浙江农业学报 ›› 2023, Vol. 35 ›› Issue (1): 58-66.DOI: 10.3969/j.issn.1004-1524.2023.01.07
收稿日期:2021-09-06
出版日期:2023-01-25
发布日期:2023-02-21
作者简介:何秀丽(1994—),女,安徽合肥人,硕士,研究方向为作物种质资源创新。E-mail:21916142@zju.edu.cn
通讯作者:
*王人民,E-mail:wangrm@zju.edu.cn
基金资助:Received:2021-09-06
Online:2023-01-25
Published:2023-02-21
摘要:
金线兰[Anoectochilus roxburghii(Wall.)Lindl.]是一种珍稀的兰科开唇兰属多年生单子叶草本植物,具有重要的药用价值。褪黑素(MT)是一类胺类激素,具有调节机体昼夜规律和机体抗氧化等多种生理功能。试验分别采用5 μmol·L-1、500 μmol·L-1、5 mmol·L-1褪黑素根灌处理,研究褪黑素对金线兰生长发育和有效成分含量的影响,结果表明,5 μmol·L-1的褪黑素根灌技术处理能够显著增加总黄酮和总氨基酸的含量,分别增加了27.27%和21.79%,而500 μmol·L-1和5 mmol·L-1褪黑素显著增加了多糖的含量,分别增加了20.79%和23.88%。3种浓度褪黑素处理下,叶绿素总含量显著高于对照41.56%~55.84%。5 μmol·L-1褪黑素处理下,叶片中超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性显著增加了23.72%、180.00%和33.65%。综上,褪黑素通过影响金线兰叶绿素含量、代谢物积累和抗氧化酶活性,从而增强金线兰的抗逆性,进而增强金线兰移栽后的生命力。
中图分类号:
何秀丽, 王人民. 外源褪黑素对金线兰有效成分含量及抗氧化酶活性的影响[J]. 浙江农业学报, 2023, 35(1): 58-66.
HE Xiuli, WANG Renmin. Effects of exogenous melatonin on active components content and antioxidase activity of Anoectochilus roxburghii[J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 58-66.
| 处理 | 株高 | 茎粗 | 叶长 | 叶宽 | 根长 | 根粗 | 单株鲜重 | 单株干重 | 折干率 |
|---|---|---|---|---|---|---|---|---|---|
| Treatment | Plant height/cm | Stem diameter/mm | Leaf length/cm | Leaf width/cm | Root length/cm | Root diameter/mm | Fresh weight per plant/g | Dry weight per plant/g | Drying rate/% |
| CK | 4.99±0.28 a | 2.99±0.20 a | 3.38±0.02 bc | 2.73±0.05 a | 3.40±0.35 a | 1.18±0.07 b | 1.17±0.14 a | 0.11±0.01 a | 9.59±1.50 a |
| M1 | 5.05±0.28 a | 3.01±0.22 a | 3.48±0.04 ab | 2.81±0.07 a | 3.40±0.19 a | 1.37±0.02 a | 1.18±0.03 a | 0.11±0.01 a | 9.52±0.23 a |
| M2 | 5.07±0.10 a | 3.32±0.19 a | 3.44±0.09 ab | 2.75±0.04 a | 2.81±0.15 ab | 1.36±0.11 a | 1.22±0.05 a | 0.11±0.01 a | 9.36±0.59 a |
| M3 | 5.08±0.18 a | 3.09±0.36 a | 3.29±0.04 c | 2.65±0.13 a | 2.69±0.18 b | 1.26±0.06 ab | 1.05±0.12 b | 0.10±0.01 a | 9.46±0.55 a |
表1 不同浓度MT处理对金线兰幼苗生长和产量的影响
Table 1 Effects of different concentrations of MT on seedling growth and yield of A.roxburghii
| 处理 | 株高 | 茎粗 | 叶长 | 叶宽 | 根长 | 根粗 | 单株鲜重 | 单株干重 | 折干率 |
|---|---|---|---|---|---|---|---|---|---|
| Treatment | Plant height/cm | Stem diameter/mm | Leaf length/cm | Leaf width/cm | Root length/cm | Root diameter/mm | Fresh weight per plant/g | Dry weight per plant/g | Drying rate/% |
| CK | 4.99±0.28 a | 2.99±0.20 a | 3.38±0.02 bc | 2.73±0.05 a | 3.40±0.35 a | 1.18±0.07 b | 1.17±0.14 a | 0.11±0.01 a | 9.59±1.50 a |
