浙江农业学报 ›› 2021, Vol. 33 ›› Issue (10): 1889-1896.DOI: 10.3969/j.issn.1004-1524.2021.10.12
收稿日期:2020-12-15
出版日期:2021-10-25
发布日期:2021-11-02
作者简介:廖明安,E-mail: lman@sicau.edu.cn通讯作者:
廖明安
基金资助:
LIAN Huashan1(
), LI Xinxin2, LIN Lijin3, LIAO Ming’an4,*(
)
Received:2020-12-15
Online:2021-10-25
Published:2021-11-02
Contact:
LIAO Ming’an
摘要:
为研究叶面喷施表油菜素内酯(EBR)对葡萄幼苗生长的影响,采用盆栽试验,以夏黑葡萄幼苗为材料,叶面喷施不同浓度(0、0.5、1.0、1.5、2.0 mg·L-1)的EBR,测定EBR对葡萄幼苗生物量、光合特性、抗氧化系统的影响。结果表明,叶面喷施不同浓度的EBR提高了葡萄幼苗的生物量、根冠比和光合色素含量,降低了叶绿素a/b;除了叶温下蒸气压亏缺值有所降低,幼苗叶片的光合参数(净光合速率、气孔导度、蒸腾速率和胞间CO2浓度)升高;叶片的抗氧化酶活性、游离脯氨酸和可溶性蛋白质含量均升高,且均在EBR浓度为1.0 mg·L-1和1.5 mg·L-1时升高幅度较大;喷施1.0 mg·L-1和1.5 mg·L-1EBR时,叶片的相对电导率降低;喷施1.5 mg·L-1EBR时,幼苗根、茎的可溶性糖含量升高;喷施0.5 mg·L-1和1.0 mg·L-1 EBR时,幼苗叶片的可溶性糖含量升高。总体上,叶面喷施1.0 mg·L-1 EBR能够促进夏黑葡萄幼苗的生长,并且能够提高幼苗的抗氧化性。
中图分类号:
练华山, 李欣欣, 林立金, 廖明安. 表油菜素内酯对夏黑葡萄幼苗生长的影响[J]. 浙江农业学报, 2021, 33(10): 1889-1896.
LIAN Huashan, LI Xinxin, LIN Lijin, LIAO Ming’an. Study on epibrassinolide (EBR) on growth and physiological response of Summer Black grape seedlings[J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1889-1896.
| EBR浓度 EBR concentration/ (mg·L-1) | 生物量Biomass/(g·plant-1) | 根冠比 Root/shoot ratio | ||||
|---|---|---|---|---|---|---|
| 根 Root | 茎 Stem | 叶 Leaf | 地上部 Shoot | 整株 Total plant | ||
| 0 | 0.555±0.003 e | 0.139±0.006 d | 1.158±0.044 b | 1.297±0.038 d | 1.852±0.041 d | 0.428 d |
| 0.5 | 0.773±0.005 d | 0.193±0.008 c | 1.231±0.057 b | 1.423±0.052 c | 2.197±0.050 c | 0.543 a |
| 1.0 | 0.864±0.004 a | 0.289±0.003 a | 1.428±0.025 a | 1.718±0.027 ab | 2.582±0.028 a | 0.503 b |
| 1.5 | 0.844±0.003 b | 0.298±0.007 a | 1.497±0.028 a | 1.796±0.033 a | 2.639±0.036 a | 0.470 c |
| 2.0 | 0.791±0.007 c | 0.223±0.009 b | 1.439±0.047 a | 1.662±0.051 b | 2.453±0.057 b | 0.476 c |
表1 EBR对夏黑葡萄幼苗生物量的影响
Table 1 Effects of EBR on biomass of Summer Black grape seedlings
| EBR浓度 EBR concentration/ (mg·L-1) | 生物量Biomass/(g·plant-1) | 根冠比 Root/shoot ratio | ||||
|---|---|---|---|---|---|---|
| 根 Root | 茎 Stem | 叶 Leaf | 地上部 Shoot | 整株 Total plant | ||
| 0 | 0.555±0.003 e | 0.139±0.006 d | 1.158±0.044 b | 1.297±0.038 d | 1.852±0.041 d | 0.428 d |
| 0.5 | 0.773±0.005 d | 0.193±0.008 c | 1.231±0.057 b | 1.423±0.052 c | 2.197±0.050 c | 0.543 a |
| 1.0 | 0.864±0.004 a | 0.289±0.003 a | 1.428±0.025 a | 1.718±0.027 ab | 2.582±0.028 a | 0.503 b |
