浙江农业学报 ›› 2021, Vol. 33 ›› Issue (5): 785-793.DOI: 10.3969/j.issn.1004-1524.2021.05.02
陈雯1(), 张伟伟1,2,*(
), 邵淑丽1,2, 付学鹏1,2, 黄鑫1,2, 李铁1,2
收稿日期:
2020-11-13
出版日期:
2021-05-25
发布日期:
2021-05-25
通讯作者:
张伟伟
作者简介:
*张伟伟,E-mail:zww121@163.com基金资助:
CHEN Wen1(), ZHANG Weiwei1,2,*(
), SHAO Shuli1,2, FU Xuepeng1,2, HUANG Xin1,2, LI Tie1,2
Received:
2020-11-13
Online:
2021-05-25
Published:
2021-05-25
Contact:
ZHANG Weiwei
摘要:
miR-423-5p在细胞中具有重要的生物学功能,如在肌细胞中能影响细胞的增殖。根据miRBase及NCBI网站显示的相关信息利用分析软件对miR-423在各物种之间的同源性进行了分析。取成年西门塔尔牛体内的骨骼肌、小肠、心脏组织利用茎环荧光定量PCR进行miR-423-5p表达量检测,将牛骨骼肌卫星细胞(MDSCs)分化处理不同时长后进行检测;最后通过在线软件(TargetScan、PicTar)预测其可能结合的靶基因。结果表明,miR-423-5p在各物种间具有较高的同源性,在骨骼肌中表达量明显高于其他组织。在MDSCs中,随着细胞分化时间的延长,miR-423-5p表达量逐渐升高。miR-423-5p在12个基因mRNA的3'-UTR上含有潜在的结合位点,其中部分靶基因参与细胞的增殖、分化和凋亡。结果提示,miR-423-5p可能参与细胞的生长代谢,调节细胞的增殖与分化。
中图分类号:
陈雯, 张伟伟, 邵淑丽, 付学鹏, 黄鑫, 李铁. miR-423-5p在牛肌肉组织中表达及其靶基因预测[J]. 浙江农业学报, 2021, 33(5): 785-793.
CHEN Wen, ZHANG Weiwei, SHAO Shuli, FU Xuepeng, HUANG Xin, LI Tie. Expression of miR-423-5p in bovine muscle and predicted target genes[J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 785-793.
引物名称 Primer name | 引物序列 Primer sequence |
---|---|
bta-miR-423 RT Primer | 5'-CTC AAC TGG TGT CGT GGA GTC GGC AAT TCA GTT GAG AAA GTC TC-3' |
bta-miR-423-5p Forward primer | 5'-ACA CTC CAG CTG GGT GAG GGG CAG AGA GCG AGA-3' |
bta-miR-423-5p Reverse primer | 5'-CTC AAC TGG TGT CGT GGA-3' |
18S Forward primer | 5'-GGA CAT CTA AGG GCA TCA CAG-3' |
18S Reverse primer | 5'-AAT TCC GAT AAC GAA CGA GAC T-3' |
表1 bta-miR-423-5p引物序列及内参基因引物序列
Table 1 Primers sequences of bta-miR-423-5p and house-keeping genes
引物名称 Primer name | 引物序列 Primer sequence |
---|---|
bta-miR-423 RT Primer | 5'-CTC AAC TGG TGT CGT GGA GTC GGC AAT TCA GTT GAG AAA GTC TC-3' |
bta-miR-423-5p Forward primer | 5'-ACA CTC CAG CTG GGT GAG GGG CAG AGA GCG AGA-3' |
bta-miR-423-5p Reverse primer | 5'-CTC AAC TGG TGT CGT GGA-3' |
18S Forward primer | 5'-GGA CAT CTA AGG GCA TCA CAG-3' |
18S Reverse primer | 5'-AAT TCC GAT AAC GAA CGA GAC T-3' |
序号 No. | 名称 Name | 前体序列 Precursor sequence | 成熟序列 Mature sequence | 基因组位置 Genomic location | ||||
---|---|---|---|---|---|---|---|---|
1 | hsa-mir- 423 | AUAAAGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUAACCCGCGC | >hsa-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >hsa-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr17: 30117079-30117172 [+] | ||||
2 | mmu-mir- 423 | ACUUGUGAGGAAAUAAAGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUACCCCGCGCUUG | >mmu-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >mmu-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr11: 77078064-77078172 [-] | ||||
3 | bta-mir- 423 | AUAAAGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUACCCCGCGC | >bta-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >bta-miR-423-3p AAGCUCGGUCUGAGGCCCCUCAGU | chr19: 21923268-21923361 [+] | ||||
4 | cgr-mir- 423 | GAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCC | >cgr-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >cgr-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | JH000631.1: 520509-520586 [-] | ||||
5 | ssc-mir- 423 | AAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUAC | >ssc-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >ssc-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr12: 48287019-48287098 [-] | ||||
6 | eca-mir- 423 | AGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGU | >eca-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >eca-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr11: 43782441-43782503 [+] | ||||
7 | chi-mir- 423 | ACUUGUGAGGAAAUAAAGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUACCCCGCGCUUGAGUUUCUCCCC | >chi-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >chi-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr19: 21574266-21574385 [+] | ||||
序号 No. | 名称 Name | 前体序列 Precursor sequence | 成熟序列 Mature sequence | 基因组位置 Genomic location | ||||
8 | pal-mir- 423 | UGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGU | >pal-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >pal-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | KB031150.1: 20857586-20857644 [+] | ||||
9 | ocu-mir- 423 | UGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGU | >ocu-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >ocu-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | CM000808.1: 18146102-18146160 [-] | ||||
10 | dno-mir- 423 | UGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGU | >dno-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >dno-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | JH582994.1: 2753245-2753303 [-] | ||||