| M1 | 5.05±0.28 a | 3.01±0.22 a | 3.48±0.04 ab | 2.81±0.07 a | 3.40±0.19 a | 1.37±0.02 a | 1.18±0.03 a | 0.11±0.01 a | 9.52±0.23 a |
| M2 | 5.07±0.10 a | 3.32±0.19 a | 3.44±0.09 ab | 2.75±0.04 a | 2.81±0.15 ab | 1.36±0.11 a | 1.22±0.05 a | 0.11±0.01 a | 9.36±0.59 a |
| M3 | 5.08±0.18 a | 3.09±0.36 a | 3.29±0.04 c | 2.65±0.13 a | 2.69±0.18 b | 1.26±0.06 ab | 1.05±0.12 b | 0.10±0.01 a | 9.46±0.55 a |
| 处理 | Δ株高 | Δ茎粗 | Δ叶长 | Δ叶宽 | Δ根长 | Δ根粗 | Δ单株鲜重 | Δ单株干重 | Δ折干率 |
|---|---|---|---|---|---|---|---|---|---|
| Treatment | ΔPlant height/cm | ΔStem diameter/mm | ΔLeaf length/cm | ΔLeaf width/cm | ΔRoot length/cm | ΔRoot diameter/mm | ΔFresh weight per plant/g | ΔDry weight per plant/g | ΔDrying rate/% |
| CK | 0.66± 0.28 a | -0.08± 0.20a | 0.25± 0.02 ab | 0.27± 0.05 a | 1.00± 0.35 a | -0.02± 0.07b | 0.26± 0.14 a | 0.03± 0.01 a | 0.86± 1.50 a |
| M1 | 0.72± 0.28 a | -0.06± 0.22a | 0.35± 0.04 a | 0.35± 0.07 a | 1.00± 0.19 a | 0.17± 0.02 a | 0.27± 0.03 a | 0.03± 0.01 a | 0.79± 0.24 a |
| M2 | 0.74± 0.10 a | 0.25± 0.19 a | 0.31± 0.09 a | 0.29± 0.04 a | 0.40± 0.15 b | 0.16± 0.11 a | 0.31± 0.05 a | 0.04± 0.01 a | 0.63± 0.59 a |
| M3 | 0.75± 0.18 a | 0.02± 0.36 a | 0.16± 0.04 b | 0.19± 0.13 a | 0.29± 0.18 b | 0.06± 0.06ab | 0.14± 0.12 a | 0.02± 0.01 a | 0.73± 0.55 a |
表2 金线兰生长30 d前后各生长指标增量
Table 2 The increase of each growth index in 30 days of A.roxburghii
| 处理 | Δ株高 | Δ茎粗 | Δ叶长 | Δ叶宽 | Δ根长 | Δ根粗 | Δ单株鲜重 | Δ单株干重 | Δ折干率 |
|---|---|---|---|---|---|---|---|---|---|
| Treatment | ΔPlant height/cm | ΔStem diameter/mm | ΔLeaf length/cm | ΔLeaf width/cm | ΔRoot length/cm | ΔRoot diameter/mm | ΔFresh weight per plant/g | ΔDry weight per plant/g | ΔDrying rate/% |
| CK | 0.66± 0.28 a | -0.08± 0.20a | 0.25± 0.02 ab | 0.27± 0.05 a | 1.00± 0.35 a | -0.02± 0.07b | 0.26± 0.14 a | 0.03± 0.01 a | 0.86± 1.50 a |
| M1 | 0.72± 0.28 a | -0.06± 0.22a | 0.35± 0.04 a | 0.35± 0.07 a | 1.00± 0.19 a | 0.17± 0.02 a | 0.27± 0.03 a | 0.03± 0.01 a | 0.79± 0.24 a |
| M2 | 0.74± 0.10 a | 0.25± 0.19 a | 0.31± 0.09 a | 0.29± 0.04 a | 0.40± 0.15 b | 0.16± 0.11 a | 0.31± 0.05 a | 0.04± 0.01 a | 0.63± 0.59 a |
| M3 | 0.75± 0.18 a | 0.02± 0.36 a | 0.16± 0.04 b | 0.19± 0.13 a | 0.29± 0.18 b | 0.06± 0.06ab | 0.14± 0.12 a | 0.02± 0.01 a | 0.73± 0.55 a |
图2 不同浓度MT对金线兰代谢物积累的影响 柱状图上无相同小写字母的表示各处理间差异显著(P<0.05)。下同。
Fig.2 Effects of different concentrations of MT on metabolite accumulation of A.roxburghii Different lowercase letters above the bars represented statistically significant (P<0.05)differences among treatments. The same as below.