| 1.5 | 0.844±0.003 b | 0.298±0.007 a | 1.497±0.028 a | 1.796±0.033 a | 2.639±0.036 a | 0.470 c |
| 2.0 | 0.791±0.007 c | 0.223±0.009 b | 1.439±0.047 a | 1.662±0.051 b | 2.453±0.057 b | 0.476 c |
| EBR浓度 EBR concentration/ (mg·L-1) | 叶绿素a Chlorophyll a/ (mg·g-1) | 叶绿素b Chlorophyll b/ (mg·g-1) | 类胡萝卜素 Carotinoid/ (mg·g-1) | 总叶绿素 Total chlorophyll/ (mg·g-1) | 叶绿素a/b Chlorophyll a/b |
|---|---|---|---|---|---|
| 0 | 0.729±0.007 d | 0.235±0.004 d | 0.157±0.002 c | 0.964±0.005 e | 3.102 a |
| 0.5 | 0.818±0.006 b | 0.279±0.004 b | 0.159±0.008 c | 1.155±0.002 c | 2.932 b |
| 1.0 | 0.970±0.008 a | 0.332±0.008 a | 0.172±0.005 b | 1.226±0.023 ab | 2.922 b |
| 1.5 | 0.743±0.002 cd | 0.254±0.002 c | 0.183±0.002 a | 1.171±0.025 bc | 2.925 b |
| 2.0 | 0.749±0.005 c | 0.264±0.008 c | 0.178±0.006 ab | 1.252±0.037 a | 2.837 c |
表2 EBR对夏黑葡萄幼苗光合色素含量的影响
Table 2 Effects of EBR on photosynthetic pigment content of Summer Black grape seedlings
| EBR浓度 EBR concentration/ (mg·L-1) | 叶绿素a Chlorophyll a/ (mg·g-1) | 叶绿素b Chlorophyll b/ (mg·g-1) | 类胡萝卜素 Carotinoid/ (mg·g-1) | 总叶绿素 Total chlorophyll/ (mg·g-1) | 叶绿素a/b Chlorophyll a/b |
|---|---|---|---|---|---|
| 0 | 0.729±0.007 d | 0.235±0.004 d | 0.157±0.002 c | 0.964±0.005 e | 3.102 a |
| 0.5 | 0.818±0.006 b | 0.279±0.004 b | 0.159±0.008 c | 1.155±0.002 c | 2.932 b |
| 1.0 | 0.970±0.008 a | 0.332±0.008 a | 0.172±0.005 b | 1.226±0.023 ab | 2.922 b |
| 1.5 | 0.743±0.002 cd | 0.254±0.002 c | 0.183±0.002 a | 1.171±0.025 bc | 2.925 b |
| 2.0 | 0.749±0.005 c | 0.264±0.008 c | 0.178±0.006 ab | 1.252±0.037 a | 2.837 c |
| EBR浓度 EBR concentration/(mg·L-1) | Tr/(mmol· m-2·s-1) | Pn/(μmol· m-2·s-1) | Ci/(μmol· mol-1) | Gs/(mol· m-2·s-1) | VpdL/kPa |
|---|---|---|---|---|---|
| 0 | 2.614±0.049 d | 3.495±0.118 d | 251.7±1.5 d | 0.128±0.006 c | 2.254±0.039 a |
| 0.5 | 3.343±0.072 a | 7.182±0.086 b | 319.7±6.1 b | 0.184±0.005 a | 1.632±0.015 d |
| 1.0 | 2.980±0.037 c | 7.173±0.191 b | 301.0±5.0 c | 0.150±0.006 b | 1.952±0.040 c |
| 1.5 | 3.294±0.070 a | 9.019±0.062 a | 351.8±2.5 a | 0.192±0.004 a | 2.060±0.016 b |
| 2.0 | 3.107±0.010 b | 6.838±0.045 c | 296.1±2.8 c | 0.143±0.006 b | 1.365±0.047 e |
表3 EBR对夏黑葡萄幼苗光合参数的影响
Table 3 Effects of EBR on photosynthetic parameters of Summer Black grape seedlings
| EBR浓度 EBR concentration/(mg·L-1) | Tr/(mmol· m-2·s-1) | Pn/(μmol· m-2·s-1) | Ci/(μmol· mol-1) | Gs/(mol· m-2·s-1) | VpdL/kPa |
