浙江农业学报 ›› 2022, Vol. 34 ›› Issue (8): 1725-1733.DOI: 10.3969/j.issn.1004-1524.2022.08.16
黄锋1(
), 邢建平1, 符少怀1, 潘攀2,3, 吴琳2,3, 刘贝贝2,3, 陈淼2,3,*(
)
收稿日期:2021-08-08
出版日期:2022-08-25
发布日期:2022-08-26
作者简介:*陈淼,E-mail: chenm200567@163.com通讯作者:
陈淼
基金资助:
HUANG Feng1(
), XING Jianping1, FU Shaohuai1, PAN Pan2,3, WU Lin2,3, LIU Beibei2,3, CHEN Miao2,3,*(
)
Received:2021-08-08
Online:2022-08-25
Published:2022-08-26
Contact:
CHEN Miao
摘要:
为探讨不同安全利用技术在海南镉污染耕地上的应用效果,以琼北地区轻中度镉污染稻菜轮作耕地为研究对象,比较了6种安全利用技术对辣椒和稻米中Cd积累的削减效果,以及9种钝化剂对稻米Cd积累的影响。结果表明,各项安全利用技术的降Cd效果由高到低依次为优化施肥+土壤调理+叶面阻控>土壤调理+叶面阻控>优化施肥+叶面阻控>土壤调理>叶面阻控>优化施肥,在辣椒和稻米上的降Cd率分别为61.6%~91.5%、49.4%~91.3%,6项安全利用措施下辣椒Cd暴露的膳食安全风险均可接受,但仅优化施肥+土壤调理+叶面阻控和土壤调理+叶面阻控处理下稻米Cd暴露的膳食安全风险在可接受范围内。施用9种钝化剂均可显著(P<0.05)降低稻米Cd含量,但降Cd率差别较大,变化范围在29.7%~77.0%。其中,生物炭和磷复合钝化剂(生物炭+磷矿粉、生物炭+活化磷矿粉)、蚯蚓粪和铁磷复合钝化剂(蚯蚓粪+零价铁+磷矿粉)的施用效果最佳,稻米降Cd率在 68%以上。针对海南轻中度镉污染耕地,宜采用优化施肥+土壤调理+叶面阻控和土壤调理+叶面阻控的联合措施,其中土壤调理技术中的钝化剂推荐使用生物炭和磷复合钝化剂或蚯蚓粪和铁磷复合钝化剂。
中图分类号:
黄锋, 邢建平, 符少怀, 潘攀, 吴琳, 刘贝贝, 陈淼. 不同安全利用技术对琼北地区稻菜轮作系统镉削减的效果[J]. 浙江农业学报, 2022, 34(8): 1725-1733.
HUANG Feng, XING Jianping, FU Shaohuai, PAN Pan, WU Lin, LIU Beibei, CHEN Miao. Effects of different safe utilization technologies on cadmium reduction in rice-vegetable rotation system in northern Hainan, China[J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1725-1733.