| 处理 | Δ总黄酮含量 | Δ多糖含量 | Δ总生物碱含量 | Δ总氨基酸含量 |
|---|---|---|---|---|
| Treatment | ΔTotal content of flavonoid/% | ΔThe content of polysaccharide/% | ΔThe content of alkaloid/% | ΔTotal content of amino acid/% |
| CK | -0.28±0.01 b | -0.61±0.27 b | -0.29±0.08 a | 4.01±0.44 b |
| M1 | 0.05±0.12 a | -0.40±0.08 b | -0.25±0.03 a | 5.83±0.27 a |
| M2 | -0.35±0.16 b | 1.63±0.17 a | -0.17±0.22 a | 3.32±0.14 c |
| M3 | 0.12±0.14 a | 2.42±0.61 a | -0.25±0.11 a | 1.96±0.02 d |
表3 金线兰生长30 d前后代谢物增量
Table 3 The increase of metabolite content in 30 days of A.roxburghii
| 处理 | Δ总黄酮含量 | Δ多糖含量 | Δ总生物碱含量 | Δ总氨基酸含量 |
|---|---|---|---|---|
| Treatment | ΔTotal content of flavonoid/% | ΔThe content of polysaccharide/% | ΔThe content of alkaloid/% | ΔTotal content of amino acid/% |
| CK | -0.28±0.01 b | -0.61±0.27 b | -0.29±0.08 a | 4.01±0.44 b |
| M1 | 0.05±0.12 a | -0.40±0.08 b | -0.25±0.03 a | 5.83±0.27 a |
| M2 | -0.35±0.16 b | 1.63±0.17 a | -0.17±0.22 a | 3.32±0.14 c |
| M3 | 0.12±0.14 a | 2.42±0.61 a | -0.25±0.11 a | 1.96±0.02 d |
| 处理 | Δ叶绿素a | Δ叶绿素b | Δ叶绿素a+b | Δ类胡萝卜素a |
|---|---|---|---|---|
| Treatment | ΔChlorophyll a | ΔChlorophyll b | ΔChlorophyll a+b | ΔCarotenoid |
| CK | 0.14±0.09 b | -0.08±0.03 b | 0.06±0.11 b | 0.39±0.07 b |
| M1 | 0.37±0.04 a | 0.01±0.04 a | 0.38±0.08 a | 0.54±0.05 a |
| M2 | 0.45±0.08 a | 0.04±0.01 a | 0.49±0.08 a | 0.59±0.03 a |
| M3 | 0.37±0.12 a | 0.00±0.05 a | 0.38±0.17 a | 0.53±0.08 ab |
表4 金线兰生长30 d前后光合色素增量
Table 4 The increase of photosynthetic pigment content in 30 days of A. roxburghii mg·g-1
| 处理 | Δ叶绿素a | Δ叶绿素b | Δ叶绿素a+b | Δ类胡萝卜素a |
|---|---|---|---|---|
| Treatment | ΔChlorophyll a | ΔChlorophyll b | ΔChlorophyll a+b | ΔCarotenoid |
| CK | 0.14±0.09 b | -0.08±0.03 b | 0.06±0.11 b | 0.39±0.07 b |
| M1 | 0.37±0.04 a | 0.01±0.04 a | 0.38±0.08 a | 0.54±0.05 a |
| M2 | 0.45±0.08 a | 0.04±0.01 a | 0.49±0.08 a | 0.59±0.03 a |
| M3 | 0.37±0.12 a | 0.00±0.05 a | 0.38±0.17 a | 0.53±0.08 ab |
| [1] | 郎楷永. 中国植物志[M]. 北京: 科学出版社, 1999. |
| [2] | 刘凯良. 珍稀植物: 金线兰[J]. 生物学教学, 2018, 43(11): 75-76, 82. |
| LIU K L. Rare plant: Clematis roxburghii[J]. Biology Teaching, 2018, 43(11): 75-76, 82. (in Chinese) | |
| [3] | 肖小华, 林彩霞, 吴序栎, 等. 金线莲的化学成分及生物活性研究进展[J]. 现代食品科技, 2018, 34(5): 267-275. |