|---|---|---|---|---|---|
| 0 | 2.614±0.049 d | 3.495±0.118 d | 251.7±1.5 d | 0.128±0.006 c | 2.254±0.039 a |
| 0.5 | 3.343±0.072 a | 7.182±0.086 b | 319.7±6.1 b | 0.184±0.005 a | 1.632±0.015 d |
| 1.0 | 2.980±0.037 c | 7.173±0.191 b | 301.0±5.0 c | 0.150±0.006 b | 1.952±0.040 c |
| 1.5 | 3.294±0.070 a | 9.019±0.062 a | 351.8±2.5 a | 0.192±0.004 a | 2.060±0.016 b |
| 2.0 | 3.107±0.010 b | 6.838±0.045 c | 296.1±2.8 c | 0.143±0.006 b | 1.365±0.047 e |
| EBR浓度 EBR concentration/(mg·L-1) | SOD活性 SOD activity/(U·g-1) | POD活性 POD activity/(U·g-1·min-1) | CAT活性 CAT activity/(mg·g-1·min-1) |
|---|---|---|---|
| 0 | 72.80±2.20 c | 14.23±0.54 d | 0.622±0.009 d |
| 0.5 | 114.10±3.3 b | 29.64±0.79 b | 0.800±0.008 c |
| 1.0 | 124.30±4.2 a | 31.77±0.29 a | 0.950±0.004 a |
| 1.5 | 117.10±3.2 b | 31.39±0.92 a | 0.857±0.004 b |
| 2.0 | 75.50±1.60 c | 23.81±0.42 c | 0.846±0.007 b |
表4 EBR对夏黑葡萄幼苗抗氧化酶活性的影响
Table 4 Effects of EBR on antioxidant enzyme activity of Summer Black grape seedlings
| EBR浓度 EBR concentration/(mg·L-1) | SOD活性 SOD activity/(U·g-1) | POD活性 POD activity/(U·g-1·min-1) | CAT活性 CAT activity/(mg·g-1·min-1) |
|---|---|---|---|
| 0 | 72.80±2.20 c | 14.23±0.54 d | 0.622±0.009 d |
| 0.5 | 114.10±3.3 b | 29.64±0.79 b | 0.800±0.008 c |
| 1.0 | 124.30±4.2 a | 31.77±0.29 a | 0.950±0.004 a |
| 1.5 | 117.10±3.2 b | 31.39±0.92 a | 0.857±0.004 b |
| 2.0 | 75.50±1.60 c | 23.81±0.42 c | 0.846±0.007 b |
| EBR浓度 EBR concentration/ (mg·L-1) | 丙二醛 MDA content/ (μmol·kg-1) | 脯氨酸 Proline content/ (μg·g-1) | 可溶性蛋白质 Soluble protein content/(mg·g-1) | 相对电导率 Relative conductivity/ (μS·cm-1) |
|---|---|---|---|---|
| 0 | 56.34±0.47 a | 52.89±0.64 d | 5.825±0.070 c | 96.66±0.75 c |
| 0.5 | 46.59±0.52 c | 64.76±0.61 c | 8.618±0.662 ab | 102.70±0.40 a |
| 1.0 | 31.69±0.36 e | 79.81±0.49 a | 8.754±0.367 a | 95.20±0.70 d |
| 1.5 | 33.44±0.21 d | 70.29±0.74 b | 6.453±0.903 c | 86.93±0.72 e |
| 2.0 | 48.87±0.75 b | 53.29±0.21 d | 7.593±0.130 b | 99.77±0.91 b |
表5 EBR对夏黑葡萄幼苗渗透调节物质含量的影响
Table 5 Effects of EBR on permeant regulation of Summer Black grape seedlings
| EBR浓度 EBR concentration/ (mg·L-1) | 丙二醛 MDA content/ (μmol·kg-1) | 脯氨酸 Proline content/ (μg·g-1) | 可溶性蛋白质 Soluble protein content/(mg·g-1) | 相对电导率 Relative conductivity/ (μS·cm-1) |
|---|---|---|---|---|
| 0 | 56.34±0.47 a | 52.89±0.64 d | 5.825±0.070 c | 96.66±0.75 c |
