浙江农业学报 ›› 2023, Vol. 35 ›› Issue (5): 992-1000.DOI: 10.3969/j.issn.1004-1524.2023.05.03
姚彦林1,2(), 马骊2, 刘丽君2, 蒲媛媛1,2, 李学才1,2, 王旺田3, 方彦1,2, 孙万仓1,2, 武军艳1,2,*(
)
收稿日期:
2022-03-10
出版日期:
2023-05-25
发布日期:
2023-06-01
作者简介:
姚彦林(1989—),女,甘肃会宁人,硕士研究生,研究方向为作物遗传育种。E-mail: 1083737026@qq.com
通讯作者:
*武军艳,E-mail: 94790094@qq.com
基金资助:
YAO Yanlin1,2(), MA Li2, LIU Lijun2, PU Yuanyuan1,2, LI Xuecai1,2, WANG Wangtian3, FANG Yan1,2, SUN Wancang1,2, WU Junyan1,2,*(
)
Received:
2022-03-10
Online:
2023-05-25
Published:
2023-06-01
摘要:
FT基因是调控植物开花的重要基因,为探究FT基因在白菜型油菜光周期途径中调控开花的作用,本研究以拟南芥FT蛋白序列为索引从白菜型油菜基因组中检索到3个BrFT基因,利用生物信息学方法对基因序列特征进行分析,通过qRT-PCR技术研究基因的器官特异性表达,筛选基因在不同白菜型油菜中克隆并检测其在4 ℃,16 h光照/8 h黑暗条件下的表达模式。结果表明,3个BrFT均由4个外显子和3个内含子组成,分布于A02和A07染色体上,其中BrFT1和BrFT2存在明显的共线关系,3个BrFT蛋白都包含PEBP保守基序。基因上游2 000 bp启动子区域均含有大量的光应答元件,一些参与厌氧诱导、防御和应激反应的调控元件,另外BrFT1和BrFT2含有参与植物生长发育、激素诱导的元件。qRT-PCR检测发现,BrFT在白菜型油菜根、茎、叶、花蕾和花中均有表达,在叶中表达量高于其他器官,且BrFT1表达量高于其余两个成员,克隆到陇油6号、陇油17号、天油2号中的BrFT1基因,序列比对相似性为99.5%。在4 ℃,16 h光照/8 h黑暗条件下不同白菜型油菜中BrFT1随处理时间均呈现上调表达,但品种间存在差异,结合对不同白菜型油菜开花的观察,表明BrFT1基因的过量表达能够促进白菜型油菜提早开花。
中图分类号:
姚彦林, 马骊, 刘丽君, 蒲媛媛, 李学才, 王旺田, 方彦, 孙万仓, 武军艳. 白菜型油菜开花调控基因BrFT的生物信息学特性和表达分析[J]. 浙江农业学报, 2023, 35(5): 992-1000.
YAO Yanlin, MA Li, LIU Lijun, PU Yuanyuan, LI Xuecai, WANG Wangtian, FANG Yan, SUN Wancang, WU Junyan. Bioinformatics and expression analysis of flowering regulation gene BrFT in Brassica rapa L.[J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 992-1000.