| XIAO X H, LIN C X, WU X L, et al. Research advance on chemical constituents and biological activities of Anoectochilus roxburghii[J]. Modern Food Science and Technology, 2018, 34(5): 267-275. (in Chinese with English abstract) | |
| [4] | 许梦洁, 叶申怡, 吴梅, 等. 不同种质金线莲氨基酸和矿物质元素量的比较[J]. 中草药, 2017, 48(2): 368-372. |
| XU M J, YE S Y, WU M, et al. Comparison on contents of mineral elements and amino acids in different germplasms of Anoectochilus roxburghii[J]. Chinese Traditional and Herbal Drugs, 2017, 48(2): 368-372. (in Chinese with English abstract) | |
| [5] | 李荣峰, 粟杨盛. 金线莲组织培养研究进展[J]. 安徽农业科学, 2020, 48(3): 15-17. |
| LI R F, SU Y S. Research progress of tissue culture in Anoectochilus roxburghii[J]. Journal of Anhui Agricultural Sciences, 2020, 48(3): 15-17. (in Chinese with English abstract) | |
| [6] | 苏菲, 黄作喜. 金线莲繁殖及栽培技术研究进展[J]. 安徽农学通报, 2020, 26(14): 32-35. |
| SU F, HUANG Z X. Research progress on propagation and cultivation techniques of Anoectochilus roxburghii[J]. Anhui Agricultural Science Bulletin, 2020, 26(14): 32-35. (in Chinese) | |
| [7] | 俞晓玲, 姜文倩, 游晨, 等. 金线莲多糖的药理作用及其机制研究进展[J]. 药物评价研究, 2021, 44(5): 1117-1121. |
| YU X L, JIANG W Q, YOU C, et al. Research progress on pharmacological action and mechanism of polysaccharides from Anoectochilus roxburghii[J]. Drug Evaluation Research, 2021, 44(5): 1117-1121. (in Chinese with English abstract) | |
| [8] | 陈育青, 林艺华, 邹毅辉, 等. 金线莲生药鉴定、活性成分影响因素及药理作用研究进展[J]. 中成药, 2020, 42(8): 2141-2144. |
| CHEN Y Q, LIN Y H, ZOU Y H, et al. Research progress on pharmacognosy identification, influencing factors of active components and pharmacological effects of Anoectochilus roxburghii[J]. Chinese Traditional Patent Medicine, 2020, 42(8): 2141-2144. (in Chinese) | |
| [9] | 田雨菁, 胡雅琦. 外源褪黑素对非生物胁迫下植物生长发育的影响[J]. 生物化工, 2020, 6(4): 163-164. |
| TIAN Y J, HU Y Q. Effects of exogenous melatonin on plant growth and development under abiotic stress[J]. Biological Chemical Engineering, 2020, 6(4): 163-164. (in Chinese with English abstract) | |
| [10] |
BOSE S K, HOWLADER P. Melatonin plays multifunctional role in horticultural crops against environmental stresses: a review[J]. Environmental and Experimental Botany, 2020, 176: 104063.
DOI URL |
| [11] |
张明聪, 何松榆, 秦彬, 等. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805.