| 0.5 | 46.59±0.52 c | 64.76±0.61 c | 8.618±0.662 ab | 102.70±0.40 a |
| 1.0 | 31.69±0.36 e | 79.81±0.49 a | 8.754±0.367 a | 95.20±0.70 d |
| 1.5 | 33.44±0.21 d | 70.29±0.74 b | 6.453±0.903 c | 86.93±0.72 e |
| 2.0 | 48.87±0.75 b | 53.29±0.21 d | 7.593±0.130 b | 99.77±0.91 b |
| EBR浓度 EBR concentration/(mg·L-1) | 根Root | 茎Stem | 叶Leaf |
|---|---|---|---|
| 0 | 54.74±4.20 d | 83.62±5.20 c | 91.76±1.40 c |
| 0.5 | 51.72±4.20 e | 83.09±8.90 c | 95.63±5.10 b |
| 1.0 | 59.46±3.00 c | 74.83±2.40 d | 126.80±6.7 a |
| 1.5 | 62.24±1.70 b | 90.24±6.00 b | 78.15±3.30 e |
| 2.0 | 87.35±4.80 a | 95.35±8.80 a | 82.91±5.80 d |
表6 EBR对夏黑葡萄幼苗各部位可溶性糖含量的影响
Table 6 Effects of EBR on soluble sugarcontent in different parts of Summer Black grape seedlings mg·g-1
| EBR浓度 EBR concentration/(mg·L-1) | 根Root | 茎Stem | 叶Leaf |
|---|---|---|---|
| 0 | 54.74±4.20 d | 83.62±5.20 c | 91.76±1.40 c |
| 0.5 | 51.72±4.20 e | 83.09±8.90 c | 95.63±5.10 b |
| 1.0 | 59.46±3.00 c | 74.83±2.40 d | 126.80±6.7 a |
| 1.5 | 62.24±1.70 b | 90.24±6.00 b | 78.15±3.30 e |
| 2.0 | 87.35±4.80 a | 95.35±8.80 a | 82.91±5.80 d |
| [1] |
MITCHELL J W, MANDAVA N, WORLEY J F, et al. Brassins: a new family of plant hormones from rape pollen[J]. Nature, 1970, 225(5237):1065-1066.
DOI URL |
| [2] |
GROVE M D, SPENCER G F, ROHWEDDER W K, et al. Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen[J]. Nature, 1979, 281(5728):216-217.
DOI URL |
| [3] |
CLOUSE S D, SASSE J M. BRASSINOSTEROIDS: essential regulators of plant growth and development[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49:427-451.
DOI URL |
| [4] | 李启程, 余学军. 外源油菜素内酯对毛竹实生苗生理特性的影响[J]. 浙江农林大学学报, 2021, 38(1):120-127. |
| LI Q C, YU X J. Effects of exogenous BR on physiological characteristics of Phyllostachys edulis seedlings[J]. Journal of Zhejiang A & F University, 2021, 38(1):120-127.(in Chinese with English abstract) | |
| [5] | 郑洁, 王磊. 油菜素内酯在植物生长发育中的作用机制研究进展[J]. 中国农业科技导报, 2014, 16(1):52-58. |
| ZHENG J, WANG L. Advance in mechanism of brassinosteroids in plant development[J]. Journal of Agricultural Science and Technology, 2014, 16(1):52-58.(in Chinese with English abstract) | |
| [6] |
ZAHEDIPOUR-SHESHGLANI P, ASGHARI M. Impact of foliar spray with 24-epibrassinolide on yield, quality, ripening physiology and productivity of the strawberry[J]. Scientia Horticulturae, 2020, 268:109376.