| 检测指标 Indexes | 最小值 Minimum | 最大值 Maximum | 均值 Mean |
|---|---|---|---|
| pH | 4.9 | 6.1 | 5.4 |
| OM/(g·kg-1) | 12.5 | 32.5 | 20.5 |
| CEC/(cmol+.kg-1) | 2.4 | 7.9 | 5.7 |
| Cd/(mg·kg-1) | 0.01 | 0.85 | 0.53 |
| As/(mg·kg-1) | 3.9 | 13.8 | 10.8 |
| Ni/(mg·kg-1) | 21.8 | 42.0 | 29.5 |
| Cr/(mg·kg-1) | 46.5 | 74.8 | 59.2 |
| Pb/(mg·kg-1) | 14.9 | 43.2 | 34.8 |
| ACd/(mg·kg-1) | 0.01 | 0.54 | 0.37 |
表1 试验区土壤的基本性质和部分重金属元素含量
Table 1 Basic physiochemical properties and content of some heavy metal elements of test soil in study area
| 检测指标 Indexes | 最小值 Minimum | 最大值 Maximum | 均值 Mean |
|---|---|---|---|
| pH | 4.9 | 6.1 | 5.4 |
| OM/(g·kg-1) | 12.5 | 32.5 | 20.5 |
| CEC/(cmol+.kg-1) | 2.4 | 7.9 | 5.7 |
| Cd/(mg·kg-1) | 0.01 | 0.85 | 0.53 |
| As/(mg·kg-1) | 3.9 | 13.8 | 10.8 |
| Ni/(mg·kg-1) | 21.8 | 42.0 | 29.5 |
| Cr/(mg·kg-1) | 46.5 | 74.8 | 59.2 |
| Pb/(mg·kg-1) | 14.9 | 43.2 | 34.8 |
| ACd/(mg·kg-1) | 0.01 | 0.54 | 0.37 |
| 钝化剂 Passivator | pH | OM/% | Cd/(mg· kg-1) |
|---|---|---|---|
| 石灰Lime | 9.3 | — | 2.73 |
| 生物炭Biochar | 8.4 | 21.3 | 0.35 |
| 蚯蚓粪Vermicompost | 7.4 | 20.8 | 1.07 |
| 磷矿粉Phosphate rock powder | 9.5 | — | 1.5 |
| 活化磷矿粉 | 9.6 | — | 2.43 |
| Activated phosphate rock powder | |||
| 竹炭有机肥Bamboo organic fertilizer | 6.6 | 16.3 | 1.19 |
| 腐殖酸肥Humic acid fertilizer | 9.5 | — | 1.08 |
| 零价铁Zero-valent iron | 9.3 | — | — |
表2 钝化材料的pH值和有机质、Cd含量
Table 2 pH value and contents of organic matter and total cadmium
| 钝化剂 Passivator | pH | OM/% | Cd/(mg· kg-1) |
|---|---|---|---|
| 石灰Lime | 9.3 | — | 2.73 |
| 生物炭Biochar | 8.4 | 21.3 | 0.35 |
| 蚯蚓粪Vermicompost | 7.4 | 20.8 | 1.07 |
| 磷矿粉Phosphate rock powder | 9.5 | — | 1.5 |
| 活化磷矿粉 | 9.6 | — | 2.43 |
| Activated phosphate rock powder | |||
| 竹炭有机肥Bamboo organic fertilizer | 6.6 | 16.3 | 1.19 |
| 腐殖酸肥Humic acid fertilizer | 9.5 | — | 1.08 |
| 零价铁Zero-valent iron | 9.3 | — | — |
| 处理 Treatment | 辣椒Pepper | 水稻Rice | ||
|---|---|---|---|---|
| 镉含量 Cd content/(mg·kg-1) | 降镉率 Cd reduction rate/% | 镉含量 Cd content/(mg·kg-1) | 降镉率 Cd reduction rate/% | |
| T1 | 0.352 ± 0.014 a | — | 0.837 ± 0.041 a | — |
| T2 | 0.135 ± 0.011 b | 61.6 | 0.424 ± 0.023 b | 49.4 |
| T3 | 0.122 ± 0.010 bc | 65.3 | 0.280 ± 0.014 c | 66.6 |