引物名称 | 引物序列 | 引物用途 |
---|---|---|
The name of the primer | Primer sequence (5'→3') | Use of primers |
BrFT1-F | ATGTCTTTAAGTAATAGAGATCCTCTTGTGGT | 基因克隆 |
BrFT1-R | CTAACTTCTTCGTCCTCCGCAG | Gene clone |
BrFT1-F | ACGAGAGTCCAAGGCCCAAC | 实时荧光定量PCR |
BrFT1-R | TGGCGCCATCCTGGTTCATA | Real-time fluorescence quantitative PCR |
BrFT2-F | TCCCTGCGACAACTGGAACAAAC | 实时荧光定量PCR |
BrFT2-R | CGGAACAATACCAGCACGAGACG | Real-time fluorescence quantitative PCR |
BrFT3-F | AGGTTCAACACTCGTGAGTTCGC | 实时荧光定量PCR |
BrFT3-R | CTTCTTCCTCCGCAGCCATTCTC | Real-time fluorescence quantitative PCR |
L17-BrFT1-F | ACGAGAGTCCAAGGCCCAAC | 实时荧光定量PCR |
L17-BrFT1-R | TGGCGCCATCCTGGTTCATA | Real-time fluorescence quantitative PCR |
Actin-F | TGTGCCAATCTACGAGGGTTT | 实时荧光定量PCR |
Actin-R | TTTCCCGCTCGGCTGTTGT | Real-time fluorescence quantitative PCR |
表1 引物序列
Table 1 Primer sequence
引物名称 | 引物序列 | 引物用途 |
---|---|---|
The name of the primer | Primer sequence (5'→3') | Use of primers |
BrFT1-F | ATGTCTTTAAGTAATAGAGATCCTCTTGTGGT | 基因克隆 |
BrFT1-R | CTAACTTCTTCGTCCTCCGCAG | Gene clone |
BrFT1-F | ACGAGAGTCCAAGGCCCAAC | 实时荧光定量PCR |
BrFT1-R | TGGCGCCATCCTGGTTCATA | Real-time fluorescence quantitative PCR |
BrFT2-F | TCCCTGCGACAACTGGAACAAAC | 实时荧光定量PCR |
BrFT2-R | CGGAACAATACCAGCACGAGACG | Real-time fluorescence quantitative PCR |
BrFT3-F | AGGTTCAACACTCGTGAGTTCGC | 实时荧光定量PCR |
BrFT3-R | CTTCTTCCTCCGCAGCCATTCTC | Real-time fluorescence quantitative PCR |
L17-BrFT1-F | ACGAGAGTCCAAGGCCCAAC | 实时荧光定量PCR |
L17-BrFT1-R | TGGCGCCATCCTGGTTCATA | Real-time fluorescence quantitative PCR |
Actin-F | TGTGCCAATCTACGAGGGTTT | 实时荧光定量PCR |
Actin-R | TTTCCCGCTCGGCTGTTGT | Real-time fluorescence quantitative PCR |
基因 | 基因ID | 开放阅读框 | 氨基酸长度 | 分子量 | 等电点 | 不稳定系数 | 亲水性 | α-螺旋 | β-折叠 | 延伸链 | 无规则卷曲 |
---|---|---|---|---|---|---|---|---|---|---|---|
Gene | Gene ID | Open reading frame/bp | Amino acid length/aa | Molecular weight/ku | pI | Unstable coefficient | Hydro- philicity | Alpha helix/% | Beta turn/% | Extended strand/% | Random coil/% |
BrFT1 | Brapa02T001728 | 528 | 175 | 19.81 | 7.75 | 46.66 | -0.34 | 14.86 | 3.43 | 22.86 | 58.85 |
BrFT2 | Brapa02T003364 | 528 | 175 | 19.77 | 7.82 | 38.39 | -0.34 | 17.14 | 4.00 | 21.71 | 57.15 |
BrFT3 | Brapa02T004252 | 531 | 176 | 19.93 | 7.72 | 38.47 | -0.29 | 13.64 | 3.98 | 25.57 | 56.81 |
表2 BrFT基因家族成员基本信息
Table 2 Basic information of BrFT gene family members
基因 | 基因ID | 开放阅读框 | 氨基酸长度 | 分子量 | 等电点 | 不稳定系数 | 亲水性 | α-螺旋 | β-折叠 | 延伸链 | 无规则卷曲 |
---|---|---|---|---|---|---|---|---|---|---|---|
Gene | Gene ID | Open reading frame/bp | Amino acid length/aa | Molecular weight/ku | pI | Unstable coefficient | Hydro- philicity | Alpha helix/% | Beta turn/% | Extended strand/% | Random coil/% |
BrFT1 | Brapa02T001728 | 528 | 175 | 19.81 | 7.75 | 46.66 | -0.34 | 14.86 | 3.43 | 22.86 | 58.85 |
BrFT2 | Brapa02T003364 | 528 | 175 | 19.77 | 7.82 | 38.39 | -0.34 | 17.14 | 4.00 | 21.71 | 57.15 |
BrFT3 | Brapa02T004252 | 531 | 176 | 19.93 | 7.72 | 38.47 | -0.29 | 13.64 | 3.98 | 25.57 | 56.81 |
图2 BrFT基因在染色体上的位置信息及共线性关系 背景区域为白菜型油菜基因组中的所有共线性部分,红色线条代表存在共线性关系的BrFT基因对,不同颜色的半圈代表染色体。
Fig.2 Location information and collinearity of BrFT gene on chromosomes The background area is all the collinearity parts in B. rapa genome. The red lines represent the contributing BrFT gene pairs, and the half circles with different colors represent chromosomes.