DOI URL |
| [7] | SANTOS L R, PAULA L D S, PEREIRA Y C, et al. Brassinosteroids-mediated amelioration of iron deficiency in soybean plants: beneficial effects on the nutritional status, photosynthetic pigments and chlorophyll fluorescence[J]. Journal of Plant Growth Regulation, 2020: 1-21. |
| [8] |
KOHLI S K, HANDA N, SHARMA A, et al. Combined effect of 24-epibrassinolide and salicylic acid mitigates lead (Pb) toxicity by modulating various metabolites in Brassica juncea L. seedlings[J]. Protoplasma, 2018, 255(1):11-24.
DOI URL |
| [9] |
ALAM P, ALBALAWI, ALTALAYAN, et al. 24-epibrassinolide (EBR) confers tolerance against NaCl stress in soybean plants by up-regulating antioxidant system, ascorbate-glutathione cycle, and glyoxalase system[J]. Biomolecules, 2019, 9(11):640.
DOI URL |
| [10] |
SHAH A A, AHMED S, YASIN N A. 24-epibrassinolide triggers cadmium stress mitigation in Cucumis sativus through intonation of antioxidant system[J]. South African Journal of Botany, 2019, 127:349-360.
DOI URL |
| [11] |
ZHONG W X, XIE C C, HU D, et al. Effect of 24-epibrassinolide on reactive oxygen species and antioxidative defense systems in tall fescue plants under lead stress[J]. Ecotoxicology and Environmental Safety, 2020, 187:109831.
DOI URL |
| [12] |
MOHAMMADI M, TAVAKOLI A, POURYOUSEF M, et al. Study the effect of 24-epibrassinolide application on the Cu/Zn-SOD expression and tolerance to drought stress in common bean[J]. Physiology and Molecular Biology of Plants, 2020, 26(3):459-474.
DOI URL |
| [13] |
RODRIGUES W D S, PEREIRA Y C, SOUZA A L M, et al. Alleviation of oxidative stress induced by 24-epibrassinolide in soybean plants exposed to different manganese supplies: upRegulation of antioxidant enzymes and maintenance of photosynthetic pigments[J]. Journal of Plant Growth Regulation, 2020, 39(4):1425-1440.
DOI URL |
| [14] | 王世平, 李勃. 中国设施葡萄发展概况[J]. 落叶果树, 2019, 51(1):1-5. |
| WANG S P, LI B. Development of protected grape cultivation in China[J]. Deciduous Fruits, 2019, 51(1):1-5.(in Chinese) | |
| [15] | 韦励业, 宋雅琴, 娄兵海, 等. 3种有机肥在膨果期施用对‘夏黑’葡萄产量和果实品质的影响[J]. 南方园艺, 2020, 31(5):4-6. |
| WEI L Y, SONG Y Q, LOU B H, et al. Effects of three kinds of organic fertilizers on the yield and fruit quality of 'Xiahei’ grape[J]. Southern Horticulture, 2020, 31(5):4-6.(in Chinese) | |
| [16] |
BABALıK Z, DEMIRCI T, A&ŞCı Ö A, et al. Brassinosteroids modify yield, quality, and antioxidant components in grapes (Vitis vinifera cv. Alphonse lavallée)[J]. Journal of Plant Growth Regulation, 2020, 39(1):147-156.
DOI URL |
| [17] | ZHOU Y L, YUAN C L, RUAN S C, et al. Exogenous 24-epibrassinolide interacts with light to regulate anthocyanin and proanthocyanidin biosynjournal in cabernet sauvignon (Vitis vinifera L.)[J]. Molecules (Basel, Switzerland), 2018, 23(1):E93. |
| [18] |
WANG Y T, CHEN Z Y, JIANG Y, et al. Involvement of ABA and antioxidant system in brassinosteroid-induced water stress tolerance of grapevine (Vitis vinifera L.)[J]. Scientia Horticulturae, 2019, 256:108596.
