浙江农业学报 ›› 2025, Vol. 37 ›› Issue (10): 2150-2164.DOI: 10.3969/j.issn.1004-1524.20240828
王云龙(
), 贾生强, 崔玲宇, 吕豪豪, 沈阿林, 苏瑶(
)
收稿日期:2024-09-20
出版日期:2025-10-25
发布日期:2025-11-13
作者简介:王云龙(1979—),男,山东莱阳人,博士,副研究员,主要从事农业资源利用与产地环境治理研究。E-mail:wangyunlong@zju.edu.cn
通讯作者:
苏瑶,E-mail:stellasu@sina.com
基金资助:
WANG Yunlong(
), JIA Shengqiang, CUI Lingyu, LYU Haohao, SHEN Alin, SU Yao(
)
Received:2024-09-20
Online:2025-10-25
Published:2025-11-13
摘要: 基于5年的定位试验,以秸秆不还田处理为对照(CK),研究秸秆还田后0~100 cm土层的有机碳和氮的组分分布,解析不同深度土层的生物固氮潜势和反硝化潜势、参与固氮和反硝化的主要微生物及其种群结构等的变化。结果表明,秸秆还田可较CK显著(p<0.05)增加0~60 cm土层的有机碳(OC)和颗粒有机碳(POC)含量,增幅分别为13.1%~243.8%、36.4%~143.8%,以及>20~60 cm土层的矿物结合态有机碳(MOC)含量,增幅为89.4%~272.9%,显著降低0~60 cm土层的溶解有机碳(DOC)含量,降幅在40.6%~75.9%。秸秆还田下,0~80 cm土层的总氮(TN)含量较CK显著增加14.3%~90.3%,但0~60 cm土层的碱解氮(AN)和硝态氮($\mathrm{NO}_{3}^{-}-\mathrm{N}$)含量显著下降16.9%~64.8%和12.9%~61.9%,0~40 cm土层的铵态氮($\mathrm{NH}_{4}^{+}-\mathrm{N}$)含量显著下降11.6%~24.8%,但>40~60 cm土层的$\mathrm{NH}_{4}^{+}-\mathrm{N}$含量显著增加至CK的1.4倍。与CK相比,秸秆还田下0~20 cm土层的生物固氮潜势显著增强25.2%,0~40 cm土层的反硝化潜势显著降低7.8%~82.0%。秸秆还田显著增加了土壤中nifH、nirS、nirK和nosZ基因的拷贝数,说明其促进了土壤中固氮细菌和反硝化细菌的生长。结构方程模型分析结果表明,秸秆还田后土壤DOC含量、土壤固氮细菌和反硝化细菌丰度的变化对土壤中$\mathrm{NO}_{3}^{-}-\mathrm{N}$和$\mathrm{NH}_{4}^{+}-\mathrm{N}$的含量与分布产生直接显著影响,其中,固氮细菌丰度的直接影响最大,对土壤$\mathrm{NO}_{3}^{-}-\mathrm{N}$和$\mathrm{NH}_{4}^{+}-\mathrm{N}$含量的影响效应分别为71.9%和-60.8%。
中图分类号:
王云龙, 贾生强, 崔玲宇, 吕豪豪, 沈阿林, 苏瑶. 秸秆还田下土壤碳氮分布与固氮和反硝化细菌种群的相互影响[J]. 浙江农业学报, 2025, 37(10): 2150-2164.
WANG Yunlong, JIA Shengqiang, CUI Lingyu, LYU Haohao, SHEN Alin, SU Yao. Interactions of soil carbon and nitrogen distribution with nitrogen fixing and denitrifying bacteria community under straw returning[J]. Acta Agriculturae Zhejiangensis, 2025, 37(10): 2150-2164.
| 目的基因 Target gene | 引物 Primer | 引物序列 Primer sequence (5'→3') |
|---|---|---|
| nifH | nifHF | AAAGGYGGWATCGGYAARTCCACCAC |
| nifHR | TTGTTSGCSGCRTACATSGCCATCAT | |
| nirK | F1aCu | ATC ATG GTSCTG CCG CG |
| R3Cu | GCC TCG ATC AGR TTG TGG TT | |
| nirS | cd3aF | GTS AAC GTS AAG GAR ACS GG |
| R3cdR | GAS TTC GGR TGS GTC TTG A | |
| nosZ | NosF2 | GGG CTB GGG CCR TTG CA |
| NosR2 | GAA GCG RTC CTT SGA RAA CTT G |
表1 引物信息
Table 1 Basic information of primers
| 目的基因 Target gene | 引物 Primer | 引物序列 Primer sequence (5'→3') |
|---|---|---|
| nifH | nifHF | AAAGGYGGWATCGGYAARTCCACCAC |
| nifHR | TTGTTSGCSGCRTACATSGCCATCAT | |
| nirK | F1aCu | ATC ATG GTSCTG CCG CG |
| R3Cu | GCC TCG ATC AGR TTG TGG TT | |
| nirS | cd3aF | GTS AAC GTS AAG GAR ACS GG |
| R3cdR | GAS TTC GGR TGS GTC TTG A | |
| nosZ | NosF2 | GGG CTB GGG CCR TTG CA |
| NosR2 | GAA GCG RTC CTT SGA RAA CTT G |
图1 不同处理的土壤有机碳和氮素组分含量 SOC,土壤有机碳含量;SMOC,土壤矿物结合态有机碳含量;SPOC,土壤颗粒有机碳含量;SDOC,土壤溶解有机碳含量;STN,土壤全氮含量;SAN,土壤碱解氮含量; SNH 4 +-N,土壤铵态氮含量; SNO 3 --N,土壤硝态氮含量。下同。
Fig.1 Soil organic carbon and nitrogen content under treatments SOC, Soil organic carbon content; SMOC, Soil mineral-incorporated organic carbon content; SPOC, Soil particulate organic carbon content; SDOC, Soil dissolved organic carbon; STN, Soil total nitrogen content; SAN, Soil alkali-hydrolyzable nitrogen content; SNH 4 +-N, Soil ammonium nitrogen content; SNO 3 --N, Soil nitrate nitrogen content. The same as below.
| 处理 Treatment | 土壤深度 Soil depth/cm | 生物固氮潜势 Biological nitrogen fixation potential | 生物反硝化潜势 Biological denitrification potential |
|---|---|---|---|
| CK | 0~20 | 2.46±0.33 b | 4.06±0.23 a |
| >20~40 | 0.51±0.17 c | 1.22±0.03 c | |
| >40~60 | 0.14±0.04 d | 0.30±0.04 d | |
| ST | 0~20 | 3.08±0.03 a | 3.74±0.09 b |
| >20~40 | 0.66±0.06 c | 0.22±0.01 d | |
| >40~60 | 0.15±0.09 d | 0.18±0.01 d |
表2 不同处理0~60 cm土层的土壤生物固氮潜势和反硝化潜势
Table 2 Biological nitrogen fixation and denitrification potential at 0-60 cm soil layer under treatments μg·kg-1·d-1
| 处理 Treatment | 土壤深度 Soil depth/cm | 生物固氮潜势 Biological nitrogen fixation potential | 生物反硝化潜势 Biological denitrification potential |
|---|---|---|---|
| CK | 0~20 | 2.46±0.33 b | 4.06±0.23 a |
| >20~40 | 0.51±0.17 c | 1.22±0.03 c | |
| >40~60 | 0.14±0.04 d | 0.30±0.04 d | |
| ST | 0~20 | 3.08±0.03 a | 3.74±0.09 b |
| >20~40 | 0.66±0.06 c | 0.22±0.01 d | |
| >40~60 | 0.15±0.09 d | 0.18±0.01 d |
图2 不同处理0~60 cm土层nifH (a)、nirS (b)、nirK (c)、nosZ (d)基因的丰度 图中丰度均以基因拷贝数的常用对数值表示。
Fig.2 Abundance of nifH (a), nirS (b), nirK (c), nosZ (d) genes in 0-60 cm soil layer under treatments Abundance in the above figure is expressed as the common logarithm value of gene copies.
图3 nifH(a)、nirS(b)、nirK(c)、nosZ(d)基因丰度与土壤碳、氮组分的相关性 “*”和“**”分别表示显著(p<0.05)和极显著(p<0.01)相关。R2,决定系数。
Fig.3 Correlation analysis of abundance of nifH (a), nirK (b), nirS (c) and nosZ (d) genes with soil carbon and nitrogen components “*” and “**” indicate significant correlation at p<0.05 and p<0.01, respectively. R2, Coefficient of determination.
图4 土壤nifH型固氮细菌(a、b、c)和nirS型反硝化细菌(d、e、f)种群的α多样性指数 “*”表示差异显著(p<0.05)。
Fig.4 Alpha diversity index of soil nifH type nitrogen fixing bacteria (a, b, c) and nirS type denitrifying bacteria (d, e, f) “*” indicates significant difference at p<0.05.
图5 土壤nifH型固氮细菌(a)和nirS型反硝化细菌(b)种群结构差异的主坐标分析(PCoA) PCoA1,第1主坐标;PcoA2,第2主坐标。
Fig.5 Principal co-ordinates analysis (PcoA) of differences in population structure of nifH type nitrogen-fixing bacteria (a) and nirS type denitrifying bacteria (b) in soil PCoA1, Principle coordinate 1; PCoA2, Principle coordinate 2.
图6 不同处理0~20、>20~40、>40~60 cm土层存在显著差异的nifH型固氮菌属(a)和nirS型反硝化菌属(b)
Fig.6 nifH nitrogen-fixing bacteria (a) and nirS denitrifying bacteria (b) with significant differences in 0-20,>20~40,>40~60 cm soil layers under treatments
图7 土壤碳氮组分与nifH型固氮细菌(a、b)和nirS型反硝化细菌(c、d)种群结构及主要菌属的排序回归分析(a、c)和相关分析(b、d) “*”“**”和“***”分别表示在p<0.05、p<0.01和p<0.001水平上显著。unclassified_p_Proteaobacteria,未分类的变形菌门细菌;unclassified_k_norank_d_Bacteria,未分类的细菌;unclassified_c_Deltaproteobacteria,未分类的δ-变形菌纲细菌;unclassified_d_unclassified,未分类的细菌;Geobacter,地杆菌属;unclassified_c_Alphaproteobacteria,未分类的α-变形菌纲细菌;Anaeromyxobacter,厌氧菌属;unclassified_o_Rhizobiales,未分类的根瘤菌目细菌;norank_p_environmental_samples,未分类的环境样本细菌;unclassified_c_Betaproteobacteria,未分类的β-变形菌纲细菌;Rhodanobacter,罗河杆菌属;Azospira,固氮螺菌属;unclassified_f_unclassified_Burkholderiales,未分类的伯克氏菌目细菌。
Fig.7 Sequencing regression analysis (a, c) and correlation analysis (b, d) of soil cabon and nitrogen components with nifH type nitrogen-fixing bacteria (a, b) and nirS type denitrifying bacteria (c, d) population structure and main bacteria genera “*” “**” “***” indicate significant level of p<0.05, p<0.01, p<0.001, respectively.
图8 基于结构方程模型(SEM)的土壤溶解性有机碳、土壤固氮和反硝化菌群丰度及组成与土壤矿质氮含量间的路径 df,自由度;RMSEA,近似误差均方根;GFI,拟合优度;CFI,比较拟合指数。
Fig.8 Structural equation modelling (SEM) showing pathways between soil dissolved oraganic carbon (DOC) content, soil nitrogen fixation and denitrification bacterial abundance and community composition, and soil mineral nitrogen content df,Degree of freedom; RMSEA, Root mean square error of approximation; GFI, Goodness of fit; CFI, Comparative fitting index.