DOI |
| ZHANG M C, HE S Y, QIN B, et al. Effects of exogenous melatonin on morphology, photosynthetic physiology, and yield of spring soybean variety Suinong 26 under drought stress[J]. Acta Agronomica Sinica, 2021, 47(9): 1791-1805. (in Chinese with English abstract) | |
| [12] | 李冬, 申洪涛, 王艳芳, 等. 外源褪黑素对干旱胁迫下烟草幼苗光合碳同化和内源激素的影响[J]. 草业学报, 2021, 30(1): 130-139. |
| LI D, SHEN H T, WANG Y F, et al. Effects of exogenous melatonin on photosynthetic carbon assimilation and endogenous hormones in tobacco seedlings under drought stress[J]. Acta Prataculturae Sinica, 2021, 30(1): 130-139. (in Chinese with English abstract) | |
| [13] |
吴燕, 乔晓燕, 葛伟强, 等. 高温强光下外源褪黑素对栝楼雌花生理生化特性的影响[J]. 浙江农业学报, 2020, 32(3): 421-429.
DOI |
| WU Y, QIAO X Y, GE W Q, et al. Effects of exogenous melatonin on physiological and biochemical characteristics in female flowers of Trichosanthes kirilowii under high temperature and strong light[J]. Acta Agriculturae Zhejiangensis, 2020, 32(3): 421-429. (in Chinese with English abstract) | |
| [14] |
齐晓媛, 王文莉, 胡少卿, 等. 外源褪黑素对高温胁迫下菊花光合和生理特性的影响[J]. 应用生态学报, 2021, 32(7): 2496-2504.
DOI |
| QI X Y, WANG W L, HU S Q, et al. Effects of exogenous melatonin on photosynthesis and physiological characteristics of Chrysanthemum seedlings under high temperature stress[J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2496-2504. (in Chinese with English abstract) | |
| [15] |
韩国民, 刘茜, 唐美玲, 等. 外源褪黑素对NaCl胁迫下5BB葡萄叶片生理特性的影响[J]. 浙江农业学报, 2019, 31(4): 556-564.
DOI |
|
HAN G M, LIU X, TANG M L, et al. Effects of exogenous melatonin on physiological characteristics of 5BB grape leaves under NaCl stress[J]. Acta Agriculturae Zhejiangensis, 2019, 31(4): 556-564. (in Chinese with English abstract)
DOI |
|
| [16] |
李阳, 陈静, 刘绍东, 等. 外源褪黑素对盐胁迫下棉花幼苗生长及光合特性的影响[J]. 新疆农业科学, 2021, 58(8): 1418-1426.
DOI |
| LI Y, CHEN J, LIU S D, et al. Effects of exogenous melatonin on growth and photosynthetic characteristics of cotton seedlings under salt stress[J]. Xinjiang Agricultural Sciences, 2021, 58(8): 1418-1426. (in Chinese with English abstract) | |
| [17] | 向警, 黄倩, 鞠春燕, 等. 外源褪黑素对盐胁迫下水稻种子萌发与幼苗生长的影响[J]. 植物生理学报, 2021, 57(2): 393-401. |
|
XIANG J, HUANG Q, JU C Y, et al. Effect of exogenous melatonin on seed germination and seedling growth of rice under salt stress[J]. Plant Physiology Journal, 2021, 57(2): 393-401. (in Chinese with English abstract)
DOI URL |
|
| [18] | 王芳, 刘燕, 王铁兵, 等. 外源褪黑素对玉米幼苗盐胁迫的缓解效应研究[J]. 中国草地学报, 2020, 42(5): 14-21. |
| WANG F, LIU Y, WANG T B, et al. Mitigation effect and mechanism of exogenous melatonin on maize seedling under salt stress[J]. Chinese Journal of Grassland, 2020, 42(5): 14-21. (in Chinese with English abstract) | |
| [19] |
BAJWA V S, SHUKLA M R, SHERIF S M, et al. Role of melatonin in alleviating cold stress in Arabidopsis thaliana[J]. Journal of Pineal Research, 2014, 56(3): 238-245.