DOI URL |
| [19] | 熊庆娥. 植物生理学实验教程[M]. 成都: 四川科学技术出版社, 2003. |
| [20] | 杨妙贤, 杨瑞香, 赖慧玲. 油菜素甾醇类化合物对蔬菜的影响[J]. 安徽农业科学, 2007, 35(1):150-151. |
| YANG M X, YANG R X, LAI H L. Effet of brassinosteroids on vegetables[J]. Journal of Anhui Agricultural Sciences, 2007, 35(1):150-151.(in Chinese with English abstract) | |
| [21] | 顾庆龙. 新型植物激素油菜素内脂的研究进展[J]. 生物学教学, 2002(12):1-2. |
| GU Q L. Research progress of new plant hormone brassinolide[J]. Biology Teaching, 2002(12):1-2.(in Chinese) | |
| [22] | 刘志华, 时丽冉, 白丽荣, 等. 盐胁迫对獐毛叶绿素和有机溶质含量的影响[J]. 植物生理与分子生物学学报, 2007, 33(2):165-172. |
| LIU Z H, SHI L R, BAI L R, et al. Effects of salt stress on the contents of chlorophyll and organic solutes in Aeluropus littoralis var. sinensis debeaux[J]. Journal of Plant Physiology and Molecular Biology, 2007, 33(2):165-172.(in Chinese with English abstract) | |
| [23] |
NOLAN T M, VUKAŠINOVIĆ N, LIU D R, et al. Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses[J]. The Plant Cell, 2020, 32(2):295-318.
DOI URL |
| [24] | KOLOMEICHUK L V, EFIMOVA M V, ZLOBIN I E, et al. 24-epibrassinolide alleviates the toxic effects of NaCl on photosynthetic processes in potato plants[J]. Photosynjournal Research, 2020, 146(1/2/3):151-163. |
| [25] |
MITTOVA V, VOLOKITA M, GUY M, et al. Activities of SOD and the ascorbate-glutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii[J]. Physiologia Plantarum, 2000, 110(1):42-51.
DOI URL |
| [26] | 林植芳, 詹姆士·阿勒林格. 光、温度、水蒸汽压亏缺及二氧化碳对番木瓜(Carica papaya)光合作用的影响[J]. 植物生理学报, 1982, 8(4):363-372. |
| LIN Z F, EHLERINGER J R. The effects of light, temperature, water vapor pressure deficit and carbon dioxide on photosynjournal in papaya[J]. Physiology and Molecular Biology of Plants, 1982, 8(4):363-372. (in Chinese with English abstract) | |
| [27] |
JIA T, ITO H, TANAKA A. Simultaneous regulation of antenna size and photosystem I/II stoichiometry in Arabidopsis thaliana[J]. Planta, 2016, 244(5):1041-1053.
DOI URL |
| [28] | 李晓科, 武玉珍, 张谨华, 等. H2S对Cd胁迫下大麦幼苗逆境生理及光合作用的影响[J]. 福建农业学报, 2020, 35(10):1131-1137. |
| LI X K, WU Y Z, ZHANG J H, et al. Effects of hydrogen sulfide on physiology and photosynjournal of barley seedlings under Cd-stress[J]. Fujian Journal of Agricultural Sciences, 2020, 35(10):1131-1137.(in Chinese with English abstract) | |
| [29] |
TADAIESKY L B A, DA SILVA B R S, BATISTA B L, et al. Brassinosteroids trigger tolerance to iron toxicity in rice[J]. Physiologia Plantarum, 2021, 171(3):371-387.
DOI URL |
| [30] |
KOHLI S K, HANDA N, SHARMA A, et al. Interaction of 24-epibrassinolide and salicylic acid regulates pigment contents, antioxidative defense responses, and gene expression in Brassica juncea L. seedlings under Pb stress[J]. Environmental Science and Pollution Research, 2018, 25(15):15159-15173.
DOI URL |
| [31] |
BAJGUZ A. Blockade of heavy metals accumulation in Chlorella vulgaris cells by 24-epibrassinolide[J]. Plant Physiology and Biochemistry, 2000, 38(10):797-801.
DOI URL |
| [32] |
DENG X G, ZHU T, PENG X J, et al. Role of brassinosteroid signaling in modulating Tobacco mosaic virus resistance in Nicotiana benthamiana[J]. Scientific Reports, 2016, 6:20579-20592.
DOI URL |
| [33] |
PENG R N, SUN W Y, JIN X X, et al. Analysis of 2, 4-epibrassinolide created an enhancement tolerance on Cd toxicity in Solanum nigrum L[J]. Environmental Science and Pollution Research, 2020, 27(14):16784-16797.
