浙江农业学报 ›› 2025, Vol. 37 ›› Issue (1): 217-230.DOI: 10.3969/j.issn.1004-1524.20240646
收稿日期:
2024-07-21
出版日期:
2025-01-25
发布日期:
2025-02-14
作者简介:
谷瑞(1982—),男,河南信阳人,硕士,副教授,研究方向为计算机视觉。E-mail:gur@siso.edu.cn
通讯作者:
*钱春花,E-mail:chqian423@szai.edu.cn
基金资助:
GU Rui1,2(), SONG Cuiling1, QIAN Chunhua3,*(
)
Received:
2024-07-21
Online:
2025-01-25
Published:
2025-02-14
摘要:
针对现有番茄叶片识别模型参数量大、计算复杂度高,推理时间长,难以部署在资源受限的移动设备上的问题,本文提出一种轻量级识别网络SG-ICA-MobileNetV3。首先,引入沙漏结构对MobileNetV3Small的倒残差块进行改造,在高维空间建立特征转换和跳跃连接缓解信息丢失问题,强化模型特征学习能力;其次,嵌入改进的坐标注意力机制,融合全局平均池化和最大池化自适应地学习不同位置的特征权重,增强对病害区域的感知能力;最后,将ReLU激活函数替换为ELU,缓解模型训练中梯度消失和权重偏置更新失效现象,提升网络收敛速度。结果表明,该模型在测试集上的分类准确率高达98.36%,在参数量、计算复杂度、推理速度、识别精度等方面优于MobileNetV3Small、MobileNeXt-1.0、MobileVit-S、ConvNeXt-V2等轻量级模型,并具有较强的泛化能力,能为快速、准确识别植物叶片病害提供算法支持。
中图分类号:
谷瑞, 宋翠玲, 钱春花. 融合沙漏结构与改进坐标注意力的轻量级番茄叶片病害识别模型[J]. 浙江农业学报, 2025, 37(1): 217-230.
GU Rui, SONG Cuiling, QIAN Chunhua. A lightweight tomato leaf disease recognition model integrating a sandglass structure with improved coordinate attention[J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 217-230.
输入 Input | 操作 Operator | 通道数 Exp_size | 输出维度 Out | 注意力 ICA | 激活函数 Non-Linearity | 步长 Stride |
---|---|---|---|---|---|---|
224×224×3 | Conv2d,3×3 | - | 16 | - | HS | 2 |
112×112×16 | SG-ICA bneck,3×3 | 16 | 16 | √ | ELU | 2 |
56×56×16 | SG-ICA bneck,3×3 | 72 | 24 | - | ELU | 2 |
28×28×24 | SG-ICA bneck,3×3 | 88 | 24 | - | ELU | 1 |
28×28×24 | SG-ICA bneck,5×5 | 96 | 40 | √ | HS | 2 |
14×14×40 | SG-ICA bneck,5×5 | 240 | 40 | √ | HS | 1 |
14×14×40 | SG-ICA bneck,5×5 | 240 | 40 | √ | HS | 1 |
14×14×40 | SG-ICA bneck,5×5 | 120 | 48 | √ | HS | 1 |
14×14×48 | SG-ICA bneck,5×5 | 144 | 48 | √ | HS | 1 |
14×14×48 | SG-ICA bneck,5×5 | 288 | 96 | √ | HS | 2 |
7×7×96 | SG-ICA bneck,5×5 | 576 | 96 | √ | HS | 1 |
7×7×96 | SG-ICA bneck,5×5 | 576 | 96 | √ | HS | 1 |
7×7×96 | Conv2d,1×1 | - | 576 | √ | HS | 1 |
7×7×576 | Pool,1×1 | - | - | - | - | 1 |
1×1×576 | Conv2d,1×1,NBN | - | - | - | ELU | 1 |
1×1×1024 | Conv2d,1×1,NBN | - | - | - | HS | 1 |
表1 SG-ICA-MoibleNetV3模型参数设置
Table 1 Parameter setting of SG-ICA-MoibleNetV3 model
输入 Input | 操作 Operator | 通道数 Exp_size | 输出维度 Out | 注意力 ICA | 激活函数 Non-Linearity | 步长 Stride |
---|---|---|---|---|---|---|
224×224×3 | Conv2d,3×3 | - | 16 | - | HS | 2 |
112×112×16 | SG-ICA bneck,3×3 | 16 | 16 | √ | ELU | 2 |
56×56×16 | SG-ICA bneck,3×3 | 72 | 24 | - | ELU | 2 |