| T4 | 0.112 ±0.010 c | 68.2 | 0.267 ± 0.018 c | 68.1 |
| T5 | 0.055 ± 0.008 d | 84.4 | 0.247 ± 0.016 c | 70.5 |
| T6 | 0.036 ± 0.006 d | 89.8 | 0.097 ± 0.008 d | 88.5 |
| T7 | 0.030 ± 0.004 d | 91.5 | 0.072 ± 0.006 d | 91.3 |
表3 不同处理对辣椒和稻米中可食部镉含量的影响
Table 3 Effect of different treatments on Cd content in pepper and rice
| 处理 Treatment | 辣椒Pepper | 水稻Rice | ||
|---|---|---|---|---|
| 镉含量 Cd content/(mg·kg-1) | 降镉率 Cd reduction rate/% | 镉含量 Cd content/(mg·kg-1) | 降镉率 Cd reduction rate/% | |
| T1 | 0.352 ± 0.014 a | — | 0.837 ± 0.041 a | — |
| T2 | 0.135 ± 0.011 b | 61.6 | 0.424 ± 0.023 b | 49.4 |
| T3 | 0.122 ± 0.010 bc | 65.3 | 0.280 ± 0.014 c | 66.6 |
| T4 | 0.112 ±0.010 c | 68.2 | 0.267 ± 0.018 c | 68.1 |
| T5 | 0.055 ± 0.008 d | 84.4 | 0.247 ± 0.016 c | 70.5 |
| T6 | 0.036 ± 0.006 d | 89.8 | 0.097 ± 0.008 d | 88.5 |
| T7 | 0.030 ± 0.004 d | 91.5 | 0.072 ± 0.006 d | 91.3 |
| 处理 Treatment | 土壤Soil | 水稻Rice | ||||||
|---|---|---|---|---|---|---|---|---|
| pH | CEC/ (cmol·kg-1) | OM/ (g·kg-1) | Cd/ (mg·kg-1) | ACd/ (mg·kg-1) | Cd/ (mg·kg-1) | BCF | 降镉率 Cd reduction rate/% | |
| S1 | 5.5 d | 5.96 c | 18.8 b | 0.353 a | 0.081 1 a | 0.539 a | 1.527 a | — |
| S2 | 6.9 a | 6.29 b | 19.4 b | 0.342 a | 0.012 4 d | 0.332 b | 0.971 b | 38.3 |
| S3 | 6.0 c | 6.69 b | 26.7 a | 0.338 a | 0.079 9 b | 0.189 c | 0.559 c | 64.9 |
| S4 | 6.6 bc | 7.73 a | 20.7 ab | 0.364 a | 0.064 0 b | 0.349 b | 0.959 b | 35.2 |
| S5 | 6.5 bc | 8.81 a | 17.3 b | 0.319 a | 0.069 8 b | 0.208 c | 0.652 c | 61.4 |
| S6 | 6.3 bc | 7.34 a | 19.5 ab | 0.369 a | 0.059 0 c | 0.368 b | 0.997 b | 31.7 |
| S7 | 6.7 b | 6.60 b | 19.3 ab | 0.350 a | 0.059 8 c | 0.379 b | 1.083 b | 29.7 |
| S8 | 6.8 a | 7.45 a | 20.1 ab | 0.333 a | 0.045 5 c | 0.171 d | 0.514 d | 68.3 |
| S9 | 6.5 bc | 6.22 b | 19.9 ab | 0.357 a | 0.045 0 c | 0.159 d | 0.445 d | 70.4 |
| S10 | 6.7 a | 8.23 a | 20.9 ab | 0.336 a | 0.031 9 c | 0.124 d | 0.369 d | 77.0 |
表4 不同处理对土壤性状和糙米中镉含量的影响
Table 4 Effect of different treatments on soil indexes and Cd content in rice
| 处理 Treatment | 土壤Soil | 水稻Rice | ||||||
|---|---|---|---|---|---|---|---|---|
| pH | CEC/ (cmol·kg-1) | OM/ (g·kg-1) | Cd/ (mg·kg-1) | ACd/ (mg·kg-1) | Cd/ (mg·kg-1) | BCF | 降镉率 Cd reduction rate/% | |