DOI URL |
| [1] | 黄伟红, 刘一, 郑富明. 表没食子儿茶素没食子酸酯对葡萄糖淀粉酶的抑制机制[J]. 浙江农业学报, 2025, 37(9): 1951-1957. |
| [2] | 蒋明, 张胜, 陈孝赏, 张慧娟. 西兰花灰霉病响应基因BoWRKY15的克隆与功能鉴定[J]. 浙江农业学报, 2025, 37(8): 1723-1732. |
| [3] | 王呈阳, 刘洁雅, 吴敏怡, 谢博伊, 洪德成, 冷锋, 吴国泉. 钙处理对涝害下寒香蜜葡萄果实品质的影响[J]. 浙江农业学报, 2025, 37(7): 1451-1458. |
| [4] | 郑婷, 向江, 魏灵珠, 吴江, 程建徽. 基于WGCNA分析CPPU和TDZ对天工墨玉葡萄香气影响及关键基因挖掘[J]. 浙江农业学报, 2025, 37(2): 311-320. |
| [5] | 朱学慧, 谢辉, 韩守安, 王敏, 白世践, 马云龙, 王艳蒙, 麦斯乐, 潘明启, 张雯. 两种植物生长调节剂对无核白鸡心葡萄果实品质的影响[J]. 浙江农业学报, 2024, 36(6): 1309-1319. |
| [6] | 杨明凤, 吉春容, 刘勇, 白书军, 陈雪, 刘爱琳. 花铃期持续干旱胁迫对棉花生长与土壤干旱阈值的影响[J]. 浙江农业学报, 2024, 36(4): 738-747. |
| [7] | 何佳薇, 黄乐琴, 卢振宇, 方瑾, 雷子阳, 张慧娟, 蒋明. 珍稀濒危植物华顶杜鹃叶斑病病原菌的分离与鉴定[J]. 浙江农业学报, 2024, 36(4): 837-845. |
| [8] | 王士臻, 黄俊, 李明江, 黄英杰, 张娟. 浙江省桂花叶斑病的病原鉴定及生物学特性等相关研究[J]. 浙江农业学报, 2024, 36(12): 2763-2773. |
| [9] | 龚娜, 刘国丽, 陈珣, 马晓颖, 肇莹, 肖军. 一株野生肺形侧耳的鉴定及其液体发酵培养基的优化[J]. 浙江农业学报, 2024, 36(11): 2535-2545. |
| [10] | 郭永川, 马永杰, 王星明, 蔺玉红, 罗雁馨, 王欣怡, 张雪艳. 磷石膏对葡萄酒渣堆肥进程与品质的影响[J]. 浙江农业学报, 2024, 36(10): 2298-2307. |
| [11] | 左晓洁, 吴明江, 罗琳, 马增岭, 庞观凤, 陈斌斌. 羊栖菜优良品系对高温的耐受性比较[J]. 浙江农业学报, 2024, 36(1): 148-155. |
| [12] | 孙丽娟, 李世民, 郭焕仙, 金友帆, 李树萍, 董琼. 树番茄幼苗生长与氮磷钾化学计量特征对光照、肥料的响应[J]. 浙江农业学报, 2023, 35(8): 1793-1804. |
| [13] | 肖家昶, 雷凤芸, 格桑, 马俊英, 贺茂林, 李艳文, 郑阳霞. 外源喷施氨基酸肥对豆瓣菜生长与硒吸收的影响[J]. 浙江农业学报, 2023, 35(7): 1638-1647. |
| [14] | 张祯, 崔媛媛, 陈春霞, 冯丽丹, 赵勇, 李霁昕, 把灵珍, 孔祥锦, 张煜, 蒋玉梅. 霞多丽葡萄果实降异戊二烯香气物质积累及代谢酶活变化分析[J]. 浙江农业学报, 2023, 35(4): 931-941. |
| [15] | 王腾, 王碧香, 李诗瑶, 尉婧, 李二峰. 尖孢镰刀菌黏团专化型β-葡萄糖苷酶Foglu1的功能[J]. 浙江农业学报, 2023, 35(2): 373-382. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||