[1] |
梁捷, 孙宏飞, 葛成军, 等. 海南省主要农作物主产区土壤重金属含量分布及其健康风险评价[J]. 热带作物学报, 2019, 40(11): 2285-2293.
|
|
LIANG J, SUN H F, GE C J, et al. Distribution of heavy metal contents in soils of main crop production areas in Hainan and the health risk assessment[J]. Chinese Journal of Tropical Crops, 2019, 40(11): 2285-2293. (in Chinese with English abstract)
|
[2] |
李佳桐. 琼北土壤高背景值区域重金属空间分布及健康风险评价[D]. 海口: 海南大学, 2018.
|
|
LI J T. Spatial distribution characteristics and health risk assessment of heavy metal in soils in the north of Hainan Province with high background value[D]. Haikou: Hainan University, 2018. (in Chinese with English abstract)
|
[3] |
GONG Y Y, ZHAO D Y, WANG Q L. An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: technical progress over the last decade[J]. Water Research, 2018, 147: 440-460.
DOI
URL
|
[4] |
WAN X M, LEI M, CHEN T B. Review on remediation technologies for arsenic-contaminated soil[J]. Frontiers of Environmental Science & Engineering, 2019, 14(2): 1-14.
|
[5] |
UDDIN M K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade[J]. Chemical Engineering Journal, 2017, 308: 438-462.
DOI
URL
|
[6] |
ZENG G M, WAN J, HUANG D L, et al. Precipitation, adsorption and rhizosphere effect: the mechanisms for phosphate-induced Pb immobilization in soils: a review[J]. Journal of Hazardous Materials, 2017, 339: 354-367.
DOI
URL
|
[7] |
周于宁. 组合钝化剂对轻中度镉污染农田土壤的钝化效果及其稳定性研究[D]. 杭州: 浙江大学, 2020.
|
|
ZHOU Y N. Study on the immobilization effect and stability of mild and moderate cadmium contaminated farmland soil by combination of passivators[D]. Hangzhou: Zhejiang University, 2020. (in Chinese with English abstract)
|
[8] |
陈喆, 铁柏清, 雷鸣, 等. 施硅方式对稻米镉阻隔潜力研究[J]. 环境科学, 2014, 35(7): 2762-2770.
|
|
CHEN Z, TIE B Q, LEI M, et al. Phytoexclusion potential studies of Si fertilization modes on rice cadmium[J]. Environmental Science, 2014, 35(7): 2762-2770. (in Chinese with English abstract)
|
[9] |
徐奕, 李剑睿, 黄青青, 等. 坡缕石钝化与喷施叶面硅肥联合对水稻吸收累积镉效应影响研究[J]. 农业环境科学学报, 2016, 35(9): 1633-1641.
|
|
XU Y, LI J R, HUANG Q Q, et al. Effect of palygorskite immobilization combined with foliar silicon fertilizer application on Cd accumulation in rice[J]. Journal of Agro-Environment Science, 2016, 35(9): 1633-1641. (in Chinese with English abstract)
|
[10] |
冯雪敏. 水稻富集镉砷的关键部位、生育时期及相关元素的研究[D]. 北京: 中国农业科学院, 2017.
|
|
FENG X M. The key parts, important growth stages and related elements in Cd/As accumulation of rice[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese with English abstract)
|
[11] |
骆永明, 滕应. 我国土壤污染的区域差异与分区治理修复策略[J]. 中国科学院院刊, 2018, 33(2): 145-152.
|
|
LUO Y M, TENG Y. Regional difference in soil pollution and strategy of soil zonal governance and remediation in China[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 145-152. (in Chinese with English abstract)
|
[12] |
林生, 张家玮, 李建宏, 等. 6种海南商品有机肥对Pb(Ⅱ)和Cu(Ⅱ)的复合吸附及解吸[J]. 福建农林大学学报(自然科学版), 2018, 47(1): 97-103.
|
|
LIN S, ZHANG J W, LI J H, et al. Adsorption and desorption of Pb(Ⅱ) and Cu(Ⅱ) by six commercial organic fertilizers from Hainan Province[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2018, 47(1): 97-103. (in Chinese with English abstract)
|
[13] |
罗春岩, 张家玮, 王雨阳, 等. 不同种类有机肥对土壤铅、铜形态转化的影响[J]. 中国土壤与肥料, 2019(6): 78-85.
|
|
LUO C Y, ZHANG J W, WANG Y Y, et al. Impact of different organic fertilizers on the form and transformation of lead and copper in soil[J]. Soil and Fertilizer Sciences in China, 2019(6): 78-85. (in Chinese with English abstract)
|
[14] |
张婧旻, 李建宏, 洪思诚, 等. 椰纤维生物炭对砖红壤水稻土Pb形态及水稻产量和品质的影响[J]. 生态环境学报, 2019, 28(9): 1886-1892.
