农业学报, 2024, 36(12): 2885-2894.
YE Tao, SUN Qinyu, CHEN Weili, SHAN Wenshu, LIAN Wenxu, NIU Tingting, ZHANG Jiaxia. Research progress of bZIP gene family in plant-pathogenic fungi[J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2885-2894.
图1 bZIP家族成员的结构域特征 A,bZIP蛋白质的三维结构;B,WebLogo中生成的bZIP域的序列标识。
Fig.1 Structural domain characteristics of bZIP family members A, Three-dimensional structure of bZIP protein; B, Sequence logo of the bZIP domain generated in WebLogo.
[1] | 安昌, 陆琳, 沈梦千, 等. 植物bHLH基因家族研究进展及在药用植物中的应用前景[J]. 生物技术通报, 2023, 39(10):1-16. |
AN C, LU L, SHEN M Q, et al. Research progress of bHLH gene family in plants and its application prospects in medical plants[J]. Biotechnology Bulletin, 2023, 39(10):1-16. (in Chinese with English abstract) | |
[2] | 李白, 张子妍, 张强, 等. 灰葡萄孢bZIP家族基因的全基因组鉴定与表达规律分析[J]. 农业生物技术学报, 2022, 30(4):762-771. |
LI B, ZHANG Z Y, ZHANG Q, et al. Genome-wide identification and expression analysis of bZIP family genes in Botrytis cinerea[J]. Journal of Agricultural Biotechnology, 2022, 30(4):762-771. (in Chinese with English abstract) | |
[3] | HUBER E M, HORTSCHANSKY P, SCHEVEN M T, et al. Structural insights into cooperative DNA recognition by the CCAAT-binding complex and its bZIP transcription factor HapX[J]. Structure, 2022, 30(7):934-946. |
[4] | LAI X L, STIGLIANI A, VACHON G, et al. Building transcription factor binding site models to understand gene regulation in plants[J]. Molecular Plant, 2019, 12(6):743-763. |
[5] | KIM S, PARK S Y, KIM K S, et al. Homeobox transcription factors are required for conidiation and appressorium development in the rice blast fungus Magnaporthe oryzae[J]. PLoS Genetics, 2009, 5(12):e1000757. |
[6] | VANDEL J, CASSAN O, LÈBRE S, et al. Probing transcription factor combinatorics in different promoter classes and in enhancers[J]. BMC Genomics, 2019, 20(1):103. |
[7] | LEVO M, AVNIT-SAGI T, LOTAN-POMPAN M, et al. Systematic investigation of transcription factor activity in the context of chromatin using massively parallel binding and expression assays[J]. Molecular Cell, 2017, 65(4):604-617. |
[8] | ZABET N R, FOY R, ADRYAN B. The influence of transcription factor competition on the relationship between occupancy and affinity[J]. PLoS One, 2013, 8(9):e73714. |
[9] | SCHWECHHEIMER C, ZOURELIDOU M, BEVAN M W. Plant transcription factor studies[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49:127-150. |
[10] | COWELL I G, SKINNER A, HURST H C. Transcriptional repression by a novel member of the bZIP family of transcription factors[J]. Molecular and Cellular Biology, 1992, 12(7):3070-3077. |
[11] | JAKOBY M, WEISSHAAR B, DRÖGE-LASER W, et al. bZIP transcription factors in Arabidopsis[J]. Trends in Plant Science, 2002, 7(3):106-111. |
[12] | WONG K C. DNA motif recognition modeling from protein sequences[J]. iScience, 2018, 7:198-211. |
[13] | CHAROENSAWAN V, WILSON D, TEICHMANN S A. Genomic repertoires of DNA-binding transcription factors across the tree of life[J]. Nucleic Acids Research, 2010, 38(21):7364-7377. |
[14] | LEITER É, EMRI T, PÁKOZDI K, et al. The impact of bZIP Atf1ortholog global regulators in fungi[J]. Applied Microbiology and Biotechnology, 2021, 105(14/15):5769-5783. |
[15] | LI P, ZHENG T C, LI L L, et al. Genome-wide investigation of the bZIP transcription factor gene family in Prunus mume:classification, evolution, expression profile and low-temperature stress responses[J]. Horticultural Plant Journal, 2022, 8(2):230-242. |