11 | rno-mir- 423 | GAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCU | >rno-miR-423-5p UGAGGGGCAGAGAGCGAGACUUUU >rno-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr10: 63098366-63098444 [+] | ||||
12 | cpo-mir- 423 | UGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGU | >cpo-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >cpo-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | DS562887.1: 22509141-22509199 [-] | ||||
13 | mml-mir- 423 | AUAAAGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUACCCCGCGC | >mml-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >mml-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr16: 24183848-24183941 [+] | ||||
14 | ppy-mir- 423 | AGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUACCCCGCGC | >ppy-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >ppy-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr17:4902242-24902331 [+] |
表2 miR-423基因信息
Table 2 Gene information of miR-423
序号 No. | 名称 Name | 前体序列 Precursor sequence | 成熟序列 Mature sequence | 基因组位置 Genomic location | ||||
---|---|---|---|---|---|---|---|---|
1 | hsa-mir- 423 | AUAAAGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUAACCCGCGC | >hsa-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >hsa-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr17: 30117079-30117172 [+] | ||||
2 | mmu-mir- 423 | ACUUGUGAGGAAAUAAAGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUACCCCGCGCUUG | >mmu-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >mmu-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr11: 77078064-77078172 [-] | ||||
3 | bta-mir- 423 | AUAAAGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUACCCCGCGC | >bta-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >bta-miR-423-3p AAGCUCGGUCUGAGGCCCCUCAGU | chr19: 21923268-21923361 [+] | ||||
4 | cgr-mir- 423 | GAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCC | >cgr-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >cgr-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | JH000631.1: 520509-520586 [-] | ||||
5 | ssc-mir- 423 | AAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUAC | >ssc-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >ssc-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr12: 48287019-48287098 [-] | ||||
6 | eca-mir- 423 | AGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGU | >eca-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >eca-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr11: 43782441-43782503 [+] | ||||
7 | chi-mir- 423 | ACUUGUGAGGAAAUAAAGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUACCCCGCGCUUGAGUUUCUCCCC | >chi-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >chi-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr19: 21574266-21574385 [+] | ||||
序号 No. | 名称 Name | 前体序列 Precursor sequence | 成熟序列 Mature sequence | 基因组位置 Genomic location | ||||
8 | pal-mir- 423 | UGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGU | >pal-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >pal-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | KB031150.1: 20857586-20857644 [+] | ||||
9 | ocu-mir- 423 | UGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGU | >ocu-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >ocu-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | CM000808.1: 18146102-18146160 [-] | ||||
10 | dno-mir- 423 | UGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGU | >dno-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >dno-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | JH582994.1: 2753245-2753303 [-] | ||||
11 | rno-mir- 423 | GAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCU | >rno-miR-423-5p UGAGGGGCAGAGAGCGAGACUUUU >rno-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr10: 63098366-63098444 [+] | ||||
12 | cpo-mir- 423 | UGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGU | >cpo-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >cpo-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | DS562887.1: 22509141-22509199 [-] | ||||
13 | mml-mir- 423 | AUAAAGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUACCCCGCGC | >mml-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >mml-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr16: 24183848-24183941 [+] | ||||
14 | ppy-mir- 423 | AGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUACCCCGCGC | >ppy-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >ppy-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr17:4902242-24902331 [+] |
图2 miR-423同源性分析 A,miR-423前体序列同源性预测;B,miR-423-3p成熟体序列同源性预测;C,miR-423-5p成熟体序列同源性预测。
Fig.2 Homology analysis of miR-423 A, Homology prediction of pre-miR-423; B, Homology prediction of miR-423-3p mature sequence; C, Homology prediction of miR-423-5p mature sequence.
