浙江农业学报 ›› 2022, Vol. 34 ›› Issue (2): 343-351.DOI: 10.3969/j.issn.1004-1524.2022.02.16
收稿日期:2021-05-06
出版日期:2022-02-25
发布日期:2022-03-02
作者简介:李松龄,E-mail: 465883114@qq.com通讯作者:
李松龄
基金资助:
ZHANG Xinpeng(
), WANG Xin, SUN Jian, YI Guoyun, LI Songling*(
)
Received:2021-05-06
Online:2022-02-25
Published:2022-03-02
Contact:
LI Songling
摘要:
为了筛选出适用于青海地区油菜秸秆纤维素降解的菌株,提高当地油菜秸秆堆肥的效果,从青海省西宁市北山土壤中分离得到1株纤维素降解菌,经鉴定为假单胞菌属(Pseudomonas sp.),其羧甲基纤维素(CMC)酶活为25.35 U·mL-1,外切-β-葡聚糖酶活为22.33 U·mL-1,滤纸酶活为20.58 U·mL-1。将该菌株制成微生物液体菌剂,按10 mL·kg-1的比例接种于堆肥试验中作为试验组,与不添加菌剂的对照组相比,试验组堆体升温快,高温持续时间长。堆肥结束时,试验组堆肥的pH值和电导率均在合理范围内,种子发芽指数为90%,达到腐熟标准,堆体含水率下降至30%以下,全氮含量为1.39%,有机质含量为49.16%。结果说明,筛选出的菌株可应用于青海地区的油菜秸秆堆肥,能够加快堆肥腐熟,并提高堆肥质量。
中图分类号:
张鑫鹏, 王信, 孙健, 伊国云, 李松龄. 一株假单胞菌的分离鉴定及其在青海地区堆肥中的应用潜力[J]. 浙江农业学报, 2022, 34(2): 343-351.
ZHANG Xinpeng, WANG Xin, SUN Jian, YI Guoyun, LI Songling. Isolation and identification of a Pseudomonas strain and its application potential in rape straw composting in Qinghai, China[J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 343-351.
| 原料 Raw material | pH | 含水率 Moisture content/% | 有机质 Organic matter/% | 全氮 Total N/% | 全磷 Total P/% | 全钾 Total K/% | C/N |
|---|---|---|---|---|---|---|---|
| 猪粪 Pig manure | 7.57 | 65.59 | 72.41 | 1.850 | 2.100 | 1.170 | 22.7∶1 |
| 油菜秸秆Rape straw | — | 8.86 | 67.69 | 0.755 | 0.095 | 1.074 | 52.0∶1 |
表1 堆肥原料的部分理化性质
Table 1 Physiochemical properties of composting materials
| 原料 Raw material | pH | 含水率 Moisture content/% | 有机质 Organic matter/% | 全氮 Total N/% | 全磷 Total P/% | 全钾 Total K/% | C/N |
|---|---|---|---|---|---|---|---|
| 猪粪 Pig manure | 7.57 | 65.59 | 72.41 | 1.850 | 2.100 | 1.170 | 22.7∶1 |
| 油菜秸秆Rape straw | — | 8.86 | 67.69 | 0.755 | 0.095 | 1.074 | 52.0∶1 |
| 菌株Strain | D/cm | d/cm | D/d |
|---|---|---|---|
| HK-15-4 | 0.69±0.04 | 0.42±0.03 | 1.64±0.16 |
| HK-15-5 | 0.59±0.04 | 0.38±0.03 | 1.57±0.07 |
| HK-15-6 | 2.01±0.04 | 0.42±0.02 | 4.72±0.20 |
| HK-15-7 | 1.27±0.04 | 0.60±0.02 | 2.11±0.03 |
| HK-15-8 | 0.56±0.03 | 0.32±0.01 | 1.77±0.04 |
表2 供试菌株的透明圈直径(D)与菌落直径(d)
Table 2 Diameters of transparent circles (D) and colonies (d) of test strains
| 菌株Strain | D/cm | d/cm | D/d |
|---|---|---|---|
| HK-15-4 | 0.69±0.04 | 0.42±0.03 | 1.64±0.16 |
| HK-15-5 | 0.59±0.04 | 0.38±0.03 | 1.57±0.07 |
| HK-15-6 | 2.01±0.04 | 0.42±0.02 | 4.72±0.20 |
| HK-15-7 | 1.27±0.04 | 0.60±0.02 | 2.11±0.03 |
| HK-15-8 | 0.56±0.03 | 0.32±0.01 | 1.77±0.04 |
| 菌株 Strain | CMC酶活 CMC activity | 滤纸酶活 FPA activity | 外切-β-葡聚糖酶活 Exo-β-glucanases activity |
|---|---|---|---|
| HK-15-6 | 25.35±0.98 | 20.58±1.29 | 22.33±1.14 |
| HK-15-7 | 16.22±1.12 | 15.81±1.34 | 17.36±1.17 |
| HK-15-8 | 15.83±1.32 | 14.96±1.55 | 16.46±2.13 |
表3 部分供试菌株的纤维素酶活性
Table 3 Cellulase activities of test strains U·mL-1
| 菌株 Strain | CMC酶活 CMC activity | 滤纸酶活 FPA activity | 外切-β-葡聚糖酶活 Exo-β-glucanases activity |
|---|---|---|---|
| HK-15-6 | 25.35±0.98 | 20.58±1.29 | 22.33±1.14 |
| HK-15-7 | 16.22±1.12 | 15.81±1.34 | 17.36±1.17 |
| HK-15-8 | 15.83±1.32 | 14.96±1.55 | 16.46±2.13 |
图3 堆肥过程中pH值的变化 点上无相同小写字母的表示同一测定时间不同处理下差异显著(P<0.05),无相同大写字母的表示同一组不同测定时间下差异显著(P<0.05)。下同。
Fig.3 Dynamics of pH value during composting Dots marked without the same lowercase letters indicated significant difference between treatments at the same time at P<0.05. Dots marked without the same uppercase letters indicated significant difference within different time at P<0.05 for the same treatment. The same as below.