| S1 | 5.5 d | 5.96 c | 18.8 b | 0.353 a | 0.081 1 a | 0.539 a | 1.527 a | — |
| S2 | 6.9 a | 6.29 b | 19.4 b | 0.342 a | 0.012 4 d | 0.332 b | 0.971 b | 38.3 |
| S3 | 6.0 c | 6.69 b | 26.7 a | 0.338 a | 0.079 9 b | 0.189 c | 0.559 c | 64.9 |
| S4 | 6.6 bc | 7.73 a | 20.7 ab | 0.364 a | 0.064 0 b | 0.349 b | 0.959 b | 35.2 |
| S5 | 6.5 bc | 8.81 a | 17.3 b | 0.319 a | 0.069 8 b | 0.208 c | 0.652 c | 61.4 |
| S6 | 6.3 bc | 7.34 a | 19.5 ab | 0.369 a | 0.059 0 c | 0.368 b | 0.997 b | 31.7 |
| S7 | 6.7 b | 6.60 b | 19.3 ab | 0.350 a | 0.059 8 c | 0.379 b | 1.083 b | 29.7 |
| S8 | 6.8 a | 7.45 a | 20.1 ab | 0.333 a | 0.045 5 c | 0.171 d | 0.514 d | 68.3 |
| S9 | 6.5 bc | 6.22 b | 19.9 ab | 0.357 a | 0.045 0 c | 0.159 d | 0.445 d | 70.4 |
| S10 | 6.7 a | 8.23 a | 20.9 ab | 0.336 a | 0.031 9 c | 0.124 d | 0.369 d | 77.0 |
| [1] | 梁捷, 孙宏飞, 葛成军, 等. 海南省主要农作物主产区土壤重金属含量分布及其健康风险评价[J]. 热带作物学报, 2019, 40(11): 2285-2293. |
| LIANG J, SUN H F, GE C J, et al. Distribution of heavy metal contents in soils of main crop production areas in Hainan and the health risk assessment[J]. Chinese Journal of Tropical Crops, 2019, 40(11): 2285-2293. (in Chinese with English abstract) | |
| [2] | 李佳桐. 琼北土壤高背景值区域重金属空间分布及健康风险评价[D]. 海口: 海南大学, 2018. |
| LI J T. Spatial distribution characteristics and health risk assessment of heavy metal in soils in the north of Hainan Province with high background value[D]. Haikou: Hainan University, 2018. (in Chinese with English abstract) | |
| [3] |
GONG Y Y, ZHAO D Y, WANG Q L. An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: technical progress over the last decade[J]. Water Research, 2018, 147: 440-460.
DOI URL |
| [4] | WAN X M, LEI M, CHEN T B. Review on remediation technologies for arsenic-contaminated soil[J]. Frontiers of Environmental Science & Engineering, 2019, 14(2): 1-14. |
| [5] |
UDDIN M K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade[J]. Chemical Engineering Journal, 2017, 308: 438-462.
DOI URL |
| [6] |
ZENG G M, WAN J, HUANG D L, et al. Precipitation, adsorption and rhizosphere effect: the mechanisms for phosphate-induced Pb immobilization in soils: a review[J]. Journal of Hazardous Materials, 2017, 339: 354-367.