DOI URL |
| [20] | 王学奎, 黄见良. 植物生理生化实验原理与技术[M]. 3版. 北京: 高等教育出版社, 2015. |
| [21] | 施满容, 龚林光, 陆志平, 等. 不同地区野生金线莲有效成分含量的比较[J]. 安徽农学通报, 2016, 22(24): 107-110. |
| SHI M R, GONG L G, LU Z P, et al. The comparison of effective composition content in different localities of wild Anoectochilus roxburghii[J]. Anhui Agricultural Science Bulletin, 2016, 22(24): 107-110. (in Chinese with English abstract) | |
| [22] | 王菲, 张艳珍, 毛海峰. 柠条花中总生物碱提取工艺研究[J]. 中国食物与营养, 2020, 26(4): 42-45. |
| WANG F, ZHANG Y Z, MAO H F. The extraction technology of total alkaloids from Caragana[J]. Food and Nutrition in China, 2020, 26(4): 42-45. (in Chinese with English abstract) | |
| [23] |
ZHANG N, SUN Q Q, LI H F, et al. Melatonin improved anthocyanin accumulation by regulating gene expressions and resulted in high reactive oxygen species scavenging capacity in cabbage[J]. Frontiers in Plant Science, 2016, 7: 197.
DOI PMID |
| [24] |
SU G X, AN Z F, ZHANG W H, et al. Light promotes the synthesis of lignin through the production of H2O2 mediated by diamine oxidases in soybean hypocotyls[J]. Journal of Plant Physiology, 2005, 162(12): 1297-1303.
DOI URL |
| [25] | 龚动庭. 硅与γ-氨基丁酸引发对低温胁迫下油菜种子萌发与幼苗生长的影响[D]. 杭州: 浙江大学, 2019. |
| GONG D T. Effects of seed priming with silicon and γ-aminobutyric acid on seed germination and seedling growth of Brassica napus L.under chilling stress[D]. Hangzhou: Zhejiang University, 2019. (in Chinese with English abstract) | |
| [26] |
YANG L, SUN Q, WANG Y P, et al. Global transcriptomic network of melatonin regulated root growth in Arabidopsis[J]. Gene, 2021, 764: 145082.
DOI URL |
| [27] |
CHEN Z P, GU Q, YU X L, et al. Hydrogen peroxide Acts downstream of melatonin to induce lateral root formation[J]. Annals of Botany, 2018, 121(6): 1127-1136.
DOI PMID |
| [28] |
CHEN J, LI H, YANG K, et al. Melatonin facilitates lateral root development by coordinating PAO-derived hydrogen peroxide and RBOH-derived superoxide radical[J]. Free Radical Biology and Medicine, 2019, 143: 534-544.
DOI PMID |
| [29] |
高帆, 夏惠, 袁雪侦, 等. 外源褪黑素对盐胁迫下猕猴桃幼苗酚类物质含量和抗氧化能力的影响[J]. 浙江农业学报, 2017, 29(7): 1144-1150.
DOI |
|
GAO F, XIA H, YUAN X Z, et al. Effects of exogenous melatonin on phenolic substance content and antioxidant ability of kiwifruit seedlings under salt stress[J]. Acta Agriculturae Zhejiangensis, 2017, 29(7): 1144-1150. (in Chinese with English abstract)