| 处理 Treatment | 全氮Total nitrogen | 有机质Organic matter | ||
|---|---|---|---|---|
| 堆肥前 Before composting | 堆肥后 After composting | 堆肥前 Before composting | 堆肥后 After composting | |
| 试验组Experiment group | 1.36±0.09 aA | 1.39±0.01 aA | 68.05±1.61 aA | 49.16±0.77 bB |
| 对照组Control group | 1.32±0.02 aA | 1.29±0.04 aB | 68.03±1.98 aA | 55.53±0.65 bA |
表4 堆肥过程中全氮和有机质含量的变化
Table 4 Changes of contents of total nitrogen and organic matter during composting %
| 处理 Treatment | 全氮Total nitrogen | 有机质Organic matter | ||
|---|---|---|---|---|
| 堆肥前 Before composting | 堆肥后 After composting | 堆肥前 Before composting | 堆肥后 After composting | |
| 试验组Experiment group | 1.36±0.09 aA | 1.39±0.01 aA | 68.05±1.61 aA | 49.16±0.77 bB |
| 对照组Control group | 1.32±0.02 aA | 1.29±0.04 aB | 68.03±1.98 aA | 55.53±0.65 bA |
| [1] | 赵志, 唐国永, 余青兰, 等. 青海白菜型油菜资源遗传多样性分析[J]. 青海大学学报, 2019, 37(6):29-34. |
| ZHAO Z, TANG G Y, YU Q L, et al. Genetic diversity analysis of Brassica campestris L. resources in Qinghai Province[J]. Journal of Qinghai University, 2019, 37(6):29-34.(in Chinese with English abstract) | |
| [2] | 李雯, 刘艳薇, 李停锋, 等. 不同纤维素降解菌对玉米秸秆的降解效果[J]. 生态环境学报, 2020, 29(2):402-410. |
| LI W, LIU Y W, LI T F, et al. Effects of different cellulose-degrading microorganism on corn straw degradation[J]. Ecology and Environmental Sciences, 2020, 29(2):402-410.(in Chinese with English abstract) | |
| [3] | 张冬雪, 文亚雄, 罗志威, 等. 纤维素降解菌的分离筛选及其对水稻秸秆的降解效果分析[J]. 江西农业学报, 2020, 32(1):72-76. |
| ZHANG D X, WEN Y X, LUO Z W, et al. Isolation and screening of cellulose-degrading microbes and their degradation effects on paddy straw[J]. Acta Agriculturae Jiangxi, 2020, 32(1):72-76.(in Chinese with English abstract) | |
| [4] | 王洪媛, 范丙全. 三株高效秸秆纤维素降解真菌的筛选及其降解效果[J]. 微生物学报, 2010, 50(7):870-875. |
| WANG H Y, FAN B Q. Screening of three straw-cellulose degrading microorganism[J]. Acta Microbiologica Sinica, 2010, 50(7):870-875.(in Chinese with English abstract) | |
| [5] |
于慧娟, 郭夏丽. 秸秆降解菌的筛选及其纤维素降解性能的研究[J]. 生物技术通报, 2019, 35(2):58-63.