| [1] | 韩鲁佳, 闫巧娟, 刘向阳, 等. 中国农作物秸秆资源及其利用现状[J]. 农业工程学报, 2002, 18(3): 87-91. |
| HAN L J, YAN Q J, LIU X Y, et al. Straw resources and their utilization in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2002, 18(3): 87-91. (in Chinese with English abstract) | |
| [2] | LI H, CAO Y, WANG X M, et al. Evaluation on the production of food crop straw in China from 2006 to 2014[J]. BioEnergy Research, 2017, 10(3): 949-957. |
| [3] | 赵静. 中国农作物秸秆综合利用分析与对策[J]. 农业展望, 2019, 15(12): 121-124. |
| ZHAO J. Analysis and countermeasure of comprehensive utilization of crop straw in China[J]. Agricultural Outlook, 2019, 15(12): 121-124. (in Chinese with English abstract) | |
| [4] | KUYPERS M M M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16(5): 263-276. |
| [5] | GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889-892. |
| [6] | SUN R B, GUO X S, WANG D Z, et al. Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle[J]. Applied Soil Ecology, 2015, 95: 171-178. |
| [7] | CHEN B Q, LIU E K, TIAN Q Z, et al. Soil nitrogen dynamics and crop residues: a review[J]. Agronomy for Sustainable Development, 2014, 34(2): 429-442. |
| [8] | KUMAR K, GOH K M. Nitrogen release from crop residues and organic amendments as affected by biochemical composition[J]. Communications in Soil Science and Plant Analysis, 2003, 34(17/18): 2441-2460. |
| [9] | 汪军, 王德建, 张刚, 等. 连续全量秸秆还田与氮肥用量对农田土壤养分的影响[J]. 水土保持学报, 2010, 24(5): 40-44. |
| WANG J, WANG D J, ZHANG G, et al. Effects of different nitrogen fertilizer rate with continuous full amount of straw incorporated on paddy soil nutrients[J]. Journal of Soil and Water Conservation, 2010, 24(5): 40-44. (in Chinese with English abstract) | |
| [10] | 赵鹏, 陈阜. 秸秆还田配施化学氮肥对冬小麦氮效率和产量的影响[J]. 作物学报, 2008, 34(6): 1014-1018. |
| ZHAO P, CHEN F. Effects of straw mulching plus nitrogen fertilizer on nitrogen efficiency and grain yield in winter wheat[J]. Acta Agronomica Sinica, 2008, 34(6): 1014-1018. (in Chinese with English abstract) | |
| [11] | SCHMIDT-ROHR K, MAO J D, OLK D C. Nitrogen-bonded aromatics in soil organic matter and their implications for a yield decline in intensive rice cropping[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(17): 6351-6354. |
| [12] | 贾生强, 范惠珊, 陈喜靖, 等. 长期秸秆还田下土壤反硝化细菌群落的有机碳驱动机制[J]. 浙江农业学报, 2021, 33(9): 1686-1699. |
| JIA S Q, FAN H S, CHEN X J, et al. Driving mechanism of soil denitrifying bacterial community by soil organic carbon after long-term of straw return[J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1686-1699. (in Chinese with English abstract) | |
| [13] | 张雅洁, 陈晨, 陈曦, 等. 小麦-水稻秸秆还田对土壤有机质组成及不同形态氮含量的影响[J]. 农业环境科学学报, 2015, 34(11): 2155-2161. |
| ZHANG Y J, CHEN C, CHEN X, et al. Effects of wheat and rice straw returning on soil organic matter composition and content of different nitrogen forms in soil[J]. Journal of Agro-Environment Science, 2015, 34(11): 2155-2161. (in Chinese with English abstract) | |
