浙江农业学报 ›› 2021, Vol. 33 ›› Issue (11): 2001-2008.DOI: 10.3969/j.issn.1004-1524.2021.11.01
李红英(
), 高延武, 于茹恩, 王政博, 李雪萍, 刘龙昌*(
)
收稿日期:2020-12-11
出版日期:2021-11-25
发布日期:2021-11-26
作者简介:*刘龙昌,E-mail: snowliu@126.com通讯作者:
刘龙昌
基金资助:
LI Hongying(
), GAO Yanwu, YU Ru’en, WANG Zhengbo, LI Xueping, LIU Longchang*(
)
Received:2020-12-11
Online:2021-11-25
Published:2021-11-26
Contact:
LIU Longchang
摘要:
Argonaute2(AGO2)在植物抗病和发育过程中发挥重要作用。为创制拟南芥ago2核苷酸插入/缺失突变体材料,分析了拟南芥AGO2基因结构,选择其外显子上3个靶点构建了CRISPR_Cas9基因编辑载体,并通过农杆菌介导的花序浸染法转化野生型拟南芥,利用潮霉素对T0代种子进行筛选,获得62株T1代抗性苗;然后提取T1代抗性苗DNA,进行潮霉素特异引物PCR扩增检测,确定获得53棵转基因阳性苗。随机选择10株T1代阳性苗,扩增包含靶点的基因片段进行测序,结果显示,在第1个靶点附近6株苗产生了编辑,第2靶点附近10株苗全部成功编辑,第3个靶点未发生编辑。编辑位点附近产生了多种编辑形式,以PAM前删除或者增加1个碱基的形式出现频率最高,也有删除大于10碱基的编辑形式,最长可删除106个碱基。这些突变株系的获得为深入研究拟南芥AGO2的功能提供了丰富的遗传材料。
中图分类号:
李红英, 高延武, 于茹恩, 王政博, 李雪萍, 刘龙昌. 利用CRISPR_Cas9技术创建拟南芥Argonaute2基因缺失突变体[J]. 浙江农业学报, 2021, 33(11): 2001-2008.
LI Hongying, GAO Yanwu, YU Ru’en, WANG Zhengbo, LI Xueping, LIU Longchang. Argonaute2 mutants in Arabidopsis created by CRISPR_Cas9 technology[J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2001-2008.
| 引物名称 Primer ID | 引物序列(5'→3') Nucleotide sequence (5'→3') | 引物名称 Primer ID | 引物序列(5'→3') Nucleotide sequence (5'→3') |
|---|---|---|---|
| AtAGO2-T1F | GTCAATGGAGAGAGGTGGTTATCG | gRNA-R | CGGAGGAAAATTCCATCCAC |
| AtAGO2-T1R | AAACCGATAACCACCTCTCTCCAT | Uctcg-B1' | TTCAGAGGTCTCTCTCGACTAGTGGAATCGGCAGCAAAGG |
| AtAGO2-T2F | GTCATCCGTCCACCAGCACCACCG | gRctga-B2 | AGCGTGGGTCTCGTCAGGGTCCATCCACTCCAAGCTC |
| AtAGO2-T2R | AAACCGGTGGTGCTGGTGGACGGA | Uctga-B2' | TTCAGAGGTCTCTCTGACACTGGAATCGGCAGCAAAGG |
| AtAGO2-T3F | ATTGCCACAACTCCGCCTCTATC | gRaaga-B3 | AGCGTGGGTCTCGTCTTGGTCCATCCACTCCAAGCTC |
| AtAGO2-T3R | AAACGATAGAGGCGGAGTTGTGG | Uaaga-B3' | TTCAGAGGTCTCTAAGACACTGGAATCGGCAGCAAAGG |
| C9AtAGO2-seq-F | GCTTTGTTTCACTCAGTGTTTCC | gRcggt-BL | AGCGTGGGTCTCGACCGACGCGTCCATCCACTCCAAGCTC |
| C9-AtAGO2-seq-R | AACCTTCTTGGTAGGAATTTCTC | Hyg-F | ATCCTGCAAGCTCCGGATGCCTC |
| U-F | CTCCGTTTTACCTGTGGAATCG | Hyg-R | CGTCTCCGACCTGATGCAGCTCT |
表1 引物序列
Table 1 Sequence of primers
| 引物名称 Primer ID | 引物序列(5'→3') Nucleotide sequence (5'→3') | 引物名称 Primer ID | 引物序列(5'→3') Nucleotide sequence (5'→3') |
|---|---|---|---|
| AtAGO2-T1F | GTCAATGGAGAGAGGTGGTTATCG | gRNA-R | CGGAGGAAAATTCCATCCAC |
| AtAGO2-T1R | AAACCGATAACCACCTCTCTCCAT | Uctcg-B1' | TTCAGAGGTCTCTCTCGACTAGTGGAATCGGCAGCAAAGG |
| AtAGO2-T2F | GTCATCCGTCCACCAGCACCACCG | gRctga-B2 | AGCGTGGGTCTCGTCAGGGTCCATCCACTCCAAGCTC |
| AtAGO2-T2R | AAACCGGTGGTGCTGGTGGACGGA | Uctga-B2' | TTCAGAGGTCTCTCTGACACTGGAATCGGCAGCAAAGG |