28×28×24 | SG-ICA bneck,3×3 | 88 | 24 | - | ELU | 1 |
28×28×24 | SG-ICA bneck,5×5 | 96 | 40 | √ | HS | 2 |
14×14×40 | SG-ICA bneck,5×5 | 240 | 40 | √ | HS | 1 |
14×14×40 | SG-ICA bneck,5×5 | 240 | 40 | √ | HS | 1 |
14×14×40 | SG-ICA bneck,5×5 | 120 | 48 | √ | HS | 1 |
14×14×48 | SG-ICA bneck,5×5 | 144 | 48 | √ | HS | 1 |
14×14×48 | SG-ICA bneck,5×5 | 288 | 96 | √ | HS | 2 |
7×7×96 | SG-ICA bneck,5×5 | 576 | 96 | √ | HS | 1 |
7×7×96 | SG-ICA bneck,5×5 | 576 | 96 | √ | HS | 1 |
7×7×96 | Conv2d,1×1 | - | 576 | √ | HS | 1 |
7×7×576 | Pool,1×1 | - | - | - | - | 1 |
1×1×576 | Conv2d,1×1,NBN | - | - | - | ELU | 1 |
1×1×1024 | Conv2d,1×1,NBN | - | - | - | HS | 1 |
图2 不同瓶颈模块的结构 Conv表示普通卷积,PW Conv表示逐点卷积,DW Conv表示深度卷积。
Fig.2 The structure of different bottleneck Conv represents ordinary convolution, PW Conv represents pointwise convolution, and DW Conv represents depthwise convolution.
方案 Schema | 基线模型 Base | 沙漏结构 SG | 改进坐标注意力 ICA | 激活函数 ELU | 参数量 Params/MB | 浮点运算数 FLOPs/106 | 准确率 Accuracy/% |
---|---|---|---|---|---|---|---|
S0 | √ | 2.40 | 68.2 | 93.25 | |||
S1 | √ | √ | 2.31 | 67.5 | 94.36 | ||
S2 | √ | √ | 2.19 | 66.6 | 94.42 | ||
S3 | √ | √ | 2.34 | 67.3 | 94.31 | ||
S4 | √ | √ | √ | 2.28 | 65.1 | 96.58 | |
S5 | √ | √ | √ | 2.19 | 66.6 | 95.87 | |
S6 | √ | √ | 2.31 | 67.3 | 96.53 | ||
S7 | √ | √ | √ | √ | 2.28 | 65.1 | 98.36 |
表2 不同方案对模型性能的影响
Table 2 Impact of different schemas on the model
方案 Schema | 基线模型 Base | 沙漏结构 SG | 改进坐标注意力 ICA | 激活函数 ELU | 参数量 Params/MB | 浮点运算数 FLOPs/106 | 准确率 Accuracy/% |
---|---|---|---|---|---|---|---|
S0 | √ | 2.40 | 68.2 | 93.25 | |||
S1 | √ | √ | 2.31 | 67.5 | 94.36 | ||
S2 | √ | √ | 2.19 | 66.6 | 94.42 | ||
S3 | √ | √ | 2.34 | 67.3 | 94.31 | ||
S4 | √ | √ | √ | 2.28 | 65.1 | 96.58 | |
S5 | √ | √ | √ | 2.19 | 66.6 | 95.87 | |
S6 | √ | √ | 2.31 | 67.3 | 96.53 | ||
S7 | √ | √ | √ | √ | 2.28 | 65.1 | 98.36 |
类别 Category | 准确率 Accuracy | 精确率 Precision | 召回率 Recall ratio | 类别 Category | 准确率 Accuracy | 精确率 Precision | 召回率 Recall ratio |
---|---|---|---|---|---|---|---|
健康叶片Healthy | 100.00 | 100.00 | 100.00 | 红蜘蛛病Spider_mite | 98.75 | 98.65 | 98.21 |
早疫病Early_blight | 97.58 | 96.96 | 97.36 | 晚疫病Late_blight | 96.55 | 96.98 | 96.06 |
花叶病Mosaic_virus | 98.67 | 98.81 | 98.54 | 褐斑病Target_spot | 96.95 | 96.14 | 96.26 |
叶霉病Leaf_mold | 97.66 | 97.03 | 97.57 | 斑枯病Septoria_leaf_spot | 97.54 | 97.76 | 97.11 |