|
|
ZHANG J M, LI J H, HONG S C, et al. Effect of coconut fiber-derived biochars amendments on geochemical fractions of Pb in paddy soils and yield and quality of rice[J]. Ecology and Environmental Sciences, 2019, 28(9): 1886-1892. (in Chinese with English abstract)
|
[15] |
刘绪坤, 徐文, 黄一伦, 等. 利用生物炭与石灰钝化(修复)琼北土壤中的铬污染[J]. 海南大学学报(自然科学版), 2020, 38(3): 254-259.
|
|
LIU X K, XU W, HUANG Y L, et al. Biochar and lime passivation remediation of heavy metal chromium pollution in Qiongbei soil[J]. Natural Science Journal of Hainan University, 2020, 38(3): 254-259. (in Chinese with English abstract)
|
[16] |
中国科学院南京土壤研究所. 土壤理化分析[M]. 上海: 上海科学技术出版社, 1978.
|
[17] |
United States Environmental Protection Agency (USEPA). Integrated risk information system[EB/OL]. [2021-08-08]. http://cfpub.epa.gov/ncea/iris/index.cfm?fuseaction=iris.show SubstanceList.
|
[18] |
环境保护部. 中国人群环境暴露行为模式研究报告:成人卷[M]. 北京: 中国环境出版社, 2013.
|
[19] |
CHEN Y, HU W Y, HUANG B, et al. Accumulation and health risk of heavy metals in vegetables from harmless and organic vegetable production systems of China[J]. Ecotoxicology and Environmental Safety, 2013, 98: 324-330.
DOI
URL
|
[20] |
曹胜, 欧阳梦云, 周卫军, 等. 石灰对土壤重金属污染修复的研究进展[J]. 中国农学通报, 2018, 34(26): 109-112.
|
|
CAO S, OUYANG M Y, ZHOU W J, et al. Remediation of heavy metal contaminated soils by lime: a review[J]. Chinese Agricultural Science Bulletin, 2018, 34(26): 109-112. (in Chinese with English abstract)
|
[21] |
HAMID Y, TANG L, HUSSAIN B, et al. Organic soil additives for the remediation of cadmium contaminated soils and their impact on the soil-plant system: a review[J]. Science of the Total Environment, 2020, 707: 136121.
|
[22] |
QIN S Y, LIU H E, NIE Z J, et al. Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: a review[J]. Pedosphere, 2020, 30(2): 168-180.
DOI
URL
|
[23] |
冯敬云, 聂新星, 刘波, 等. 镉污染农田原位钝化修复效果及其机理研究进展[J]. 农业资源与环境学报, 2021, 38(5): 764-777.
|
|
FENG J Y, NIE X X, LIU B, et al. Efficiency of in situ passivation remediation in cadmium-contaminated farmland soil and its mechanism: a review[J]. Journal of Agricultural Resources and Environment, 2021, 38(5): 764-777. (in Chinese with English abstract)
|
[24] |
YANG J Y, CHEN X, LU W C, et al. Reducing Cd accumulation in rice grain with foliar application of glycerol and its mechanisms of Cd transport inhibition[J]. Chemosphere, 2020, 258: 127135.
|
[25] |
戴青云, 刘代欢, 王德新, 等. 硅对水稻生长的影响及其缓解镉毒害机理研究进展[J]. 中国农学通报, 2020, 36(5): 86-92.
|
|
DAI Q Y, LIU D H, WANG D X, et al. A review on silicon: effect on rice growth and its mechanism of relieving cadmium toxicity[J]. Chinese Agricultural Science Bulletin, 2020, 36(5): 86-92. (in Chinese with English abstract)
|
[26] |
SHI G R, ZHANG Z, LIU C F. Silicon influences cadmium translocation by altering subcellular distribution and chemical forms of cadmium in peanut roots[J]. Archives of Agronomy and Soil Science, 2017, 63(1): 117-123.
DOI
URL
|
[27] |
WANG J, SHI L, ZHAI L L, et al. Analysis of the long-term effectiveness of biochar immobilization remediation on heavy metal contaminated soil and the potential environmental factors weakening the remediation effect: a review[J]. Ecotoxicology and Environmental Safety, 2021, 207: 111261.
|
[28] |
LIU B B, HE Z L, LIU R L, et al. Comparative effectiveness of activated dolomite phosphate rock and biochar for immobilizing cadmium and lead in soils[J]. Chemosphere, 2021, 266: 129202.
|
[29] |
潘攀, 刘贝贝, 吴琳, 等. 蚯蚓粪与零价铁、磷矿粉对酸性土壤改良和重金属风险控制研究[J]. 安全与环境学报, 2020, 20(4): 1549-1557.
|
|
PAN P, LIU B B, WU L, et al. Influential effects of vermicompost, zero-valentiron and phosphate rock on properties and heavy metal risks of acid soil[J]. Journal of Safety and Environment, 2020, 20(4): 1549-1557. (in Chinese with English abstract)
|
[30] |
QIAO J T, LIU T X, WANG X Q, et al. Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils[J]. Chemosphere, 2018, 195: 260-271.
DOI
URL
|