| AtAGO2-T3F | ATTGCCACAACTCCGCCTCTATC | gRaaga-B3 | AGCGTGGGTCTCGTCTTGGTCCATCCACTCCAAGCTC |
| AtAGO2-T3R | AAACGATAGAGGCGGAGTTGTGG | Uaaga-B3' | TTCAGAGGTCTCTAAGACACTGGAATCGGCAGCAAAGG |
| C9AtAGO2-seq-F | GCTTTGTTTCACTCAGTGTTTCC | gRcggt-BL | AGCGTGGGTCTCGACCGACGCGTCCATCCACTCCAAGCTC |
| C9-AtAGO2-seq-R | AACCTTCTTGGTAGGAATTTCTC | Hyg-F | ATCCTGCAAGCTCCGGATGCCTC |
| U-F | CTCCGTTTTACCTGTGGAATCG | Hyg-R | CGTCTCCGACCTGATGCAGCTCT |
图2 AtAGO2 3个靶点sgRNA表达盒PCR扩增产物琼脂糖凝胶电泳检测 M,DL 2000 marker;T1,靶点1;T2,靶点2;T3,靶点3。
Fig.2 Gel electrophoresis detection of PCR amplification products of three target sgRNA expression cassettes M, DL 2000 marker; T1, Target site 1; T2, Target site 2; T3, Target site 3.
图3 pCC9AtAGO2质粒靶位点序列与载体结构示意图 a,pCC9AtAGO2质粒靶位点测序;b,pCC9AtAGO2载体结构示意图。
Fig.3 Sequence of target sites and structure of pCC9AtAGO2 vector a, Sequencing of target sites of pCC9AtAGO2; b, Structure of pCC9AtAGO2.
图4 部分抗性苗潮霉素基因特异片段PCR扩增检测 M,DL 2000 DNA marker;1~19,转基因拟南芥潮霉素抗性阳性苗;wt,野生型。
Fig.4 PCR amplification detection of hygromycin B gene in T0 transgenic plants with hygromycin B tolerance M, DL 2000 DNA marker; 1-19, Positive seedlings of transgenic lines with hygromycin B tolerance; wt, Wild type.
图5 部分转基因T1代植株AGO2基因编辑靶点所在DNA片段PCR扩增结果 M,DL 2000 DNA marker;#2~#54,转基因T1代植株。
Fig.5 PCR amplification of AGO2 gene fragments containing editing target sites of selected transgenic lines M,DL 2000 DNA marker; #2-#54, T1 transgenic plants.
图6 部分转基因T1代植株AGO2靶点编辑形式 a,靶点1编辑形式;b,靶点2编辑形式。
Fig.6 Editing forms of AGO2 target site of selected T1 transgenic progenies a, Editing forms of target T1; b, Editing forms of target T2.
| [1] |
USLU V V, WASSENEGGER M. Critical view on RNA silencing-mediated virus resistance using exogenously applied RNA[J]. Current Opinion in Virology, 2020, 42:18-24.
DOI URL |
| [2] |
DING S W. RNA-based antiviral immunity[J]. Nature Reviews Immunology, 2010, 10(9):632-644.
DOI URL |
| [3] |
ZHU L Z, JIANG H L, SHEONG F K, et al. Understanding the core of RNA interference: the dynamic aspects of Argonaute-mediated processes[J]. Progress in Biophysics and Molecular Biology, 2017, 128:39-46.
DOI URL |
| [4] |
SHEU-GRUTTADAURIA J, MACRAE I J. Structural foundations of RNA silencing by argonaute[J]. Journal of Molecular Biology, 2017, 429(17):2619-2639.
DOI URL |
| [5] |
FÁTYOL K, LUDMAN M, BURGYÁN J. Functional dissection of a plant Argonaute[J]. Nucleic Acids Research, 2016, 44(3):1384-1397.
DOI URL |
| [6] |
FANG X F, QI Y J. RNAi in plants: an argonaute-centered view[J]. The Plant Cell, 2016, 28(2):272-285.