| [14] | 翟明振, 胡恒宇, 宁堂原, 等. 盐碱地玉米产量及土壤硝态氮对深松耕作和秸秆还田的响应[J]. 植物营养与肥料学报, 2020, 26(1): 64-73. |
| ZHAI M Z, HU H Y, NING T Y, et al. Response of maize yield and soil nitrate to deep plowing and straw return in saline-alkali soil[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(1): 64-73. (in Chinese with English abstract) | |
| [15] | YANG Y D, ZHAO J, JIANG Y, et al. Response of bacteria harboring nirS and nirK genes to different N fertilization rates in an alkaline northern Chinese soil[J]. European Journal of Soil Biology, 2017, 82: 1-9. |
| [16] | SU Y, HE Z C, YANG Y H, et al. Linking soil microbial community dynamics to straw-carbon distribution in soil organic carbon[J]. Scientific Reports, 2020, 10: 5526. |
| [17] | HENRIKSEN T M, BRELAND T A. Nitrogen availability effects on carbon mineralization, fungal and bacterial growth, and enzyme activities during decomposition of wheat straw in soil[J]. Soil Biology and Biochemistry, 1999, 31(8): 1121-1134. |
| [18] | FERREIRA M C, DE S ANDRADE D, DE O CHUEIRE L M, et al. Tillage method and crop rotation effects on the population sizes and diversity of bradyrhizobia nodulating soybean[J]. Soil Biology and Biochemistry, 2000, 32(5): 627-637. |
| [19] | 李贵桐, 赵紫娟, 黄元仿, 等. 秸秆还田对土壤氮素转化的影响[J]. 植物营养与肥料学报, 2002, 8(2): 162-167. |
| LI G T, ZHAO Z J, HUANG Y F, et al. Effect of straw returning on soil nitrogen transformation[J]. Plant Natrition and Fertilizen Science, 2002, 8(2): 162-167. (in Chinese with English abstract) | |
| [20] | WEI T, ZHANG P, WANG K, et al. Effects of wheat straw incorporation on the availability of soil nutrients and enzyme activities in semiarid areas[J]. PLoS One, 2015, 10(4): e0120994. |
| [21] | ZHANG P, CHEN X L, WEI T, et al. Effects of straw incorporation on the soil nutrient contents, enzyme activities, and crop yield in a semiarid region of China[J]. Soil and Tillage Research, 2016, 160: 65-72. |
| [22] | 陈娜, 刘毅, 黎娟, 等. 长期施肥对稻田不同土层反硝化细菌丰度的影响[J]. 中国环境科学, 2019, 39(5): 2154-2160. |
| CHEN N, LIU Y, LI J, et al. Effects of long-term fertilization on the abundance of the key denitrifiers in profile of paddy soil profiles[J]. China Environmental Science, 2019, 39(5): 2154-2160. (in Chinese with English abstract) | |
| [23] | TANG Y F, ZHANG M M, CHEN A L, et al. Impact of fertilization regimes on diazotroph community compositions and N2-fixation activity in paddy soil[J]. Agriculture, Ecosystems & Environment, 2017, 247: 1-8. |
| [24] | CHE R X, QIN J L, TAHMASBIAN I, et al. Litter amendment rather than phosphorus can dramatically change inorganic nitrogen pools in a degraded grassland soil by affecting nitrogen-cycling microbes[J]. Soil Biology and Biochemistry, 2018, 120: 145-152. |
| [25] | XIA Y H, CHEN X B, ZHENG S M, et al. Manure application accumulates more nitrogen in paddy soils than rice straw but less from fungal necromass[J]. Agriculture, Ecosystems & Environment, 2021, 319: 107575. |