图5 BrFT基因在陇油7号(A)和天祝小油菜(B)各器官中的表达 不同数据柱上没有相同小写字母的表示差异显著(P<0.05)。下同。
Fig.5 Expression of BrFT genes in organs of Longyou 7(A) and Tianzhu small rape (B) The bars with different lowercase letters showed the significant difference (P<0.05). The same as below.
图6 BrFT1基因扩增产物电泳图 L6,陇油6号;L17,陇油17号;T2,天油2号。
Fig.6 Electrophoretic image of BrFT1 gene amplification product L6, Longyou 6; L17, Longyou 17; T2, Tianyou 2.
图8 BrFT1基因在不同白菜型冬油菜4 ℃,16 h光照/8 h黑暗处理中的荧光定量表达
Fig.8 Quantitative expression of BrFT1 gene in different varieties of winter rapeseed at 4 ℃, 16 h light/8 h darkness
时间 Time/d | 开花株率 Flowering plant rate/% | |||
---|---|---|---|---|
天油2号 Tianyou 2 | 陇油6号 Longyou 6 | 陇油17号 Longyou 17 | 陇油7号 Longyou 7 | |
0 | 0 | 0 | 0 | 0 |
20 | 46.8 | 15.6 | 23.2 | 13.3 |
30 | 88.9 | 26.6 | 46.7 | 39.6 |
40 | 98.3 | 40.0 | 73.3 | 46.6 |
50 | 100 | 73.3 | 93.3 | 71.6 |
60 | 100 | 86.1 | 93.3 | 86.6 |
70 | 100 | 95.4 | 97.1 | 94.3 |
表3 不同处理时间对白菜型油菜开花株率的影响
Table 3 Effect of different treatment time on flowering plant rate of Brassica rapa L.
时间 Time/d | 开花株率 Flowering plant rate/% | |||
---|---|---|---|---|
天油2号 Tianyou 2 | 陇油6号 Longyou 6 | 陇油17号 Longyou 17 | 陇油7号 Longyou 7 | |
0 | 0 | 0 | 0 | 0 |
20 | 46.8 | 15.6 | 23.2 | 13.3 |
30 | 88.9 | 26.6 | 46.7 | 39.6 |
40 | 98.3 | 40.0 | 73.3 | 46.6 |
50 | 100 | 73.3 | 93.3 | 71.6 |
60 | 100 | 86.1 | 93.3 | 86.6 |
70 | 100 | 95.4 | 97.1 | 94.3 |
[1] |
袁玺垒, 王振山, 贾小平, 等. 光周期调控植物开花分子机制以及CCT基因家族研究进展[J]. 浙江农业学报, 2020, 32(6): 1133-1140.
DOI |
YUAN X L, WANG Z S, JIA X P, et al. Research advances on molecular mechanisms of photoperiod-regulation plant flowering and CCT gene family[J]. Acta Agriculturae Zhejiangensis, 2020, 32(6): 1133-1140. (in Chinese with English abstract) | |
[2] |
LUO X, YIN M N, HE Y H. Molecular genetic understanding of photoperiodic regulation of flowering time in Arabidopsis and soybean[J]. International Journal of Molecular Sciences, 2021, 23(1): 466.
DOI URL |
[3] | 王云梦, 宋贺云, 刘娟, 等. FT和TFL1基因调控植物开花的分子机理[J]. 植物生理学报, 2022, 58(1): 77-90. |
WANG Y M, SONG H Y, LIU J, et al. Molecular mechanism of FT and TFL1 genes on regulation of plant flowering[J]. Plant Physiology Journal, 2022, 58(1): 77-90. (in Chinese with English abstract)
DOI URL |
|
[4] |
YU Y C, QIAO L F, CHEN J C, et al. Arabidopsis REM16 acts as a B3 domain transcription factor to promote flowering time via directly binding to the promoters of SOC1 and FT[J]. The Plant Journal, 2020, 103(4): 1386-1398.