[16] | ZHANG M, LIU Y H, LI Z X, et al. The bZIP transcription factor GmbZIP15 facilitates resistance against Sclerotinia sclerotiorum and Phytophthora sojae infection in soybean[J]. iScience, 2021, 24(6):102642. |
[17] | FOSTER R, IZAWA T, CHUA N H. Plant bZIP proteins gather at ACGT elements[J]. FASEB Journal, 1994, 8(2):192-200. |
[18] | NIJHAWAN A, JAIN M, TYAGI A K, et al. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice[J]. Plant Physiology, 2008, 146(2):333-350. |
[19] | HU W, YANG H B, YAN Y, et al. Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava[J]. Scientific Reports, 2016, 6:22783. |
[20] | 邓璇, 陈春兵, 刘练练, 等. 白桑bZIP基因家族的全基因组鉴定及表达谱分析[J]. 蚕业科学, 2022, 48(6):477-488. |
DENG X, CHEN C B, LIU L L, et al. Genome-wide identification and expression profile of bZIP gene family in white mulberry, Morus alba L[J]. Acta Sericologica Sinica, 2022, 48(6):477-488. (in Chinese) | |
[21] | 张珍珠, 陈秀玲, 王沛文, 等. 番茄bZIP基因家族的系统进化分析[J]. 东北农业大学学报, 2014, 45(9):47-55. |
ZHANG Z Z, CHEN X L, WANG P W, et al. Phyletic evolution analysis of bZIP family in tomato[J]. Journal of Northeast Agricultural University, 2014, 45(9):47-55. (in Chinese with English abstract) | |
[22] | ZHANG M, LIU Y H, SHI H, et al. Evolutionary and expression analyses of soybean basic Leucine zipper transcription factor family[J]. BMC Genomics, 2018, 19(1):159. |
[23] | MIRZAEI K, BAHRAMNEJAD B, FATEMI S. Genome-wide identification and characterization of the bZIP gene family in potato (Solanum tuberosum)[J]. Plant Gene, 2020, 24:100257. |
[24] | PARK J, PARK J, JANG S, et al. FTFD:an informatics pipeline supporting phylogenomic analysis of fungal transcription factors[J]. Bioinformatics, 2008, 24(7):1024-1025. |
[25] | GUO M, GUO W, CHEN Y, et al. The basic leucine zipper transcription factor Moatf1 mediates oxidative stress responses and is necessary for full virulence of the rice blast fungus Magnaporthe oryzae[J]. Molecular Plant-Microbe Interactions, 2010, 23(8):1053-1068. |
[26] | TANG W, RU Y Y, HONG L, et al. System-wide characterization of bZIP transcription factor proteins involved in infection-related morphogenesis of Magnaporthe oryzae[J]. Environmental Microbiology, 2015, 17(4):1377-1396. |
[27] | LIU C Y, SHEN N N, ZHANG Q, et al. Magnaporthe oryzae transcription factor MoBZIP3 regulates appressorium turgor pressure formation during pathogenesis[J]. International Journal of Molecular Sciences, 2022, 23(2):881. |
[28] | 张莉林. 294个稻瘟病菌转录因子基因的敲除和功能分析[D]. 杭州: 浙江大学, 2013. |
ZHANG L L. Knockout and functional analysis of 294 transcription factor genes of Magnaporthe grisea[D]. Hangzhou: Zhejiang University, 2013. (in Chinese with English abstract) | |
[29] | 朱倩. 4个bZIP转录因子在稻瘟病菌生长发育及致病过程中的功能研究[D]. 南京: 南京农业大学, 2014. |
ZHU Q. Functional analysis of 4 bZIP transcription factors during the development and pathogenicity of Magnaporthe oryzae[D]. Nanjing: Nanjing Agricultural University, 2014. (in Chinese with English abstract) | |
[30] | KONG S, PARK S Y, LEE Y H. Systematic characterization of the bZIP transcription factor gene family in the rice blast fungus, Magnaporthe oryzae[J]. Environmental Microbiology, 2015, 17(4):1425-1443. |
[31] | 盖云鹏. 链格孢菌比较基因组及bZIP转录因子功能研究[D]. 杭州: 浙江大学, 2019. |
GAI Y P. Two tales of Alternaria alternata:comparative genomics and function of bZIP transcription factor[D]. Hangzhou: Zhejiang University, 2019. (in Chinese with English abstract) | |