DOI URL |
| [7] |
CARBONELL A, CARRINGTON J C. Antiviral roles of plant ARGONAUTES[J]. Current Opinion in Plant Biology, 2015, 27:111-117.
DOI URL |
| [8] |
BROSSEAU C, MOFFETT P. Functional and genetic analysis identify a role for Arabidopsis ARGONAUTE5 in antiviral RNA silencing[J]. The Plant Cell, 2015, 27(6):1742-1754.
DOI URL |
| [9] |
ZHU H L, HU F Q, WANG R H, et al. Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development[J]. Cell, 2011, 145(2):242-256.
DOI URL |
| [10] |
BARRANGOU R, DOUDNA J A. Applications of CRISPR technologies in research and beyond[J]. Nature Biotechnology, 2016, 34(9):933-941.
DOI URL |
| [11] |
HARRISON M M, JENKINS B V, O’CONNOR-GILES K M, et al. A CRISPR view of development[J]. Genes & Development, 2014, 28(17):1859-1872.
DOI URL |
| [12] | 景润春, 卢洪. CRISPR/Cas9基因组定向编辑技术的发展与在作物遗传育种中的应用[J]. 中国农业科学, 2016, 49(7):1-11. |
| JING R C, LU H. The development of CRISPR/Cas9 system and its application in crop genome editing[J]. Scientia Agricultura Sinica, 2016, 49(7):1-11.(in Chinese with English abstract) | |
| [13] | 郭建秋, 雷全奎, 杨小兰, 等. 植物突变体库的构建及突变体检测研究进展[J]. 河南农业科学, 2010, 39(6):150-155. |
| GUO J Q, LEI Q K, YANG X L, et al. Research progress of plant mutant library construction and mutant detection[J]. Journal of Henan Agricultural Sciences, 2010, 39(6):150-155.(in Chinese) | |
| [14] |
VAUCHERET H. Plant ARGONAUTES[J]. Trends in Plant Science, 2008, 13(7):350-358.
DOI URL |
| [15] |
JEAN M. The multilayer’s control of ARGONAUTE 1 contents[J]. Molecular Plant, 2020, 13(1):1-3.
DOI URL |
| [16] |
ZHANG X M, ZHAO H W, GAO S, et al. Arabidopsis argonaute 2 regulates innate immunity via miRNA393-mediated silencing of a Golgi-localized SNARE gene, MEMB12[J]. Molecular Cell, 2011, 42(3):356-366.
DOI URL |
| [17] |
HU P, ZHAO H W, ZHU P, et al. Dual regulation of Arabidopsis AGO2 by arginine methylation[J]. Nature Communications, 2019, 10:844.
DOI URL |
| [18] |
WANG H Y, LIU C, REN Y C, et al. An RNA-binding protein MUG13.4 interacts with AtAGO2 to modulate salinity tolerance in Arabidopsis[J]. Plant Science, 2019, 288:110218.
DOI URL |
| [19] |
XIE X R, MA X L, ZHU Q L, et al. CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing[J]. Molecular Plant, 2017, 10(9):1246-1249.
DOI URL |
| [20] |
ENGLER C, GRUETZNER R, KANDZIA R, et al. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes[J]. PLoS One, 2009, 4(5):e5553.
DOI URL |
| [21] |
ZHANG X R, HENRIQUES R, LIN S S, et al. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method[J]. Nature Protocols, 2006, 1(2):641-646.
DOI URL |
| [22] |
WANG X B, JOVEL J, UDOMPORN P, et al. The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defense by two cooperative argonautes in Arabidopsis thaliana[J]. The Plant Cell, 2011, 23(4):1625-1638.
DOI URL |
| [23] |
WU K X, WU Y D, ZHANG C W, et al. Simultaneous silencing of two different Arabidopsis genes with a novel virus-induced gene silencing vector[J]. Plant Methods, 2021, 17(1):6.
DOI URL |
| [24] |
ODOKONYERO D, MENDOZA M R, ALVARADO V Y, et al. Transgenic down-regulation of ARGONAUTE2 expression in Nicotiana benthamiana interferes with several layers of antiviral defenses[J]. Virology, 2015, 486:209-218.
DOI URL |
| [25] |
MA X L, ZHANG Q Y, ZHU Q L, et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants[J]. Molecular Plant, 2015, 8(8):1274-1284.