DOI URL |
| [7] | 周于宁. 组合钝化剂对轻中度镉污染农田土壤的钝化效果及其稳定性研究[D]. 杭州: 浙江大学, 2020. |
| ZHOU Y N. Study on the immobilization effect and stability of mild and moderate cadmium contaminated farmland soil by combination of passivators[D]. Hangzhou: Zhejiang University, 2020. (in Chinese with English abstract) | |
| [8] | 陈喆, 铁柏清, 雷鸣, 等. 施硅方式对稻米镉阻隔潜力研究[J]. 环境科学, 2014, 35(7): 2762-2770. |
| CHEN Z, TIE B Q, LEI M, et al. Phytoexclusion potential studies of Si fertilization modes on rice cadmium[J]. Environmental Science, 2014, 35(7): 2762-2770. (in Chinese with English abstract) | |
| [9] | 徐奕, 李剑睿, 黄青青, 等. 坡缕石钝化与喷施叶面硅肥联合对水稻吸收累积镉效应影响研究[J]. 农业环境科学学报, 2016, 35(9): 1633-1641. |
| XU Y, LI J R, HUANG Q Q, et al. Effect of palygorskite immobilization combined with foliar silicon fertilizer application on Cd accumulation in rice[J]. Journal of Agro-Environment Science, 2016, 35(9): 1633-1641. (in Chinese with English abstract) | |
| [10] | 冯雪敏. 水稻富集镉砷的关键部位、生育时期及相关元素的研究[D]. 北京: 中国农业科学院, 2017. |
| FENG X M. The key parts, important growth stages and related elements in Cd/As accumulation of rice[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese with English abstract) | |
| [11] | 骆永明, 滕应. 我国土壤污染的区域差异与分区治理修复策略[J]. 中国科学院院刊, 2018, 33(2): 145-152. |
| LUO Y M, TENG Y. Regional difference in soil pollution and strategy of soil zonal governance and remediation in China[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 145-152. (in Chinese with English abstract) | |
| [12] | 林生, 张家玮, 李建宏, 等. 6种海南商品有机肥对Pb(Ⅱ)和Cu(Ⅱ)的复合吸附及解吸[J]. 福建农林大学学报(自然科学版), 2018, 47(1): 97-103. |
| LIN S, ZHANG J W, LI J H, et al. Adsorption and desorption of Pb(Ⅱ) and Cu(Ⅱ) by six commercial organic fertilizers from Hainan Province[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2018, 47(1): 97-103. (in Chinese with English abstract) | |
| [13] | 罗春岩, 张家玮, 王雨阳, 等. 不同种类有机肥对土壤铅、铜形态转化的影响[J]. 中国土壤与肥料, 2019(6): 78-85. |
| LUO C Y, ZHANG J W, WANG Y Y, et al. Impact of different organic fertilizers on the form and transformation of lead and copper in soil[J]. Soil and Fertilizer Sciences in China, 2019(6): 78-85. (in Chinese with English abstract) | |
| [14] | 张婧旻, 李建宏, 洪思诚, 等. 椰纤维生物炭对砖红壤水稻土Pb形态及水稻产量和品质的影响[J]. 生态环境学报, 2019, 28(9): 1886-1892. |
| ZHANG J M, LI J H, HONG S C, et al. Effect of coconut fiber-derived biochars amendments on geochemical fractions of Pb in paddy soils and yield and quality of rice[J]. Ecology and Environmental Sciences, 2019, 28(9): 1886-1892. (in Chinese with English abstract) | |
| [15] | 刘绪坤, 徐文, 黄一伦, 等. 利用生物炭与石灰钝化(修复)琼北土壤中的铬污染[J]. 海南大学学报(自然科学版), 2020, 38(3): 254-259. |
| LIU X K, XU W, HUANG Y L, et al. Biochar and lime passivation remediation of heavy metal chromium pollution in Qiongbei soil[J]. Natural Science Journal of Hainan University, 2020, 38(3): 254-259. (in Chinese with English abstract) | |
| [16] | 中国科学院南京土壤研究所. 土壤理化分析[M]. 上海: 上海科学技术出版社, 1978. |
| [17] | United States Environmental Protection Agency (USEPA). Integrated risk information system[EB/OL]. [2021-08-08]. http://cfpub.epa.gov/ncea/iris/index.cfm?fuseaction=iris.show SubstanceList. |
| [18] | 环境保护部. 中国人群环境暴露行为模式研究报告:成人卷[M]. 北京: 中国环境出版社, 2013. |
| [19] |
CHEN Y, HU W Y, HUANG B, et al. Accumulation and health risk of heavy metals in vegetables from harmless and organic vegetable production systems of China[J]. Ecotoxicology and Environmental Safety, 2013, 98: 324-330.