| [26] | LIAO H K, LI Y Y, YAO H Y. Fertilization with inorganic and organic nutrients changes diazotroph community composition and N-fixation rates[J]. Journal of Soils and Sediments, 2018, 18(3): 1076-1086. |
| [27] | HAYNES R J, FRANCIS G S. Changes in microbial biomass C, soil carbohydrate composition and aggregate stability induced by growth of selected crop and forage species under field conditions[J]. Journal of Soil Science, 1993, 44(4): 665-675. |
| [28] | CAMBARDELLA C A, ELLIOTT E T. Particulate soil organic-matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal, 1992, 56(3): 777-783. |
| [29] | NELSON D W, SOMMERS L E. Total carbon, organic carbon, and organic matter[M]// SPARK D L, PAGE A L, HELMKE P A, et al. Methods of soil analysis: part 3: chemical methods. Madison: Soil Science Society of America Inc., 1996. |
| [30] | 刘光崧. 土壤理化分析与剖面描述[M]. 北京: 中国标准出版社, 1996. |
| [31] | PAGE A L, MILLER R H, KEENEY D R. Methods of soil analysis: part 2: chemical and microbiological properties[M]. Madison: Soil Science Society of America Inc., 1982. |
| [32] | HSU S F, BUCKLEY D H. Evidence for the functional significance of diazotroph community structure in soil[J]. The ISME Journal, 2009, 3(1): 124-136. |
| [33] | KEUTER A, VELDKAMP E, CORRE M D. Asymbiotic biological nitrogen fixation in a temperate grassland as affected by management practices[J]. Soil Biology and Biochemistry, 2014, 70: 38-46. |
| [34] | WANG X J, LIU B J, MA J, et al. Soil aluminum oxides determine biological nitrogen fixation and diazotrophic communities across major types of paddy soils in China[J]. Soil Biology and Biochemistry, 2019, 131: 81-89. |
| [35] | WANG C, ZHENG M M, SONG W F, et al. Impact of 25 years of inorganic fertilization on diazotrophic abundance and community structure in an acidic soil in southern China[J]. Soil Biology and Biochemistry, 2017, 113: 240-249. |
| [36] | WEI Z J, SHAN J, CHAI Y C, et al. Regulation of the product stoichiometry of denitrification in intensively managed soils[J]. Food and Energy Security, 2020, 9(4): e251. |
| [37] | WU D, WEI Z J, WELL R, et al. Straw amendment with nitrate-N decreased N2O/(N2O+N2) ratio but increased soil N2O emission: a case study of direct soil-born N2 measurements[J]. Soil Biology and Biochemistry, 2018, 127: 301-304. |
| [38] | FOCHT D D, CHANG A C. Nitrification and denitrification processes related to waste water treatment[J]. Advances in Applied Microbiology, 1975, 19: 153-186. |
| [39] | 金科, 魏志军, 马小芳, 等. 环境因子对水稻土硝酸根异化还原过程速率和分配的影响[J]. 土壤学报, 2023, 60(4): 1035-1046. |
| JIN K, WEI Z J, MA X F, et al. Effects of environmental factors on rate and partitioning of dissimilatory nitrate reduction processes in paddy soils[J]. Acta Pedologica Sinica, 2023, 60(4): 1035-1046. (in Chinese with English abstract) | |
| [40] | 杨璐, 曾闹华, 白金顺, 等. 紫云英季土壤固氮微生物对外源碳氮投入的响应[J]. 中国农业科学, 2020, 53(1): 105-116. |
| YANG L, ZENG N H, BAI J S, et al. Responses of soil diazotroph community to rice straw, glucose and nitrogen addition during Chinese milk vetch growth[J]. Scientia Agricultura Sinica, 2020, 53(1): 105-116. (in Chinese with English abstract) | |