DOI URL |
[5] | LIU X R, PAN T, LIANG W Q, et al. Overexpression of an orchid (Dendrobium nobile) SOC1/TM3-like ortholog, DnAGL19, in Arabidopsis regulates HOS1-FT expression[J]. Frontiers in Plant Science, 2016, 7: 99. |
[6] | 王寻, 高凝, 张富军, 等. 苹果磷脂酰乙醇胺结合蛋白PEBP家族基因的鉴定与比较分析[J]. 植物生理学报, 2021, 57(10): 1996-2010. |
WANG X, GAO N, ZHANG F J, et al. Identification and comparative analysis of phosphatidyl ethanolamine binding protein(PEBP) family gene in apple[J]. Plant Physiology Journal, 2021, 57(10): 1996-2010. (in Chinese with English abstract) | |
[7] |
荐红举, 杨博, 李阳阳, 等. 甘蓝型油菜PEBP基因家族的鉴定与表达分析[J]. 作物学报, 2019, 45(3): 354-364.
DOI |
JIAN H J, YANG B, LI Y Y, et al. Identification and expression analysis of PEBP gene family in oilseed rape[J]. Acta Agronomica Sinica, 2019, 45(3): 354-364. (in Chinese with English abstract)
DOI URL |
|
[8] |
CORBESIER L, VINCENT C, JANG S, et al. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis[J]. Science, 2007, 316(5827): 1030-1033.
DOI URL |
[9] |
JAEGER K E, WIGGE P A. FT protein acts as a long-range signal in Arabidopsis[J]. Current Biology, 2007, 17(12): 1050-1054.
DOI URL |
[10] |
LEE N, IMAIZUMI T. Uncoupling FT protein transport from its function[J]. Plant and Cell Physiology, 2018, 59(8): 1487-1489.
DOI PMID |
[11] |
VENAIL J, DA SILVA S, PAULO H, et al. Analysis of the PEBP gene family and identification of a novel FT orthologue in sugarcane[J]. Journal of Experimental Botany, 2022, 73(12) : 4266-4266.
DOI URL |
[12] | 吴高琼, 李淑斌, 王炜佳, 等. 中国古老月季‘月月粉’FT/TFL1基因的鉴定与表达分析[J]. 西北植物学报, 2019, 39(10): 1741-1749. |
WU G Q, LI S B, WANG W J, et al. Identification and expression analysis of the FT/TFL1 genes in Rosa chinensis ‘old blush’[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(10): 1741-1749. (in Chinese with English abstract) | |
[13] |
CARMONA M J, CALONJE M, MARTÍNEZ-ZAPATER J M. The FT/TFL1 gene family in grapevine[J]. Plant Molecular Biology, 2007, 63(5): 637-650.
DOI PMID |
[14] | 张礼凤, 徐冉, 张彦威, 等. 大豆PEBP基因家族的初步分析[J]. 植物遗传资源学报, 2015, 16(1): 151-157. |
ZHANG L F, XU R, ZHANG Y W, et al. Preliminary analysis of the PEBP gene family in soybean(Glycine max)[J]. Journal of Plant Genetic Resources, 2015, 16(1): 151-157. (in Chinese with English abstract) | |
[15] | 杨莉, 刘德春, 刘勇. 柑橘FT同源基因的研究进展[J]. 江西农业大学学报, 2017, 39(6): 1067-1074. |
YANG L, LIU D C, LIU Y. Advances in the study of Citrus orthologue FT gene[J]. Acta Agriculturae Universitatis Jiangxiensis, 2017, 39(6): 1067-1074. (in Chinese with English abstract) | |
[16] |
JING Y J, GUO Q, LIN R C. The chromatin-remodeling factor PICKLE antagonizes polycomb repression of FT to promote flowering[J]. Plant Physiology, 2019, 181(2): 656-668.
DOI URL |
[17] | 邱宏业, 朱建华, 丁峰, 等. 四季蜜龙眼FLOWERING LOCUS T(FT)同源基因克隆及其表达分析[J]. 西南农业学报, 2020, 33(2): 224-232. |
QIU H Y, ZHU J H, DING F, et al. Molecular cloning of FLOWERING LOCUS T(FT) gene and its expression in sijimi longan[J]. Southwest China Journal of Agricultural Sciences, 2020, 33(2): 224-232. (in Chinese with English abstract) | |
[18] |
牛西强, 罗潇云, 康凯程, 等. 辣椒PEBP基因家族的全基因组鉴定、比较进化与组织表达分析[J]. 园艺学报, 2021, 48(5): 947-959.