DOI URL |
| [20] | 曹胜, 欧阳梦云, 周卫军, 等. 石灰对土壤重金属污染修复的研究进展[J]. 中国农学通报, 2018, 34(26): 109-112. |
| CAO S, OUYANG M Y, ZHOU W J, et al. Remediation of heavy metal contaminated soils by lime: a review[J]. Chinese Agricultural Science Bulletin, 2018, 34(26): 109-112. (in Chinese with English abstract) | |
| [21] | HAMID Y, TANG L, HUSSAIN B, et al. Organic soil additives for the remediation of cadmium contaminated soils and their impact on the soil-plant system: a review[J]. Science of the Total Environment, 2020, 707: 136121. |
| [22] |
QIN S Y, LIU H E, NIE Z J, et al. Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: a review[J]. Pedosphere, 2020, 30(2): 168-180.
DOI URL |
| [23] | 冯敬云, 聂新星, 刘波, 等. 镉污染农田原位钝化修复效果及其机理研究进展[J]. 农业资源与环境学报, 2021, 38(5): 764-777. |
| FENG J Y, NIE X X, LIU B, et al. Efficiency of in situ passivation remediation in cadmium-contaminated farmland soil and its mechanism: a review[J]. Journal of Agricultural Resources and Environment, 2021, 38(5): 764-777. (in Chinese with English abstract) | |
| [24] | YANG J Y, CHEN X, LU W C, et al. Reducing Cd accumulation in rice grain with foliar application of glycerol and its mechanisms of Cd transport inhibition[J]. Chemosphere, 2020, 258: 127135. |
| [25] | 戴青云, 刘代欢, 王德新, 等. 硅对水稻生长的影响及其缓解镉毒害机理研究进展[J]. 中国农学通报, 2020, 36(5): 86-92. |
| DAI Q Y, LIU D H, WANG D X, et al. A review on silicon: effect on rice growth and its mechanism of relieving cadmium toxicity[J]. Chinese Agricultural Science Bulletin, 2020, 36(5): 86-92. (in Chinese with English abstract) | |
| [26] |
SHI G R, ZHANG Z, LIU C F. Silicon influences cadmium translocation by altering subcellular distribution and chemical forms of cadmium in peanut roots[J]. Archives of Agronomy and Soil Science, 2017, 63(1): 117-123.
DOI URL |
| [27] | WANG J, SHI L, ZHAI L L, et al. Analysis of the long-term effectiveness of biochar immobilization remediation on heavy metal contaminated soil and the potential environmental factors weakening the remediation effect: a review[J]. Ecotoxicology and Environmental Safety, 2021, 207: 111261. |
| [28] | LIU B B, HE Z L, LIU R L, et al. Comparative effectiveness of activated dolomite phosphate rock and biochar for immobilizing cadmium and lead in soils[J]. Chemosphere, 2021, 266: 129202. |
| [29] | 潘攀, 刘贝贝, 吴琳, 等. 蚯蚓粪与零价铁、磷矿粉对酸性土壤改良和重金属风险控制研究[J]. 安全与环境学报, 2020, 20(4): 1549-1557. |
| PAN P, LIU B B, WU L, et al. Influential effects of vermicompost, zero-valentiron and phosphate rock on properties and heavy metal risks of acid soil[J]. Journal of Safety and Environment, 2020, 20(4): 1549-1557. (in Chinese with English abstract) | |
| [30] |
QIAO J T, LIU T X, WANG X Q, et al. Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils[J]. Chemosphere, 2018, 195: 260-271.