[32] | 汤蔚. 非折叠蛋白反应相关基因MoHAC1和MoIRE1在稻瘟病菌生长发育和致病过程中的功能分析[D]. 南京: 南京农业大学, 2015. |
TANG W. Functional analysis of unfolded protein response associated genes MoHAC1 and MoIREI in Magnaporthe oryzae[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese with English abstract) | |
[33] | 陆静. 大豆疫霉bZIP转录因子PsBZP1的功能研究[D]. 南京: 南京农业大学, 2012. |
LU J. Functional analysis of bZIP transcription factor PsBZP1 in Phytophthora sojae[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese with English abstract) | |
[34] | WEN D S, YU L, XIONG D G, et al. Genome-wide identification of bZIP transcription factor genes and functional analyses of two members in Cytospora chrysosperma[J]. Journal of Fungi, 2021, 8(1):34. |
[35] | PERES N T A, LANG E A S, BITENCOURT T A, et al. The bZIP Ap1 transcription factor is a negative regulator of virulence attributes of the anthropophilic dermatophyte Trichophyton rubrum[J]. Current Research in Microbial Sciences, 2022, 3:100132. |
[36] | JIN B J, CHUN H J, CHOI C W, et al. Host-induced gene silencing is a promising biological tool to characterize the pathogenicity of Magnaporthe oryzae and control fungal disease in rice[J]. Plant, Cell & Environment, 2024, 47(1):319-336. |
[37] | NATHUES E, JOSHI S, TENBERGE K B, et al. CPTF1, a CREB-like transcription factor, is involved in the oxidative stress response in the phytopathogen Claviceps purpurea and modulates ROS level in its host Secale cereale[J]. Molecular Plant-Microbe Interactions, 2004, 17(4):383-393. |
[38] | HAGIWARA D, TAKAHASHI H, KUSUYA Y, et al. Comparative transcriptome analysis revealing dormant conidia and germination associated genes in Aspergillus species:an essential role for AtfA in conidial dormancy[J]. BMC Genomics, 2016, 17:358. |
[39] | SONG M, FANG S Q, LI Z G, et al. CsAtf1, a bZIP transcription factor, is involved in fludioxonil sensitivity and virulence in the rubber tree anthracnose fungus Colletotrichum siamense[J]. Fungal Genetics and Biology, 2022, 158:103649. |
[40] | GUO X Y, LI Y, FAN J, et al. Host-induced gene silencing of MoAP1 confers broad-spectrum resistance to Magnaporthe oryzae[J]. Frontiers in Plant Science, 2019, 10:433. |
[41] | LI X Y, WU Y T, LIU Z Q, et al. The function and transcriptome analysis of a bZIP transcription factor CgAP1 in Colletotrichum gloeosporioides[J]. Microbiological Research, 2017, 197:39-48. |
[42] | LAI M J, CHENG Z, XIAO L Y, et al. The bZIP transcription factor VdMRTF1 is a negative regulator of melanin biosynthesis and virulence in Verticillium dahliae[J]. Microbiology Spectrum, 2022, 10(2):e0258121. |
[43] | YU D M, FANG Y L, TANG C, et al. Genomewide transcriptome profiles reveal how Bacillus subtilis lipopeptides inhibit microsclerotia formation in Verticillium dahliae[J]. Molecular Plant-Microbe Interactions, 2019, 32(5):622-634. |
[44] | 李司政, 姚权, 李河. 果生炭疽菌转录因子CfHac1的BRLZ结构域生物学功能研究[J]. 北京林业大学学报, 2021, 43(9):70-76. |
LI S Z, YAO Q, LI H. Functional analysis of BRLZ motif of the transcription factor CfHac1 in Colletotrichum fructicola[J]. Journal of Beijing Forestry University, 2021, 43(9):70-76. (in Chinese with English abstract) | |
[45] | 姚权, 郭源, 魏丰园, 等. bZIP转录因子CfHac1参与调控果生刺盘孢菌的生长发育和致病力[J]. 菌物学报, 2019, 38(10):1643-1652. |