序号 No | 靶基因 Target gene | 靶基因名称 The name of target gene | 与靶基因mRNA 3'UTR结合位点 The binding site on 3'UTRs of target genes mRNA |
---|---|---|---|
1 | PEX26 | 过氧化物酶体生物发生因子26 Peroxisomal biogenesis factor 26 | 560~566 |
2 | THBS3 | 血小板反应蛋白3 Thrombospondin 3 | 76~83 |
3 | CLTB | 网格蛋白轻链B Clathrin light chain B | 153~159 |
4 | OPA3 | 线粒体外膜脂质代谢调节剂OPA3 | 171~177 |
Outer mitochondrial membrane lipid metabolism regulator OPA3 | |||
5 | LYNX1 | Ly6/神经毒素1 Ly6/neurotoxin 1 | 705~711 |
6 | SRM | 亚精胺合酶 Spermidine synthase | 232~239 |
7 | VGF | VGF可诱导神经生长因子 VGF nerve growth factor inducible | 415~421 |
8 | CAMKK1 | 钙/钙调蛋白依赖性蛋白激酶激酶1 | 61~67 |
Calcium/calmodulin dependent protein kinase kinase 1 | |||
9 | WNT9B | Wnt家庭成员9B Wnt family member 9B | 222~228 |
10 | PLA2G6 | 磷脂酶A2组Ⅵ Phospholipase A2 group Ⅵ | 424~430 |
11 | NRSN2 | 神经素2 Neurensin 2 | 843~849 |
12 | SYP | 突触素 Synaptophysin | 1 329~1 335 |
表3 miR-423-5p靶基因预测结果
Table 3 Prediction of miR-423 target gene
序号 No | 靶基因 Target gene | 靶基因名称 The name of target gene | 与靶基因mRNA 3'UTR结合位点 The binding site on 3'UTRs of target genes mRNA |
---|---|---|---|
1 | PEX26 | 过氧化物酶体生物发生因子26 Peroxisomal biogenesis factor 26 | 560~566 |
2 | THBS3 | 血小板反应蛋白3 Thrombospondin 3 | 76~83 |
3 | CLTB | 网格蛋白轻链B Clathrin light chain B | 153~159 |
4 | OPA3 | 线粒体外膜脂质代谢调节剂OPA3 | 171~177 |
Outer mitochondrial membrane lipid metabolism regulator OPA3 | |||
5 | LYNX1 | Ly6/神经毒素1 Ly6/neurotoxin 1 | 705~711 |
6 | SRM | 亚精胺合酶 Spermidine synthase | 232~239 |
7 | VGF | VGF可诱导神经生长因子 VGF nerve growth factor inducible | 415~421 |
8 | CAMKK1 | 钙/钙调蛋白依赖性蛋白激酶激酶1 | 61~67 |
Calcium/calmodulin dependent protein kinase kinase 1 | |||
9 | WNT9B | Wnt家庭成员9B Wnt family member 9B | 222~228 |
10 | PLA2G6 | 磷脂酶A2组Ⅵ Phospholipase A2 group Ⅵ | 424~430 |
11 | NRSN2 | 神经素2 Neurensin 2 | 843~849 |
12 | SYP | 突触素 Synaptophysin | 1 329~1 335 |
[1] | 林君. miR-423在肝癌细胞增殖及周期转换中的作用及其分子机制[D]. 福州:福建医科大学, 2011. |
LIN J. The study on function and mechanism of miR-423 in the cell proliferation and cell cycle of liver cancer[D]. Fuzhou: Fujian Medical University, 2011. (in Chinese with English abstract) | |
[2] |
SETHI S, SETHI S, BLUTH M H. Clinical implication of MicroRNAs in molecular pathology: an update for 2018[J]. Clinics in Laboratory Medicine, 2018,38(2):237-251.
DOI URL |
[3] |
ZHANG S F, CHEN N. Regulatory role of MicroRNAs in muscle atrophy during exercise intervention[J]. International Journal of Molecular Sciences, 2018,19(2):405.