黄花曲叶病Yellow_leaf_curl | 98.66 | 98.04 | 97.56 | 细菌性斑点病Bacterial_spot | 99.08 | 99.22 | 98.65 |
表3 本文模型对不同病害类型的识别效果
Table 3 The recognition effectiveness of the model for different diseases %
类别 Category | 准确率 Accuracy | 精确率 Precision | 召回率 Recall ratio | 类别 Category | 准确率 Accuracy | 精确率 Precision | 召回率 Recall ratio |
---|---|---|---|---|---|---|---|
健康叶片Healthy | 100.00 | 100.00 | 100.00 | 红蜘蛛病Spider_mite | 98.75 | 98.65 | 98.21 |
早疫病Early_blight | 97.58 | 96.96 | 97.36 | 晚疫病Late_blight | 96.55 | 96.98 | 96.06 |
花叶病Mosaic_virus | 98.67 | 98.81 | 98.54 | 褐斑病Target_spot | 96.95 | 96.14 | 96.26 |
叶霉病Leaf_mold | 97.66 | 97.03 | 97.57 | 斑枯病Septoria_leaf_spot | 97.54 | 97.76 | 97.11 |
黄花曲叶病Yellow_leaf_curl | 98.66 | 98.04 | 97.56 | 细菌性斑点病Bacterial_spot | 99.08 | 99.22 | 98.65 |
模型 Model | 参数量 Params/MB | 浮点运算量 FLOPs/106 | 模型大小 Model size/MB | 准确率 Accuracy/% | 召回率 Recall ratio/% |
---|---|---|---|---|---|
ShuffleNetV2[ | 2.37 | 302.7 | 9.65 | 90.17 | 91.13 |
EfficientNet-B2[ | 4.02 | 412.3 | 15.37 | 91.55 | 92.28 |
MobileNetV2-1.0[ | 3.50 | 314.1 | 16.78 | 92.46 | 93.36 |
MobileNeXt-1.0[ | 3.42 | 298.7 | 16.45 | 93.51 | 93.97 |
MobileNetV3Small[ | 2.40 | 68.2 | 4.85 | 93.73 | 93.25 |
MobileVit-S[ | 5.62 | 700.4 | 18.43 | 93.91 | 94.53 |
ConvNeXt-V2[ | 5.21 | 380.6 | 21.26 | 94.29 | 94.84 |
SG-ICA-MobileNetV3 | 2.28 | 65.1 | 4.36 | 98.36 | 97.99 |
表4 不同轻量级模型的实验结果
Table 4 Results of different lightweight models
模型 Model | 参数量 Params/MB | 浮点运算量 FLOPs/106 | 模型大小 Model size/MB | 准确率 Accuracy/% | 召回率 Recall ratio/% |
---|---|---|---|---|---|
ShuffleNetV2[ | 2.37 | 302.7 | 9.65 | 90.17 | 91.13 |
EfficientNet-B2[ | 4.02 | 412.3 | 15.37 | 91.55 | 92.28 |
MobileNetV2-1.0[ | 3.50 | 314.1 | 16.78 | 92.46 | 93.36 |
MobileNeXt-1.0[ | 3.42 | 298.7 | 16.45 | 93.51 | 93.97 |
MobileNetV3Small[ | 2.40 | 68.2 | 4.85 | 93.73 | 93.25 |
MobileVit-S[ | 5.62 | 700.4 | 18.43 | 93.91 | 94.53 |
ConvNeXt-V2[ | 5.21 | 380.6 | 21.26 | 94.29 | 94.84 |
SG-ICA-MobileNetV3 | 2.28 | 65.1 | 4.36 | 98.36 | 97.99 |
类别 Category | 准确率 Accuracy/% | 精确率 Precision/% | 召回率 Recall ratio/% | 平均推理时间 Average inference time/ms |
---|---|---|---|---|
斑点落叶病Alternaria_boltch | 97.25 | 97.12 | 96.58 | 42.7 |
灰斑病Grey_spot | 97.25 | 96.23 | 97.44 | 43.5 |
锈病Rust | 96.32 | 96.37 | 96.26 | 44.6 |
褐斑病Brown_spot | 98.14 | 98.27 | 98.45 | 41.4 |
白粉病Powdery_mildew | 97.86 | 98.18 | 98.24 | 43.6 |