DOI |
| YU H J, GUO X L. Screening of straw-degrading bacteria and study on their cellulose-degrading performances[J]. Biotechnology Bulletin, 2019, 35(2):58-63.(in Chinese with English abstract) | |
| [6] |
ABDEL-RAHMAN M A, NOUR EL-DIN M, REFAAT B M, et al. Biotechnological application of thermotolerant cellulose-decomposing bacteria in composting of rice straw[J]. Annals of Agricultural Sciences, 2016, 61(1):135-143.
DOI URL |
| [7] | 谢宇新, 徐凤花, 王彦伟, 等. 低温菌株的筛选及对堆肥温度的影响[J]. 农业环境科学学报, 2011, 30(7):1436-1442. |
| XIE Y X, XU F H, WANG Y W, et al. Low temperature bacteria isolation and effect on composting temperature[J]. Journal of Agro-Environment Science, 2011, 30(7):1436-1442.(in Chinese with English abstract) | |
| [8] | 孟建宇, 陈勿力吉玛, 郭慧琴, 等. 常温和低温纤维素降解菌的分离及其降解特性[J]. 农业生物技术学报, 2021, 29(1):73-84. |
| MENG J Y CHEN W L J M GUO H Q, et al. Isolation and degradation characteristics of cellulose-degradation bacteria at room and low temperature[J]. Journal of Agricultural Biotechnology, 2021, 29(1):73-84.(in Chinese with English abstract) | |
| [9] | 赵钰. 产纤维素酶菌株的筛选及酶学性质研究[D]. 沈阳: 沈阳农业大学, 2017. |
| ZHAO Y. Screening and enzymology properties of cellulase-producing strains[D]. Shenyang: Shenyang Agricultural University, 2017. (in Chinese with English abstract) | |
| [10] | 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. |
| [11] | 张璐. 园林绿化废弃物堆肥化的过程控制及其产品改良与应用研究[D]. 北京: 北京林业大学, 2015. |
| ZHANG L. The process control of green waste composting and the improvement and application of compost product[D]. Beijing: Beijing Forestry University, 2015. (in Chinese with English abstract) | |
| [12] | 王信, 蔡晓剑, 王亚艺, 等. 牛粪高温好氧堆肥中发酵菌剂筛选研究[J]. 青海大学学报, 2019, 37(5):20-25. |
| WANG X, CAI X J, WANG Y Y, et al. Screening of fermentation agents in cow manure during its aerobic composting[J]. Journal of Qinghai University, 2019, 37(5):20-25.(in Chinese with English abstract) | |
| [13] | 李磊, 王淑琦, 郭小平, 等. 初始粒径和外源添加剂对绿化废弃物堆肥腐熟效果的影响[J]. 环境工程学报, 2020, 14(10):2804-2812. |
| LI L, WANG S Q, GUO X P, et al. Effects of initial particle size and exogenous additives on the maturity enhancement of green waste composting[J]. Chinese Journal of Environmental Engineering, 2020, 14(10):2804-2812.(in Chinese with English abstract) | |
| [14] | 王若斐, 刘超, 操一凡, 等. 不同碳氮比猪粪堆肥及其产品肥效[J]. 中国土壤与肥料, 2017(6):127-134. |
| WANG R F, LIU C, CAO Y F, et al. Research on the composting of pig manure and rice husk with different C/N and plant growth promotion effects of the products[J]. Soil and Fertilizer Sciences in China, 2017(6):127-134. (in Chinese with English abstract) | |
| [15] |
SHARMA A, SHARMA R, ARORA A, et al. Insights into rapid composting of paddy straw augmented with efficient microorganism consortium[J]. International Journal of Recycling of Organic Waste in Agriculture, 2014, 3(2):1-9.