DOI URL |
[4] |
EULALIO A, MANO M, DAL FERRO M, et al. Functional screening identifies miRNAs inducing cardiac regeneration[J]. Nature, 2012,492(7429):376-381.
DOI URL |
[5] | 罗丹, 朱潇邦, 蒋明, 等. 肺动脉平滑肌细胞自噬与合成分泌功能的关系[J]. 实用医学杂志, 2019,35(7):1048-1051. |
LUO D, ZHU X B, JIANG M, et al. The relationship between autophagy and synthetic secretory function of pulmonary artery smooth muscle cells[J]. The Journal of Practical Medicine, 2019,35(7):1048-1051.(in Chinese with English abstract) | |
[6] | 余盈娟, 袁玉丰, 林琳. 胰岛素对结肠平滑肌细胞增殖及其表达干细胞因子的影响[J]. 世界华人消化杂志, 2011,19(7):674-679. |
YU Y J, YUAN Y F, LIN L. Insulin regulates the expression of stem cell factor in rat colonic smooth muscle cells[J]. World Chinese Journal of Digestology, 2011,19(7):674-679.(in Chinese with English abstract) | |
[7] | 刘秀娟. microRNAs在骨骼肌发育、损伤与再生中的调控作用[J]. 南京体育学院学报, 2019,2(12):38-47. |
LIU X J. The regulation role of MicroRNAs in skeletal muscle development, injury and regeneration[J]. Journal of Nanjing Sports Institute, 2019,2(12):38-47.(in Chinese with English abstract) | |
[8] | 黄建芳. 猪miRNA-423-5p靶向SRF基因调控肌肉发育的初步研究[D]. 南宁: 广西大学, 2016. |
HUANG J F. Regulation of miRNA-423-5p on muscle development by targeting SRF gene in pig[D]. Nanning: Guangxi University, 2016. (in Chinese with English abstract) | |
[9] | 赵曦雯, 张玉梅. MiR-92a通过靶向抑制PTEN的表达促进血管平滑肌细胞的增殖以及迁移[J]. 成都医学院学报, 2019,14(2):163-168. |
ZHAO X W, ZHANG Y M. MiR-92a promotes the proliferation and migration of vascular smooth muscle cells by targeting the inhibition of PTEN expression[J]. Journal of Chengdu Medical College, 2019,14(2):163-168.(in Chinese with English abstract) | |
[10] |
YANG F, CHEN Q S, HE S P, et al. miR-22 is a novel mediator of vascular smooth muscle cell phenotypic modulation and neointima formation[J]. Circulation, 2018,137(17):1824-1841.
DOI URL |
[11] |
SHEN H, LU S Y, DONG L L, et al. Hsa-miR-320d and hsa-miR-582, miRNA biomarkers of aortic dissection, regulate apoptosis of vascular smooth muscle cells[J]. Journal of Cardiovascular Pharmacology, 2018,71(5):275-282.
DOI URL |
[12] |
GE J, ZHU J Y, XIA B, et al. miR-423-5p inhibits myoblast proliferation and differentiation by targeting Sufu[J]. Journal of Cellular Biochemistry, 2018,119(9):7610-7620.
DOI URL |
[13] |
LI H T, ZHANG H, CHEN Y, et al. MiR-423-3p enhances cell growth through inhibition of p21Cip1/Waf1 in colorectal cancer[J]. Cellular Physiology and Biochemistry, 2015,37(3):1044-1054.
DOI URL |
[14] |
DEY B K, GAGAN J, DUTTA A. miR-206 and-486 induce myoblast differentiation by downregulating Pax7[J]. Molecular and Cellular Biology, 2011,31(1):203-214.
DOI URL |
[15] |
CHEN J F, MANDEL E M, MICHAEL THOMSON J, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation[J]. Nature Genetics, 2006,38(2):228-233.
DOI URL |
[16] |
CESANA M, DE CACCHIARELLI D, LEGNINI I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA[J]. Cell, 2011,147(2):358-369.
DOI URL |
[17] |
HUANG M B, XU H, XIE S J, et al. Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis[J]. PLoS One, 2011,6(12):e29173.
DOI URL |
[18] |
FENG Y, CAO J H, LI X Y, et al. Inhibition of miR-214 expression represses proliferation and differentiation of C2C12 myoblasts[J]. Cell Biochemistry and Function, 2011,29(5):378-383.