| [41] | YANG L, BAI J S, ZENG N H, et al. Diazotroph abundance and community structure are reshaped by straw return and mineral fertilizer in rice-rice-green manure rotation[J]. Applied Soil Ecology, 2019, 136: 11-20. |
| [42] | RAHAV E, GIANNETTO M J, BAR-ZEEV E. Contribution of mono and polysaccharides to heterotrophic N2 fixation at the eastern Mediterranean coastline[J]. Scientific Reports, 2016, 6: 27858. |
| [43] | WANG N, LUO J L, JUHASZ A L, et al. Straw decreased N2O emissions from flooded paddy soils via altering denitrifying bacterial community compositions and soil organic carbon fractions[J]. FEMS Microbiology Ecology, 2020, 96(5): fiaa046. |
| [44] | AKLUJKAR M, YOUNG N D, HOLMES D, et al. The genome of Geobacter bemidjiensis, exemplar for the subsurface clade of Geobacter species that predominate in Fe(III)-reducing subsurface environments[J]. BMC Genomics, 2010, 11(1): 490. |
| [45] | HE Q, SANFORD R A. Characterization of Fe(III) reduction by chlororespiring Anaeromyxobacter dehalogenans[J]. Applied and Environmental Microbiology, 2003, 69(5): 2712-2718. |
| [46] | SEVERIN I, BENTZON-TILIA M, MOISANDER P H, et al. Nitrogenase expression in estuarine bacterioplankton influenced by organic carbon and availability of oxygen[J]. FEMS Microbiology Letters, 2015, 362(14): fnv105. |
| [1] | 苏扬, 商小兰, 钱忠明, 吴林根, 黄佳琦, 庄海峰, 赵宇飞, 党洪阳, 徐立军. 腐熟剂与生物炭协同强化秸秆还田对土壤质量和水稻生长的影响[J]. 浙江农业学报, 2025, 37(5): 1139-1148. |
| [2] | 徐君言, 裘高扬, 刘俊丽, 郭彬, 李华, 陈晓冬, 王鸢, 傅庆林. 蒙脱石、高岭石与玄武岩对土壤碳固存的影响[J]. 浙江农业学报, 2024, 36(8): 1867-1877. |
| [3] | 熊瑞, 欧阳宁, 欧茜, 钟康裕, 周文涛, 王泓睿, 龙攀, 徐莹, 傅志强. 秸秆还田与耕作方式对双季稻土壤团聚体及碳氮含量的影响[J]. 浙江农业学报, 2024, 36(6): 1347-1356. |
| [4] | 艾然, 何杰, 林海忠, 翁丽青, 陈照明, 马军伟, 王强. 不同种植年限茭白田土壤的有机碳含量与结构特征[J]. 浙江农业学报, 2024, 36(11): 2558-2565. |
| [5] | 汪洁, 陆若辉, 朱伟锋, 陈钰佩, 单英杰. 浙江省主要粮食作物秸秆还田替代化肥的潜力[J]. 浙江农业学报, 2023, 35(8): 1853-1863. |
| [6] | 黄正, 张荣萍, 马鹏, 张琪, 周宁宁, 阿什日轨, 冯婷煜, 周林. 冬水田油菜秸秆还田和氮肥运筹对杂交稻干物质积累和产量的影响[J]. 浙江农业学报, 2023, 35(5): 983-991. |
| [7] | 朱雅婷, 倪远之, 张敏, 王振旗, 沈根祥, 黄娜. 不同秸秆还田量对上海地区稻田甲烷排放的影响[J]. 浙江农业学报, 2023, 35(10): 2436-2445. |
| [8] | 于博, 王钰艳, 任琴, 党玉蕾, 张志鹏, 王宇. 秸秆还田对土壤结构和春玉米生长的影响[J]. 浙江农业学报, 2023, 35(10): 2446-2455. |
| [9] | 朱铭, 刘琛, 林义成, 郭彬, 李华, 傅庆林. 不同调理剂组合对浙江红壤土壤肥力、微生物群落多样性和水稻产量的影响[J]. 浙江农业学报, 2022, 34(6): 1258-1267. |
| [10] | 贾生强, 范惠珊, 陈喜靖, 喻曼, 沈阿林, 苏瑶. 长期秸秆还田下土壤反硝化细菌群落的有机碳驱动机制[J]. 浙江农业学报, 2021, 33(9): 1686-1699. |
| [11] | 刘根红, 薛银鑫, 张倩, 周佳瑞, 买小凤. 滴灌条件下不同耕深及秸秆还田量对玉米生长的影响[J]. 浙江农业学报, 2021, 33(1): 8-17. |
| [12] | 简兴, 翟晓钰, 王喻, 蔡阳阳. 土地利用方式改变对湿地土壤总有机碳与可溶性有机碳的影响[J]. 浙江农业学报, 2020, 32(3): 475-482. |
| [13] | 王保君, 程旺大, 陈贵, 沈亚强, 张红梅. 秸秆还田配合氮肥减量对稻田土壤养分、碳库及水稻产量的影响[J]. 浙江农业学报, 2019, 31(4): 624-630. |
| [14] | 王青霞, 陈喜靖, 喻曼, 沈阿林. 秸秆还田对稻田氮循环微生物及功能基因影响研究进展[J]. 浙江农业学报, 2019, 31(2): 333-342. |
| [15] | 罗原骏, 蒲玉琳, 龙高飞, 叶春, 朱波. 施肥方式对土壤活性有机碳及碳库管理指数的影响[J]. 浙江农业学报, 2018, 30(8): 1389-1397. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||