健康叶片Healthy | 99.77 | 99.39 | 99.01 | 39.7 |
平均Average | 97.76 | 97.59 | 97.66 | 42.58 |
表5 模型迁移对苹果叶片病害识别效果
Table 5 The recognition effect of model transfer on apple leaf diseases
类别 Category | 准确率 Accuracy/% | 精确率 Precision/% | 召回率 Recall ratio/% | 平均推理时间 Average inference time/ms |
---|---|---|---|---|
斑点落叶病Alternaria_boltch | 97.25 | 97.12 | 96.58 | 42.7 |
灰斑病Grey_spot | 97.25 | 96.23 | 97.44 | 43.5 |
锈病Rust | 96.32 | 96.37 | 96.26 | 44.6 |
褐斑病Brown_spot | 98.14 | 98.27 | 98.45 | 41.4 |
白粉病Powdery_mildew | 97.86 | 98.18 | 98.24 | 43.6 |
健康叶片Healthy | 99.77 | 99.39 | 99.01 | 39.7 |
平均Average | 97.76 | 97.59 | 97.66 | 42.58 |
[1] | 马丽, 周巧黎, 赵丽亚, 等. 基于深度学习的番茄叶片病害分类识别研究[J]. 中国农机化学报, 2023, 44(7): 187-193. |
MA L, ZHOU Q L, ZHAO L Y, et al. Classification and recognition of tomato leaf diseases based on deep learning[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 187-193. (in Chinese with English abstract) | |
[2] | 李大华, 仲婷, 王笋, 等. 基于改进ShuffleNet v2的轻量化番茄叶片病害识别[J]. 江苏农业科学, 2024, 52(3): 220-228. |
LI D H, ZHONG T, WANG Sun, et al. Lightweight disease identification for tomato leaves based on improved ShuffleNet v2[J]. Jiangsu Agricultural Sciences, 2024, 52(3): 220-228. (in Chinese with English abstract) | |
[3] | MOKHTAR U, ALI M A S, HASSENIAN A E, et al. Tomato leaves diseases detection approach based on Support Vector Machines[C]//2015 11th International Computer Engineering Conference (ICENCO), December 29-30, 2015, Cairo, Egypt. New York: IEEE, 2015: 246-250. |
[4] | 魏丽冉, 岳峻, 李振波, 等. 基于核函数支持向量机的植物叶部病害多分类检测方法[J]. 农业机械学报, 2017, 48 (S1):166-171. |
WEI L R, YUE J, LI Z B, et al. Multi-classification Detection Method of Plant Leaf Disease Based on Kernel Function SVM[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48 (S1):166-171. | |
[5] | XIE C Q, HE Y. Spectrum and image texture features analysis for early blight disease detection on eggplant leaves[J]. Sensors, 2016, 16(5): 676. |
[6] | LIU B, ZHANG Y, HE D J. Identification of apple leaf diseases based on deep convolutional neural networks[J]. Symmetry-Base, 2018, 10(1):3390-3400. |
[7] | DHANALAKSHMI R, BALAKRISHNAN K, SINHA B B. Tomato leaf disease identification by modified inception-based convolution neural networks[J]. The Imaging Science Journal, 2023, 71(5):408-424. |