YAO Q, GUO Y, WEI F Y, et al. A bZIP-type transcription factor CfHac1 is involved in regulating development and pathogenesis in Colletotrichum fructicola[J]. Mycosystema, 2019, 38(10):1643-1652. (in Chinese with English abstract) | |
[46] | LI S Z, CHEN J J, LI H. Protein disulfide isomerase CfPdi1 is required for response to ER stress, autophagy, and pathogenicity in Colletotrichum fructicola[J]. Forests, 2023, 14(8):1597. |
[47] | LI S Z, ZHANG S P, LI B, et al. The SNARE protein CfVam7 is required for growth, endoplasmic reticulum stress response, and pathogenicity of Colletotrichum fructicola[J]. Frontiers in Microbiology, 2021, 12:736066. |
[48] | LIU R F, LI H. The transcription factor CsBzip10 controls vegetative growth, asexual development, appressorium formation and pathogenicity in the Rosa chinensis anthracnose fungus Colletotrichum siamense[J]. Australasian Plant Pathology, 2019, 48(6):595-601. |
[49] | KIM M S, KO Y J, MAENG S, et al. Comparative transcriptome analysis of the CO2 sensing pathway via differential expression of carbonic anhydrase in Cryptococcus neoformans[J]. Genetics, 2010, 185(4):1207-1219. |
[50] | SZABÓ Z, PÁKOZDI K, MURVAI K, et al. FvatfA regulates growth, stress tolerance as well as mycotoxin and pigment productions in Fusarium verticillioides[J]. Applied Microbiology and Biotechnology, 2020, 104(18):7879-7899. |
[51] | FANG Y L, XIONG D G, TIAN L Y, et al. Functional characterization of two bZIP transcription factors in Verticillium dahliae[J]. Gene, 2017, 626:386-394. |
[52] | SAKAMOTO K, IWASHITA K, YAMADA O, et al. Aspergillus oryzae atfA controls conidial germination and stress tolerance[J]. Fungal Genetics and Biology, 2009, 46(12):887-897. |
[53] | GUAN X L, SONG M, LU J W, et al. The transcription factor CsAtf1 negatively regulates the cytochrome P450 gene CsCyp51G1 to increase fludioxonil sensitivity in Colletotrichum siamense[J]. Journal of Fungi, 2022, 8(10):1032. |
[54] | LI B, SHEN Y H, ZHU Y P, et al. The b-ZIP transcription factor, FgBzip16, is essential for fungal development, ascospore discharge, and pathogenicity by modulating fatty acid metabolism in Fusarium graminearum[J]. Phytopathology Research, 2023, 5(1):36. |
[55] | ZHAO K H, LIU L M, HUANG S W. Genome-wide identification and functional analysis of the bZIP transcription factor family in rice bakanae disease pathogen, Fusarium fujikuroi[J]. International Journal of Molecular Sciences, 2022, 23(12):6658. |
[56] | ZHAO J Y, PENG M Y, CHEN W B, et al. Transcriptome analysis and functional validation identify a putative bZIP transcription factor, Fpkapc, that regulates development, stress responses, and virulence in Fusarium pseudograminearum[J]. Phytopathology, 2022, 112(6):1299-1309. |
[57] | ROZE L V, CHANDA A, WEE J, et al. Stress-related transcription factor AtfB integrates secondary metabolism with oxidative stress response in Aspergilli[J]. Journal of Biological Chemistry, 2011, 286(40):35137-35148. |
[58] | YIN W B, AMAIKE S, WOHLBACH D J, et al. An Aspergillus nidulans bZIP response pathway hardwired for defensive secondary metabolism operates through aflR[J]. Molecular Microbiology, 2012, 83(5):1024-1034. |
[59] | VAN NGUYEN T, KRÖGER C, BÖNNIGHAUSEN J, et al. The ATF/CREB transcription factor Atf1 is essential for full virulence, deoxynivalenol production, and stress tolerance in the cereal pathogen Fusarium graminearum[J]. Molecular Plant-Microbe Interactions, 2013, 26(12):1378-1394. |