DOI |
NIU X Q, LUO X Y, KANG K C, et al. Genome-wide identification, comparative evolution and expression analysis of PEBP gene family from Capsicum annuum[J]. Acta Horticulturae Sinica, 2021, 48(5): 947-959. (in Chinese with English abstract) | |
[19] | LEEGGANGERS H A C F, ROSILIO-BRAMI T, BIGAS-NADAL J, et al. Tulipa gesneriana and Lilium longiflorum PEBP genes and their putative roles in flowering time control[J]. Plant & Cell Physiology, 2018, 59(1): 90-106. |
[20] | 马骊, 袁金海, 孙万仓, 等. 白菜型冬油菜类甜蛋白的筛选、克隆及其在低温胁迫下的表达[J]. 作物学报, 2017, 43(4): 620-628. |
MA L, YUAN J H, SUN W C, et al. Selection and cloning of thaumatin-like protein (TLP) gene from winter Brassica rapa and its expression under low temperature stress[J]. Acta Agronomica Sinica, 2017, 43(4): 620-628. (in Chinese with English abstract)
DOI URL |
|
[21] |
DONG L, LU Y, LIU S B. Genome-wide member identification, phylogeny and expression analysis of PEBP gene family in wheat and its progenitors[J]. PeerJ, 2020, 8: e10483.
DOI URL |
[22] |
HUANG N C, LUO K R, YU T S. Mobility of antiflorigen and PEBP mRNAs in tomato-tobacco heterografts[J]. Plant Physiology, 2018, 178(2): 783-794.
DOI URL |
[23] |
LEE C, KIM S J, JIN S, et al. Genetic interactions reveal the antagonistic roles of FT/TSF and TFL1 in the determination of inflorescence meristem identity in Arabidopsis[J]. The Plant Journal, 2019, 99(3): 452-464.
DOI URL |
[24] | 代书桃. 甘蓝型油菜开花调控基因BnFLC.A10和BnFTs的功能分析[D]. 武汉: 华中农业大学, 2015. |
DAI S T. Functional dissection of the flowering regulators BnFLC.A10 and BnFTs in Brassica napus[D]. Wuhan: Huazhong Agricultural University, 2015. (in Chinese with English abstract) | |
[25] |
DANILEVSKAYA O N, MENG X, HOU Z L, et al. A genomic and expression compendium of the expanded PEBP gene family from maize[J]. Plant Physiology, 2007, 146(1): 250-264.
DOI URL |
[26] |
CHARDON F, DAMERVAL C. Phylogenomic analysis of the PEBP gene family in cereals[J]. Journal of Molecular Evolution, 2005, 61(5): 579-590.
DOI URL |
[27] | 谭彬, 魏鹏程, 栗焕楠, 等. 桃PEBP基因家族全基因组鉴定及桃TFL1基因功能分析[J]. 果树学报, 2020, 37(10): 1443-1454. |
TAN B, WEI P C, LI H N, et al. Genome-wide identification of PEBP gene family and functional analysis of TFL1 gene in peach(Prunus persica)[J]. Journal of Fruit Science, 2020, 37(10): 1443-1454. (in Chinese with English abstract) | |
[28] |
MIMIDA N. Functions of the apple TFL1/FT orthologs in phase transition[J]. Scientia Horticulturae, 2013, 156: 106-112.
DOI URL |
[29] |
NAKANO Y, HIGUCHI Y, YOSHIDA Y, et al. Environmental responses of the FT/TFL1 gene family and their involvement in flower induction in Fragaria×ananassa[J]. Journal of Plant Physiology, 2015, 177: 60-66.
DOI URL |
[30] |
张曦予, 贺慧, 李祯, 等. 甘蓝型油菜A7-FT启动子的功能分析[J]. 华北农学报, 2019, 34(2): 59-65.
DOI |
ZHANG X Y, HE H, LI Z, et al. Functional analysis of A7-FT promoter in Brassica napus L[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(2): 59-65. (in Chinese with English abstract)
DOI |
|
[31] |
HASSANKHAH A, RAHEMI M, RAMSHINI H, et al. Flowering in Persian walnut: patterns of gene expression during flower development[J]. BMC Plant Biology, 2020, 20(1): 136.