[8] | YU H L, CHENG X H, CHEN C C, et al. Apple leaf disease recognition method with improved residual network[J]. Multimedia Tools and Applications, 2022, 81(6): 7759-7782. |
[9] | AHMED M, AHMED A. Palm tree disease detection and classification using residual network and transfer learning of inception-ResNet[J]. PLoS ONE, 2023, 18(3):1371-1384. |
[10] | CHANG S L, YANG G J, CHENG J P. Recognition of wheat rusts in a field environment based on improved DenseNet[J]. Biosystems Engineering, 2023, 10(236): 10-21. |
[11] | 王杨, 李迎春, 许佳炜, 等. 基于改进Vision Transformer网络的农作物病害识别方法[J]. 小型微型计算机系统, 2024, 45(4): 887-893. |
WANG Y, LI Y C, XU J W, et al. Crop disease recognition method based on improved Vision Transformer network[J]. Journal of Chinese Computer Systems, 2024, 45(4): 887-893. (in Chinese with English abstract) | |
[12] | IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AleNet level accuracy with 50 fewer parameters and<0.5 MB model size[EB/OL] (2016-06-01) [2022-11-11]. https://ariv.org/abs/1602.7360. |
[13] | ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[EB/OL]. (2017-12-07) [2024-06-01]. https://ar5iv.labs.arxiv.org/html/1707.01083. |
[14] | TAN M X, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[EB/OL]. (2019-09-11) [2024-06-01]. https://arxiv.org/abs/1905.11946. |
[15] | HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017-04-17) [2024-06-01]. http://arxiv.org/abs/1704.04861. |
[16] | HAN K, WANG Y H, TIAN Q, et al. GhostNet:more features from cheap operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).June 13-19, 2020. Seattle, WA, USA. New York: IEEE, 2020: 1577-1586. |
[17] | BI C K, WANG J M, DUAN Y L, et al. MobileNet based apple leaf diseases identification[J]. Mobile Networks and Applications, 2022, 27(1): 172-180. |
[18] | HASSAM M, KHAN M A, ARMGHAN A, et al. A single stream modified MobileNet V3 and whale controlled entropy based optimization framework for citrus fruit diseases recognition[J]. IEEE Access, 2021, 10: 91828-91839. |
[19] | 袁培森, 欧阳柳江, 翟肇裕, 等. 基于MobileNetV3Small-ECA的水稻病害轻量级识别研究[J]. 农业机械学报, 2024, 55(1): 253-262. |
YUAN P S, OUYANG L J, ZHAI Z Y, et al. Lightweight identification of rice diseases based on improved ECA and MobileNetV3Small[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(1): 253-262. (in Chinese with English abstract) | |
[20] | HU J, LI S, SUN G, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. |