[60] | CHEN Y, ZHANG Z Q, LI B Q, et al. PeMetR-mediated sulfur assimilation is essential for virulence and patulin biosynthesis in Penicillium expansum[J]. Environmental Microbiology, 2021, 23(9):5555-5568. |
[61] | GAI Y P, LI L, LIU B, et al. Distinct and essential roles of bZIP transcription factors in the stress response and pathogenesis in Alternaria alternata[J]. Microbiological Research, 2022, 256:126915. |
[62] | DAUCH A L, JABAJI-HARE S H. Metallothionein and bZIP transcription factor genes from velvetleaf and their differential expression following Colletotrichum coccodes infection[J]. Phytopathology, 2006, 96(10):1116-1123. |
[63] | BAILLO E H, KIMOTHO R N, ZHANG Z B, et al. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement[J]. Genes, 2019, 10(10):771. |
[64] | ALVES M S, DADALTO S P, GONÇALVES A B, et al. Transcription factor functional protein-protein interactions in plant defense responses[J]. Proteomes, 2014, 2(1):85-106. |
[65] | DUBEY A K, BARAD S, LURIA N, et al. Cation-stress-responsive transcription factors SltA and CrzA regulate morphogenetic processes and pathogenicity of Colletotrichum gloeosporioides[J]. PLoS One, 2016, 11(12):e0168561. |
[66] | XU X, WANG Y L, TIAN C M, et al. The Colletotrichum gloeosporioides RhoB regulates cAMP and stress response pathways and is required for pathogenesis[J]. Fungal Genetics and Biology, 2016, 96:12-24. |
[67] | ZHANG S P, GUO Y, LI S Z, et al. Functional analysis of CfSnf1 in the development and pathogenicity of anthracnose fungus Colletotrichum fructicola on tea-oil tree[J]. BMC Genetics, 2019, 20(1):94. |
[68] | LAMB P, MCKNIGHT S L. Diversity and specificity in transcriptional regulation:the benefits of heterotypic dimerization[J]. Trends in Biochemical Sciences, 1991, 16(11):417-422. |
[69] | AMOUTZIAS G D, ROBERTSON D L, VAN DE PEER Y, et al. Choose your partners:dimerization in eukaryotic transcription factors[J]. Trends in Biochemical Sciences, 2008, 33(5):220-229. |
[1] | 闵江艳, 唐卓磊, 杨雪, 黄小燕, 黄凯丰, 何佩云. 不同干旱-复水模式对苦荞生长与产量的影响[J]. 浙江农业学报, 2024, 36(9): 2000-2009. |
[2] | 高国际, 龙玲, 宋晓云, 李彦彤, 刘高强, 丁功涛. 亮斑扁角水虻幼虫代替豆粕对北京鸭生长发育和血清生化指标的影响[J]. 浙江农业学报, 2024, 36(8): 1764-1772. |
[3] | 俞瑞鲜, 胡秀卿, 柳新菊, 汤涛, 吴珉, 吴声敢, 赵学平. 亚致死剂量氰戊菊酯对家蚕生长发育的影响[J]. 浙江农业学报, 2024, 36(2): 264-271. |
[4] | 廖雪环, 张坷塬, 阿尔力色, 周林, 杨尔倮, 邓俊, 张荣萍. 柯杈肥与功能肥复配对杂交稻生长与产量的影响[J]. 浙江农业学报, 2024, 36(11): 2447-2455. |
[5] | 尤翠翠, 贺一哲, 徐鹏, 黄亚茹, 王辉, 何海兵, 柯健, 武立权. 高温胁迫对水稻生长发育的伤害效应及其防御对策[J]. 浙江农业学报, 2023, 35(1): 10-22. |
[6] | 李春梅, 万小荣, 关子盈, 赖晓凤, 罗凯晴, 刘凯. 长链非编码RNA调控植物生长发育与逆境胁迫响应研究进展[J]. 浙江农业学报, 2022, 34(9): 2066-2076. |
[7] | 贾利强, 赵秋芳, 陈曙, 丁波. 玉米转录因子bZIP G亚家族基因的表达模式[J]. 浙江农业学报, 2022, 34(2): 221-231. |
[8] | 杨超, 刘敏竹, 李强, 韩涛, 彭良志, 凌丽俐, 付行政, 淳长品, 曹立, 何义仲. 发光二极管(LED)光质对金秋砂糖橘幼苗生长发育和光合特性的影响[J]. 浙江农业学报, 2022, 34(1): 89-97. |
[9] | 钱晓慧, 陈龙清, 李双琴, 施蕊. 两种可食用玫瑰生物碱代谢物差异分析[J]. 浙江农业学报, 2021, 33(3): 454-463. |
[10] | 王贤, 刘放, 魏小红, 朱晓林, 王宝强. 不同种质番茄材料抗番茄黄化曲叶病毒病特性研究[J]. 浙江农业学报, 2021, 33(11): 2085-2097. |
[11] | 许娜, 王大海, 杜传印, 杜沙沙, 王晓萌, 张彦, 张玉琴, 吴元华, 管恩森, 石屹. 株距对烟苗生长发育的影响[J]. 浙江农业学报, 2020, 32(8): 1342-1350. |
[12] | 耿艳飞, 吕明芳. 植物富含半胱氨酸类受体激酶家族研究进展[J]. 浙江农业学报, 2020, 32(12): 2303-2312. |
[13] | 原晓龙, 李云琴, 王毅. 滇牡丹中3个类查尔酮合成酶基因的克隆与表达[J]. 浙江农业学报, 2019, 31(9): 1478-1484. |
[14] | 刘慧洁, 徐恒, 邱文怡, 李晓芳, 张华, 朱英, 李春寿, 王良超. 转录因子在植物生长发育及非生物逆境响应的作用[J]. 浙江农业学报, 2019, 31(7): 1205-1214. |
[15] | 谢宇凯, 郑许松, 田俊策, 张大羽, 吕仲贤. 不同生存基质对中华淡翅盲蝽生长发育和繁殖的影响[J]. 浙江农业学报, 2018, 30(3): 432-436. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||