DOI URL |
| [1] | 裴惠民, 巫明明, 翟荣荣, 叶靖, 金月, 朱仪, 侯建军, 朱国富, 叶胜海. 低镉水稻基因功能与新品种培育研究进展[J]. 浙江农业学报, 2025, 37(9): 2012-2020. |
| [2] | 肖银润, 马吉平, 王赟萍, 王素贞, 钟国祥, 熊小文, 张诚. 三种钝化剂对土壤重金属和羊肚菌子实体重金属含量的影响[J]. 浙江农业学报, 2024, 36(7): 1646-1656. |
| [3] | 董爱琴, 陈院华, 杨涛, 徐昌旭, 程丽群, 谢杰. 紫云英和石灰配施对水稻镉吸收的影响[J]. 浙江农业学报, 2024, 36(3): 600-612. |
| [4] | 俞朝, 王音予, 刘奇珍, 王芸, 沈泓, 冯英. 不同原料生物炭与无机钝化剂配施对小白菜地上部镉积累和土壤镉钝化的影响[J]. 浙江农业学报, 2024, 36(3): 613-621. |
| [5] | 彭佳诚, 吴越, 徐洁皓, 夏美文, 齐天鹏, 徐海圣. 日本沼虾桩蛋白基因的克隆与镉胁迫对其表达的影响[J]. 浙江农业学报, 2024, 36(2): 247-253. |
| [6] | 李秋铷, 蔡晶晶, 李华, 俞海平, 裘高扬, 刘俊丽, 郭彬. 几种无机与有机材料对镉的吸附和钝化效果比较[J]. 浙江农业学报, 2024, 36(12): 2774-2783. |
| [7] | 杨西帆, 郭彬, 裘高扬, 刘俊丽, 童文彬, 杨海峻, 祝伟东, 毛聪妍. 不同钝化产品对水稻生产中镉、铅、砷的钝化效果[J]. 浙江农业学报, 2024, 36(1): 1-8. |
| [8] | 林小兵, 张鸿燕, 张秋梅, 周利军, 徐德胜, 郭乃嘉, 邱祥凤, 黄海平. 基于多指标的镉低积累水稻品种筛选[J]. 浙江农业学报, 2023, 35(11): 2507-2515. |
| [9] | 宋盼盼, 常会庆, 李岚坤, 王启震. 叶面阻控剂在轻度镉污染石灰性麦田上的降镉效果[J]. 浙江农业学报, 2023, 35(11): 2655-2663. |
| [10] | 王建兵, 王金涛, 颜可昕, 郭小兰, 王盾, 戴洪文. 豆瓣菜在镉铅复合污染条件下的镉铅积累特性[J]. 浙江农业学报, 2023, 35(11): 2664-2672. |
| [11] | 范丽莹, 范婷婷, 仝宗军, 梁立韵, 赵志勇, 陈辉, 周昌艳, 赵晓燕. 镉胁迫对不同品种羊肚菌镉富集规律与抗氧化系统的影响[J]. 浙江农业学报, 2023, 35(10): 2321-2331. |
| [12] | 姜昊梁, 黄允, 梁绍芳, 谢梦晨, 徐天成, 宋芷婷, 向文文, 陈青春, 万小荣, 孙伟. 镉胁迫对不同甜玉米自交系幼苗生长的影响及其相关简单重复序列分子标记初筛[J]. 浙江农业学报, 2022, 34(8): 1582-1590. |
| [13] | 邰粤鹰, 何腾兵, 陈小然, 张旺, 黄啸云, 刘鸿雁, 高珍冉. 叶面喷施阻控剂对常淹水稻田水稻吸收转运镉的影响[J]. 浙江农业学报, 2022, 34(6): 1248-1257. |
| [14] | 杜红, 李玉鹏, 程文, 肖荣英, 胡鹏. 丛枝菌根真菌改善镉胁迫下植物根系和土壤微环境的效应[J]. 浙江农业学报, 2022, 34(5): 1039-1048. |
| [15] | 王灿, 付天岭, 龚思同, 娄飞, 周凯, 代良羽, 刘静, 林大松, 何腾兵. 叶面阻控剂对黔中喀斯特地区水稻Cd富集特征的影响[J]. 浙江农业学报, 2021, 33(9): 1710-1719. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||