[21] | ZHOU D, HOU Q, CHEN Y, et al. Rethinking bottleneck structure for efficient mobile network design[C]// Computer Vision ECCV 2020: 16th European Conference, August 23-28, 2020, Glasgow, UK. Berlin:Springer-Verlag, 2020: 680-697. |
[22] | HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 20-25, 2021. Nashville, TN, USA. IEEE, 2021: 13713-13722. |
[23] | SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018. Salt Lake City, UT. IEEE, 2018: 4510-4520. |
[24] | HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). October 27-November 2, 2019. Seoul, Korea (South). IEEE, 2019: 1314-1324. |
[25] | MEHTA S, RASTEGARI M. MobileViT: light-weight, general-purpose, and mobile-friendly vision transformer[EB/OL]. (2021-10-05) [2024-06-01]. https://arxiv.org/abs/2110.02178v2. |
[26] | WANG S R, GAO J, LI Z M, et al. Closer look at self-supervised lightweight vision transformers[EB/OL]. (2023-05-03) [2024-06-01]. https://arxiv.org/abs/2205.14443. |
[1] | 李腾飞, 杨桂玲, 阮美颖, 褚田芬, 秦华, 邓美华. 不同肥药管理对设施番茄生产系统土壤健康与番茄性状的影响[J]. 浙江农业学报, 2025, 37(1): 145-158. |
[2] | 李大华, 孔舒, 李栋, 于晓. 基于改进SSD模型的柑橘叶片病害轻量化检测模型[J]. 浙江农业学报, 2024, 36(3): 662-670. |
[3] | 郭娜纳, 李伟, 黄立娟, 张涛, 魏兵强. 辣椒抗番茄斑萎病毒研究进展[J]. 浙江农业学报, 2024, 36(10): 2416-2425. |
[4] | 杨新宇, 冯全, 张建华, 杨森. 基于对比学习的植物叶片病害识别[J]. 浙江农业学报, 2024, 36(1): 215-224. |
[5] | 李必元, 岳智臣, 赵彦婷, 雷娟利, 胡齐赞, 陶鹏. 大白菜番茄红素β-环化酶基因BrLCYB的鉴定与功能分析[J]. 浙江农业学报, 2023, 35(9): 2090-2096. |
[6] | 刘媛媛, 王定坤, 邬雷, 黄德昌, 朱路. 基于知识蒸馏和模型剪枝的轻量化模型植物病害识别[J]. 浙江农业学报, 2023, 35(9): 2250-2264. |
[7] | 孙丽娟, 李世民, 郭焕仙, 金友帆, 李树萍, 董琼. 树番茄幼苗生长与氮磷钾化学计量特征对光照、肥料的响应[J]. 浙江农业学报, 2023, 35(8): 1793-1804. |
[8] | 张雪楠, 王乐乐, 钮铭轩, 詹妮, 任浩杰, 徐浩聪, 杨昆, 武立权, 柯健, 尤翠翠, 何海兵. 基于叶片反射光谱和叶绿素荧光估测水稻叶片含水量[J]. 浙江农业学报, 2023, 35(6): 1265-1277. |
[9] | 朱燕, 魏佳, 许自龙, 林天宝, 杨升, 刘岩, 吕志强, 刘培刚. 促生长植物激素对桑树叶片衰老过程生理生化指标的影响[J]. 浙江农业学报, 2023, 35(6): 1278-1285. |
[10] | 朱冬琴, 冯全, 张建华. 基于剪枝的植物病害识别方法[J]. 浙江农业学报, 2023, 35(6): 1462-1472. |
[11] | 娄茜棋, 梁燕. 五类不同果色番茄种质资源品质分析[J]. 浙江农业学报, 2023, 35(3): 582-589. |
[12] | 孙楠, 闫国超, 何勇, 朱祝军. 葫芦科作物叶片硅含量测定方法的优化[J]. 浙江农业学报, 2023, 35(2): 338-345. |
[13] | 李荣鹏, 买买提·沙吾提, 盛艳芳, 何旭刚. 基于CA-MobileNet-V2的核桃病害识别与应用[J]. 浙江农业学报, 2023, 35(12): 2977-2987. |
[14] | 杨迪, 张乃群, 王雪勇, 张军, 王新军. 基于数量性状的伏牛山野生中华猕猴桃资源综合评价[J]. 浙江农业学报, 2023, 35(10): 2354-2363. |
[15] | 魏茜雅, 梁腊梅, 林欣琪, 秦中维, 李映志. 褪黑素种子引发处理对干旱胁迫下朝天椒生长与生理特性的影响[J]. 浙江农业学报, 2023, 35(10): 2378-2388. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||