DOI URL |
[19] | 盛熙晖, 邓桂馨, 倪和民, 等. microRNAs调控动物骨骼肌发育的研究进展[J]. 畜牧兽医学报, 2015,46(2):179-185. |
SHENG X H, DENG G X, NI H M, et al. Research progress on MicroRNAs regulating animal skeletal muscle development[J]. Chinese Journal of Animal and Veterinary Sciences, 2015,46(2):179-185.(in Chinese with English abstract) | |
[20] |
MCDANELD T G, SMITH T P L, DOUMIT M E, et al. MicroRNA transcriptome profiles during swine skeletal muscle development[J]. BMC Genomics, 2009,10:77.
DOI URL |
[21] | 宋广忠, 万双双, 周茜, 等. miR-423-5p在小鼠急性肝衰竭模型中的功能研究[J]. 科技视界, 2019(17):214-215. |
SONG G Z, WAN S S, ZHOU Q, et al. Studying the function of MiR-423-5p in the mouse model of acute hepatic failure model[J]. Science & Technology Vision, 2019(17):214-215.(in Chinese with English abstract) | |
[22] |
KONG P F, ZHU X F, GENG Q R, et al. The microRNA-423-3p-bim axis promotes cancer progression and activates oncogenic autophagy in gastric cancer[J]. Molecular Therapy, 2017,25(4):1027-1037.
DOI URL |
[23] | LI J, SUN H J, LIU T, et al. MicroRNA-423 promotes proliferation, migration and invasion and induces chemoresistance of endometrial cancer cells[J]. Experimental and Therapeutic Medicine, 2018,16(5):4213-4224. |
[24] |
WANG J, REN Q L, HUA L S, et al. Comprehensive analysis of differentially expressed mRNA, lncRNA and circRNA and their CeRNA networks in the longissimus dorsi muscle of two different pig breeds[J]. International Journal of Molecular Sciences, 2019,20(5):1107.
DOI URL |
[25] |
CHENG X F, LI L, SHI G L, et al. MEG3 promotes differentiation of porcine satellite cells by sponging miR-423-5p to relieve inhibiting effect on SRF[J]. Cells, 2020,9(2):449.
DOI URL |
[26] |
CHANG C C, VENØ M T, CHEN L, et al. Global MicroRNA profiling in human bone marrow skeletal—stromal or mesenchymal-stem cells identified candidates for bone regeneration[J]. Molecular Therapy, 2018,26(2):593-605.
DOI URL |
[27] |
SIENGDEE P, TRAKOOLJUL N, MURANI E, et al. MicroRNAs regulate cellular ATP levels by targeting mitochondrial energy metabolism genes during C2C12 myoblast differentiation[J]. PLoS One, 2015,10(5):e0127850.
DOI URL |
[28] | 罗海静, 沈洋, 曲世玮, 等. miR-2400在牛各组织中表达及其靶基因预测[J]. 基因组学与应用生物学, 2020,39(9):3929-3934. |
LUO H J, SHEN Y, QU S W, et al. The expression of miR-2400 in bovine tissues and predicted target genes[J]. Genomics and Applied Biology, 2020,39(9):3929-3934.(in Chinese with English abstract) | |
[29] | 马喜山, 唐中林, 肖冲, 等. THBS3基因在长白猪和通城猪不同组织和不同时期骨骼肌中的表达分析[J]. 中国畜牧兽医, 2016,43(4):1032-1038. |
MA X S, TANG Z L, XIAO C, et al. Expression analysis of THBS3 gene in different tissues and skeletal muscles at different periods from Landrace and Tongcheng pigs[J]. China Animal Husbandry & Veterinary Medicine, 2016,43(4):1032-1038.(in Chinese with English abstract) | |
[30] |
FU X W, SONG P F, SPINDEL E R. Role of Lynx1 and related Ly6 proteins as modulators of cholinergic signaling in normal and neoplastic bronchial epithelium[J]. International Immunopharmacology, 2015,29(1):93-98.
DOI URL |
[31] |
TAKEUCHI H, INAGAKI S, MOROZUMI W, et al. VGF nerve growth factor inducible is involved in retinal ganglion cells death induced by optic nerve crush[J]. Scientific Reports, 2018,8:16443.
DOI URL |
[32] | YANG D X, ZHANG W B, PADHIAR A, et al. NPAS3 regulates transcription and expression of VGF: implications for neurogenesis and psychiatric disorders[J]. Frontiers in Molecular Neuroscience, 2016,9:109. |
[33] |
KARNER C M, DAS A, MA Z D, et al. Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development[J]. Development (Cambridge, England), 2011,138(7):1247-1257.