DOI URL |
| [26] | 原文霞, 王栩鸣, 李冬月, 等. 利用CRISPR/Cas9技术靶向编辑水稻基因[J]. 浙江农业学报, 2017, 29(5):685-693. |
| YUAN W X, WANG X M, LI D Y, et al. Application of the technology of CRISPR/Cas9 edit rice gene[J]. Acta Agriculturae Zhejiangensis, 2017, 29(5):685-693.(in Chinese with English abstract) | |
| [27] | ZHENG S Y, LI J, MA L, et al. OsAGO2 controls ROS production and the initiation of tapetal PCD by epigenetically regulating OsHXK1 expression in rice anthers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(15):7549-7558. |
| [28] |
LUDMAN M, BURGYÁN J, FÁTYOL K. Crispr/Cas9 mediated inactivation of argonaute 2 reveals its differential involvement in antiviral responses[J]. Scientific Reports, 2017, 7:1010.
DOI URL |
| [1] | 郑程, 汪颖, 王尖, 郭笑, 汪宝根, 吴新义, 祝彪, 李国景, 吴晓花. 瓠瓜EMS诱变突变体筛选与表型分析[J]. 浙江农业学报, 2025, 37(9): 1914-1923. |
| [2] | 王小慧, 贾赛男, 冯佳宇, 尹馨悦, 刘子萱, 刘雯洁, 赵帅滢, 王姝婧, 唐跃辉. 麻风树JcMYB27基因的克隆与功能分析[J]. 浙江农业学报, 2025, 37(8): 1658-1665. |
| [3] | 李宇静, 黄倩茹, 张爱冬, 吴雪霞, 朱栋幸, 肖凯. 茄子SmMYB13基因在干旱胁迫响应中的功能[J]. 浙江农业学报, 2025, 37(8): 1666-1679. |
| [4] | 诸燕, 丁兰, 陈忆乾, 黄秀静, 姜伟伟, 陈东红. 铁皮石斛CLE基因家族鉴定与功能分析[J]. 浙江农业学报, 2024, 36(7): 1583-1590. |
| [5] | 周贤桀, 程宝库, 张文斐. 英国《遗传技术(精准育种)法》评析及其对我国的启示[J]. 浙江农业学报, 2024, 36(5): 1199-1207. |
| [6] | 王琳, 袁建林, 缪昌, 马玉晗, 曹三杰, 赵勤. POR基因敲除、回补及过表达LO2细胞株的构建及作为AFB1染毒模型的初步应用[J]. 浙江农业学报, 2024, 36(2): 272-283. |
| [7] | 夏小东, 张晓波, 施勇烽, 许如根. 水稻致死突变体基因克隆与分子机制研究进展[J]. 浙江农业学报, 2023, 35(5): 1223-1234. |
| [8] | 蒋莹莹, 张华, 雷志伟, 徐恒, 张恒, 朱英. 茉莉酸信号关键转录因子OsMYC2影响水稻愈伤诱导和分化的功能初探[J]. 浙江农业学报, 2023, 35(5): 973-982. |
| [9] | 郎春秀, 刘仁虎, 郑滔, 王伏林, 石江华, 胡张华, 吴关庭. 化学诱变获得甘蓝型油菜矮秆突变新种质[J]. 浙江农业学报, 2023, 35(11): 2516-2524. |
| [10] | 孙珊珊, 其美拉姆, 李强, 曾南方, 郑诚, 张白玉, 颜其贵. 表达PRRSV NADC30-like毒株GP5-M的重组伪狂犬病病毒的构建及其生物学特性探究[J]. 浙江农业学报, 2023, 35(11): 2555-2567. |
| [11] | 熊兴伟, 王艺琴, 田怀志, 张素勤, 耿广东. 基于转录组测序解析南瓜子叶黄化的分子机理[J]. 浙江农业学报, 2023, 35(1): 90-102. |
| [12] | 丁兆雪, 王佳洁, 沈中浩, 周晓龙, 杨松柏, 金航峰, 赵阿勇, 汪涵. 猪miR-22前体上游序列突变的PK15细胞系构建[J]. 浙江农业学报, 2022, 34(9): 1849-1855. |
| [13] | 徐莉, 王其, 丁婷, 江腾. 玉米GRMZM2G455909基因的克隆及其抗病功能初步分析[J]. 浙江农业学报, 2022, 34(9): 1976-984. |
| [14] | 许申平, 张燕, 梁芳, 蒋素华, 牛苏燕, 崔波, 袁秀云. 蝴蝶兰PhaSEP3基因的克隆及其在突变体中的表达[J]. 浙江农业学报, 2022, 34(8): 1703-1712. |
| [15] | 偶春, 张敏, 丁霖, 姚侠妹, 王泽璐, 彭城, 徐俊锋. CRISPR/Cas9基因编辑技术在植物中的应用与政策监管[J]. 浙江农业学报, 2022, 34(8): 1806-1814. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||