DOI |
|
| [30] | 于江珊, 张苗苗, 施江, 等. 植物激素对类黄酮代谢调控机制研究进展[J]. 中国中药杂志, 2021, 46(15): 3806-3813. |
| YU J S, ZHANG M M, SHI J, et al. Research progress on mechanism of phytohormones in regulating flavonoid metabolism[J]. China Journal of Chinese Materia Medica, 2021, 46(15): 3806-3813. (in Chinese with English abstract) | |
| [31] | 杜卓, 侯雯, 王丽, 等. 外源褪黑素对干旱胁迫下玉米幼苗的影响[J]. 中国农学通报, 2020, 36(27): 14-19. |
| DU Z, HOU W, WANG L, et al. Effects of exogenous melatonin on maize seedlings under drought stress[J]. Chinese Agricultural Science Bulletin, 2020, 36(27): 14-19. (in Chinese with English abstract) | |
| [32] | TAN X L, ZHAO Y T, SHAN W, et al. Melatonin delays leaf senescence of postharvest Chinese flowering cabbage through ROS homeostasis[J]. Food Research International (Ottawa, Ont ), 2020, 138(Pt B): 109790. |
| [1] | 施添青, 赵卓群, 谢晓杰, 郑华宝. 一株产生物表面活性剂油脂降解菌的分离及其特性研究[J]. 浙江农业学报, 2025, 37(7): 1501-1511. |
| [2] | 陈梦微, 梁徐, 张成磊, 梁璟, 许樱子, 项丹丹, 杨照渠, 谢永东. 微生物菌肥对东魁杨梅土壤性状和叶片营养的影响[J]. 浙江农业学报, 2025, 37(5): 1130-1138. |
| [3] | 杜颂, 汤涛, 程曦, 赵学平, 张春荣, 梁晓宇, 王萌, 张震, 李永成, 章程辉. 砜吡草唑及其主要代谢物在土壤中的消解和对土壤酶活性的影响研究[J]. 浙江农业学报, 2025, 37(4): 847-857. |
| [4] | 孙凤婷, 王旭, 韩新雨, 许振岚, 吴声敢, 黄浩, 汤涛, 盛清, 王强, 沈国强, 赵学平. 复硝酚钠对铁皮石斛中黄酮含量和抗氧化活性的影响[J]. 浙江农业学报, 2025, 37(4): 934-942. |
| [5] | 任元龙, 马蓉, 王晓卓, 张雪艳. 叶面喷施褪黑素对甘蓝幼苗干旱胁迫的缓解作用[J]. 浙江农业学报, 2025, 37(2): 338-348. |
| [6] | 刘雅丽, 杨福生, 宋榜桂, 杜雪, 俞奇力, 陈菲, 陈国宏. 甜菊糖苷对黄羽肉鸡生长的影响[J]. 浙江农业学报, 2025, 37(10): 2049-2056. |
| [7] | 李强, 刘思彤, 黄显斌, 姜君龙, 邓建宇, 王教瑜, 李玲. 山区猕猴桃溃疡病病原菌的鉴定及不同类型高效防治药剂的筛选[J]. 浙江农业学报, 2025, 37(10): 2116-2128. |
| [8] | 任晓蓉, 王新全, 张善英, 王萌, 朱鸿明, 章程辉, 齐沛沛. 基于LC-MS/MS的桑叶5种生物活性物质的同时检测[J]. 浙江农业学报, 2025, 37(10): 2179-2189. |
| [9] | 赵小亮, 鲁雲, 康兴兴, 龙则宇, 郑晓杰. 雁荡山铁皮石斛多糖的提取、结构表征与体外抗氧化活性[J]. 浙江农业学报, 2024, 36(8): 1898-1908. |
| [10] | 张鑫, 刘鹏. 植物顺式调控元件研究进展[J]. 浙江农业学报, 2024, 36(8): 1945-1956. |
| [11] | 李飞, 苏甜甜, 苏康杰, 徐可, 马力, 刘子明. 螺旋藻和红球藻对斑马鱼生长性能、抗氧化酶、磷酸酶和热休克蛋白的影响[J]. 浙江农业学报, 2024, 36(7): 1511-1518. |
| [12] | 曹乃馨, 罗阳兰, 阎勇, 解修超, 张雯龙. 桑树桑黄JM-1胞外多糖液态培养基优化及其抗氧化性研究[J]. 浙江农业学报, 2024, 36(6): 1245-1255. |
| [13] | 高兰芸, 刘昊, 李爱, 张婷婷, 杨丽芳, 高英. NaCl对樱桃砧木组培生根、IAA原位分布及相关酶活性的影响[J]. 浙江农业学报, 2024, 36(6): 1300-1308. |
| [14] | 陈瑶瑶, 刘雪萍, 张绍勇, 王继栋, 王瑞俊, 张立钦. 南太湖水体抑藻菌的筛选分离及其活性成分鉴定[J]. 浙江农业学报, 2024, 36(5): 1124-1133. |
| [15] | 刘晨星, 曹艳, 夏其乐. 多花黄精根须皂苷的提取工艺及其抗氧化活性研究[J]. 浙江农业学报, 2024, 36(5): 1144-1152. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