DOI URL |
[34] | KAMEI C N, GALLEGOS T F, LIU Y, et al. Wnt signaling mediates new nephron formation during zebrafish kidney regeneration[J]. Development, 2019,146(8): dev168294. |
[1] | 龙鸣, 张棚, 刘元林, 摆小琴, 张福梅, 田晓静, 曹竑, 周雪雁, 马忠仁, 罗丽, 宋礼, Nurul Izza NORDIN. 基于小鼠粪便气味信息的牛乳清蛋白功能效果的鉴别区分[J]. 浙江农业学报, 2021, 33(4): 714-723. |
[2] | 吴佳, 陈朗, 姜涛, 黄国明, 李倬, 李耀东, 张丽, 刘丽霞. 奶牛CSF3基因遗传多态性筛查及其生物信息学分析[J]. 浙江农业学报, 2020, 32(6): 986-993. |
[3] | 李秋玲, 齐颖, 王琛, 张一名, 王新妤, 尚校兰, 贾永红, 李美茹, 储明星. 热应激对中国荷斯坦牛乳腺组织基因表达及信号通路的影响[J]. 浙江农业学报, 2020, 32(5): 770-778. |
[4] | 禹文杰, 王彩霞, 乔芦, 王松磊, 贺晓光. 基于高光谱成像技术的泾源黄牛肉色度PLSR预测模型构建[J]. 浙江农业学报, 2020, 32(3): 527-533. |
[5] | 张玉龙, 马志宇, 崔耀成, 谭天宇, 姚彩霞, 樊利虹, 左之才, 才冬杰. 肉牛呼吸道感染主要细菌性病原多重PCR检测方法的建立[J]. 浙江农业学报, 2020, 32(2): 210-217. |
[6] | 刘康, 胡承孝, 蔡苗苗, 高林, 张梦娇, 巴蕾, 杨丹丹, 王旭, 赵小虎. 硒对铬-牛血清白蛋白互作光谱特征的影响[J]. 浙江农业学报, 2020, 32(1): 149-159. |
[7] | 曾学琴, 柳陈坚, 杨雪, 李晓然. 高通量测序法检测奶牛乳房炎关联微生物群落结构及多样性[J]. 浙江农业学报, 2019, 31(9): 1437-1445. |
[8] | 彭帅, 陈朗, 郑天宇, 陆会宁, 张丽, 刘丽霞. 大通牦牛TLR2基因SNP位点筛选及生物信息学分析[J]. 浙江农业学报, 2019, 31(8): 1280-1285. |
[9] | 唐天才, 刘城成, 袁东波, 郭莉, 侯巍, 莫茜, 阳爱国, 郝力力, 李锐. 四川石渠县牦牛源蜱感染巴尔通体的分子流行病学调查[J]. 浙江农业学报, 2019, 31(7): 1066-1072. |
[10] | 朱颍琨, 肖劲邦, 钱柏霖, 姜思汛, 尤留超, 张钺, 刘红, 马莉, 曹随忠, 余树民, 沈留红. 泌乳初期奶牛相关脂肪因子及生理生化指标与脂肪肝的相关性[J]. 浙江农业学报, 2019, 31(5): 722-729. |
[11] | 白东东, 李新圃, 杨峰, 罗金印, 王旭荣, 李宏胜. 地肤通乳散治疗奶牛乳房炎临床疗效及作用靶点预测[J]. 浙江农业学报, 2019, 31(5): 730-736. |
[12] | 阳明贤, 左之才, 李碧, 王宇. 牛抵抗素对牛肺泡巨噬细胞TLR4/MyD88非依赖信号通路基因表达的影响[J]. 浙江农业学报, 2019, 31(3): 379-383. |
[13] | 王帅帅, 张才, 孟素丹, 黄永志, 朱雪敏, 王玉琴, 杨自军. 犊牛脂肪干细胞的分离、培养与鉴定[J]. 浙江农业学报, 2019, 31(2): 235-241. |
[14] | 卢鑫, 周靖航, 杨朝云, 张梦华, 叶连萌, 李叔臻, 黄锡霞, 马云, 王兴平, 史远刚. 新疆褐牛产奶和繁殖性状候选基因功能注释[J]. 浙江农业学报, 2019, 31(12): 1987-1995. |
[15] | 张康, 张璇, 闫遵祥, 王磊, 张凯, 张景艳, 罗永江, 仇正英, 薛欢, 李建喜. 牛病毒性腹泻病毒Core蛋白的原核表达及多克隆抗体制备[J]. 浙江农业学报, 2019, 31(11): 1819-1824. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||