DOI PMID |
[1] | 宋传生, 康晓飞, 樊庆忠, 王俊刚, 石雪, 张子汝, 谭青青, 曾小娇, 刘芳, 李英赛, 侯常跃. 枣疯病植原体胸苷激酶基因的克隆、序列分析与原核表达[J]. 浙江农业学报, 2023, 35(8): 1763-1772. |
[2] | 刘光瑞, 宗渊, 李云, 曹东, 刘宝龙, 包雪梅, 李建民. 当归转录因子AsMYB44的克隆与功能研究[J]. 浙江农业学报, 2023, 35(6): 1253-1264. |
[3] | 张新业, 李文静, 朱姝, 孙艳香, 王聪艳, 闫训友, 周志国. 三种伞形科蔬菜作物棕榈酰基转移酶基因家族的鉴定与分析[J]. 浙江农业学报, 2023, 35(6): 1315-1327. |
[4] | 梁妃爽, 梁华芳, 黄佳宇, 王潘妹, 温崇庆. RNA干扰PhCatC1/2基因对波纹龙虾相关免疫基因表达的影响[J]. 浙江农业学报, 2023, 35(5): 1037-1047. |
[5] | 燕存尧, 贾凯, 闫会转, 高杰. 芜菁BrrLOX7基因克隆、表达及生物信息学分析[J]. 浙江农业学报, 2023, 35(4): 831-840. |
[6] | 董飞燕, 宋婧含, 张华东, 吴昊天, 李雅倩, 刘孟伟, 高春保, 方正武, 刘易科. 小麦TaPAT1-2D基因的克隆与表达分析[J]. 浙江农业学报, 2023, 35(1): 23-32. |
[7] | 郭春倩, 田洁. 大蒜己糖激酶基因AsHXK2的克隆及其参与根际促生菌缓解干旱胁迫的表达分析[J]. 浙江农业学报, 2022, 34(9): 1925-1934. |
[8] | 刘凯, 谢楠, 郭炜, 马恒甲. 三角鲂MHCⅠα基因全长cDNA克隆与生物信息学分析[J]. 浙江农业学报, 2022, 34(6): 1162-1174. |
[9] | 洪森荣, 向琼钰, 谢颖, 熊晨露, 徐晨慧, 徐璐珂, 陈荣华, 蔡红. 怀玉山三叶青烟草病毒增殖蛋白1基因克隆、亚细胞定位和组织表达分析[J]. 浙江农业学报, 2022, 34(6): 1193-1204. |
[10] | 樊有存, 张红岩, 杨旭升, 韩芊, 刘玉皎, 武学霞. 蚕豆耐盐相关基因VfHKT1;1的克隆、生物信息学分析及表达特性[J]. 浙江农业学报, 2022, 34(4): 756-765. |
[11] | 龚伟伟, 赵懿琛, 罗显麟, 杨玲玲, 赵德刚. 花烟草NaD1基因的表达及其启动子序列分析[J]. 浙江农业学报, 2022, 34(2): 232-239. |
[12] | 杨卫军, 董艳蕾, 吴秋芳, 张美玲, 韩丽滨, 张元臣. 棉蚜ATP合成酶基因AgoATPb的克隆与表达[J]. 浙江农业学报, 2022, 34(2): 329-336. |
[13] | 陈纪鹏, 刘小林, 李生强, 刘显军, 胡月清, 陈桃. 白菜型油菜黄芽白与甘蓝型油菜湘油15种间杂交及其杂种后代的遗传学特征[J]. 浙江农业学报, 2021, 33(7): 1170-1176. |
[14] | 孟亚轩, 孙颖琦, 赵心月, 王凤霞, 瓮巧云, 刘颖慧. 谷子GH5基因家族全基因组鉴定和表达分析[J]. 浙江农业学报, 2021, 33(10): 1797-1807. |
[15] | 何佳琦, 翟莹, 张军, 邱爽, 李铭杨, 赵艳, 张梅娟, 马天意. 大豆转录因子GmDof1.5的克隆与非生物胁迫诱导表达[J]. 浙江农业学报, 2021, 33(1): 1-7. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||