DOI URL |
| [16] | 尚晓瑛, 程旭艳, 霍培书, 等. 1株堆肥耐低温纤维素降解菌的筛选、鉴定及生长特性的初步研究[J]. 华中农业大学学报, 2012, 31(5):558-562. |
| SHANG X Y, CHENG X Y, HUO P S, et al. Screening, identification and growth of a cold-adapted cellulose-decomposing bacterium for composting[J]. Journal of Huazhong Agricultural University, 2012, 31(5):558-562.(in Chinese with English abstract) | |
| [17] | 李晓宇, 王思佳, 王丽丽, 等. 牛屠宰废弃物的高效降解菌株分离鉴定及堆肥效果评价[J]. 黑龙江畜牧兽医, 2021(5):58-63. |
| LI X Y, WANG S J, WANG L L, et al. Isolation and identification of highly efficient strains in cattle slaughter waste and assessment of its composting effect[J]. Heilongjiang Animal Science and Veterinary Medicine, 2021(5):58-63.(in Chinese with English abstract) | |
| [18] | 李昌宁, 苏明, 姚拓, 等. 微生物菌剂对猪粪堆肥过程中堆肥理化性质和优势细菌群落的影响[J]. 植物营养与肥料学报, 2020, 26(9):1600-1611. |
| LI C N, SU M, YAO T, et al. Effects of microbial inoculation on compost physical and chemical properties and dominant bacterial communities during composting of pig manure[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(9):1600-1611.(in Chinese with English abstract) | |
| [19] | 孙元烽, 钟杰, 郑娟, 等. 高效纤维素降解菌筛选鉴定及在羊粪堆肥中的初步应用[J]. 黑龙江畜牧兽医, 2019(24):57-61. |
| SUN Y F, ZHONG J, ZHENG J, et al. Screening and identification of high efficiency cellulose-degrading bacteria and its preliminary application in sheep manure composting[J]. Heilongjiang Animal Science and Veterinary Medicine, 2019(24):57-61. (in Chinese) |
| [1] | 林小兵, 黎江, 成艳红, 王斌强, 何绍浪, 黄尚书, 黄欠如. 不同有机物料对土壤微生物生物量、矿质氮含量与水稻产量的影响[J]. 浙江农业学报, 2025, 37(6): 1309-1318. |
| [2] | 万合锋, 刘国华, 武玉祥, 蒋娟, 张珍明, 刘勇. 物料初始pH值对堆肥理化性质及微生物群落的影响[J]. 浙江农业学报, 2025, 37(10): 2165-2178. |
| [3] | 王路童, 姜利红, 代家鹏, 陈粮, 曾光熙, 刘尔伦, 周湘丹, 肖云花, 方俊. 硫酸亚铁对鸡粪堆肥真菌群落的影响及其应用[J]. 浙江农业学报, 2025, 37(1): 169-177. |
| [4] | 燕中立, 李永慧, 李玉成, 李伟, 张学胜, 洪勇, 葛立傲. 蓝藻好氧堆肥负载阿维菌素对草莓红蜘蛛的防治效果[J]. 浙江农业学报, 2024, 36(10): 2264-2272. |
| [5] | 郭永川, 马永杰, 王星明, 蔺玉红, 罗雁馨, 王欣怡, 张雪艳. 磷石膏对葡萄酒渣堆肥进程与品质的影响[J]. 浙江农业学报, 2024, 36(10): 2298-2307. |
| [6] | 吴雨珂, 王峰, 王依凡, 吴雪萍, 朱维琴. 牛粪蚯蚓堆肥条件优化与堆制物的性状变化[J]. 浙江农业学报, 2024, 36(10): 2308-2315. |
| [7] | 王佳丽, 王梓宇, 马咏琪, 唐德富, 孙丽坤. 氮素转化菌群对牛粪好氧堆肥的保氮效果[J]. 浙江农业学报, 2024, 36(1): 177-186. |
| [8] | 潘亚杰, 常会庆, 宋盼盼. 规模化猪场粪便养分特征与堆肥过程中填料添加的影响[J]. 浙江农业学报, 2023, 35(7): 1690-1698. |
| [9] | 肖小兰, 张浩, 付传僡, 刘皓, 阮文权. 嗜热菌筛选及其促进沼渣和虫粪共堆肥的效果[J]. 浙江农业学报, 2023, 35(3): 647-657. |
| [10] | 周文志, 李素艳, 孙向阳, 李啸冲, 查贵超, 魏宁娴. 不同改良材料对滨海盐碱土盐分淋溶特征的影响[J]. 浙江农业学报, 2022, 34(7): 1485-1492. |
| [11] | 吴一凡, 夏捷, 陈胜, 张玮, 谢锦忠. 竹屑与麦麸堆肥用作大球盖菇栽培基质的适宜配比研究[J]. 浙江农业学报, 2022, 34(5): 1024-1031. |
| [12] | 殷泽欣, 张璐, 郝丹, 白一帆. 牛粪堆肥替代泥炭用于3种茄科植物育苗的可行性[J]. 浙江农业学报, 2021, 33(9): 1700-1709. |
| [13] | 黄书超, 侯栋, 岳宏忠, 孔维萍, 张东琴, 李亚莉, 撖冬荣, 颉博杰. 三株促生菌及其混合微生物菌剂对莴笋生长和品质的影响[J]. 浙江农业学报, 2021, 33(7): 1212-1221. |
| [14] | 朱诗君, 金树权, 汪峰, 韩永江, 孙杰. 典型城市废弃物混合好氧堆肥的基本特征及其育苗应用潜力[J]. 浙江农业学报, 2021, 33(6): 1069-1077. |
| [15] | 吴承杰, 任兰天, 郝冰, 邵庆勤, 王泓, 陈峰, 代高峰, 梅世远, 张从军. 秸秆堆肥部分替代化肥配施硝化抑制剂对冬小麦温室气体排放的影响[J]. 浙江农业学报, 2020, 32(7): 1233-1240. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||