浙江农业学报 ›› 2023, Vol. 35 ›› Issue (8): 1927-1936.DOI: 10.3969/j.issn.1004-1524.20221222

• 生物系统工程 • 上一篇    下一篇

基于Mask RCNN和视觉技术的玉米种子发芽自动检测方法

马启良a(), 杨小明a, 胡水星a, 黄子鸿b, 祁亨年b,c,*()   

  1. 湖州师范学院 a. 信息技术中心;b. 信息工程学院;c. 研究生院,浙江 湖州 313000
  • 收稿日期:2022-08-22 出版日期:2023-08-25 发布日期:2023-08-29
  • 作者简介:马启良(1986—),男,安徽六安人,硕士,讲师,主要从事农业遥感与自动化研究。E-mail:mql@zjhu.edu.cn
  • 通讯作者: *祁亨年,E-mail:02466@zjhu.edu.cn
  • 基金资助:
    浙江省重点研发计划(2019C02013);湖州市自然科学资金(2021YZ18)

Automatic detection method of corn seed germination based on Mask RCNN and vision technology

MA Qilianga(), YANG Xiaominga, HU Shuixinga, HUANG Zihongb, QI Hengnianb,c,*()   

  1. a. Information Technology Center; b. School of Information Engineering; c. Postgraduate School, Huzhou University, Huzhou 313000, Zhejiang, China
  • Received:2022-08-22 Online:2023-08-25 Published:2023-08-29

摘要:

种子标准发芽试验中,为获取种子发芽和生长情况,需借助人工定时对种子的发芽率、发芽势、芽长和根长等相关指标进行统计和测量,该测定过程费时费力,且易对发芽的幼苗造成损伤。针对这些问题,该研究基于Mask RCNN(基于区域的卷积神经网络)模型和机器视觉技术设计了一种玉米种子发芽自动检测方法。首先,在玉米种子发芽试验的7 d内,每天采集模型训练和测试所需的图像,并用Labelme工具对种子位置进行标注,再利用标注图像训练种子定位模型;其次,根据模型定位出的玉米种子掩膜区域,设定一个监测种子发芽的椭圆区域,自动识别种子发芽状态;最后,利用骨架提取和深度搜索算法实现发芽种子幼苗主骨架线的提取,通过计算种子掩膜的质心坐标位置,实现芽和根长度的分别统计。结果表明,该方法能够有效识别发芽种子,实现发芽试验中玉米种子的发芽率、发芽势、芽长、根长等指标的自动统计,可为种子发芽试验的自动化管理提供技术参考。

关键词: 标准发芽试验, 发芽率, Mask RCNN, 玉米, 骨架提取, 芽长, 根长

Abstract:

In the standard germination test of seed, manual timing is required to collect data on seed germination and growth, such as germination rate, germination vigor, shoot length, and root length. However, this measurement process is time-consuming, laborious, and can easily damage germinating seedlings. To address these issues, a automatic detection method for maize seed germination is designed based on the Mask RCNN (region-based convolutional neural network) model and machine vision technology. First, within the 7-day germination test period of maize seeds, images for model training and testing are collected daily, and the seed positions are annotated using the Labelme tool, then a seed localization model is trained based on the annotated images. Second, based on the seed mask regions located by the model, an elliptical region for monitoring seed germination is defined, and the seed germination status is automatically identified. Finally, the main skeleton line of germinating seedlings is extracted using skeleton extraction and depth-first search algorithms, shoot length and root length are measured separately by calculating the centroid coordinates of seed masks. The results show that this method can effectively recognize germinating seeds and automatically measure indicators such as germination rate, germination vigor, shoot length and root length in maize seed germination experiments, providing a technical reference for the automation management of seed germination tests.

Key words: standard germination test, germination rate, mask region-based convolutional neural network, corn, skeleton extraction, shoot length, root length

中图分类号: