浙江农业学报 ›› 2024, Vol. 36 ›› Issue (11): 2501-2509.DOI: 10.3969/j.issn.1004-1524.20240485
高憬1,2(
), 陆玲鸿2, 古咸彬2, 范飞2, 宋根华2, 张慧琴2,*(
)
收稿日期:2024-06-05
出版日期:2024-11-25
发布日期:2024-11-27
作者简介:高憬(1998—),女,江西上饶人,硕士研究生,研究方向为植物学。E-mail: gaojing202406@163.com
通讯作者:
*张慧琴,E-mail:zhqzaas@163.com
基金资助:
GAO Jing1,2(
), LU Linghong2, GU Xianbin2, FAN Fei2, SONG Genhua2, ZHANG Huiqin2,*(
)
Received:2024-06-05
Online:2024-11-25
Published:2024-11-27
摘要:
为明确AcWRKY94在盐胁迫下的功能,从红阳猕猴桃中克隆得到WRKY转录因子AcWRKY94,对AcWRKY94进行生物信息学分析,并分析其在盐处理下的表达水平;利用农杆菌介导的转基因方法在本氏烟中过表达AcWRKY94,并分析转基因烟草的耐盐性。结果显示,AcWRKY94基因的开放阅读框长906 bp,编码301个氨基酸。启动子序列分析显示,AcWRKY94可能响应脱落酸、水杨酸、茉莉酸甲酯、赤霉素、干旱和厌氧等多种信号。多序列比对和系统进化树分析显示,AcWRKY94与多个物种中的同源序列均包含1个WRKYGQK保守结构域和1个C2HC型锌指结构,属于WRKY Group Ⅲ成员,其中猕猴桃AcWRKY94与茶树中CsWRKY70-like蛋白亲缘关系最近。实时荧光定量PCR(qRT-PCR)分析表明,猕猴桃根中AcWRKY94的表达量受盐处理显著诱导。盐处理后,与野生型烟草相比,过表达AcWRKY94烟草对盐的抗性显著增强,丙二醛(MDA)和H2O2含量显著降低,脯氨酸(Pro)含量显著升高,超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性显著升高。上述结果表明,AcWRKY94可受盐胁迫诱导,可能参与猕猴桃抗盐调控。
中图分类号:
高憬, 陆玲鸿, 古咸彬, 范飞, 宋根华, 张慧琴. 猕猴桃AcWRKY94基因的克隆及其在盐胁迫下的功能分析[J]. 浙江农业学报, 2024, 36(11): 2501-2509.
GAO Jing, LU Linghong, GU Xianbin, FAN Fei, SONG Genhua, ZHANG Huiqin. Cloning of AcWRKY94 gene from kiwifruit and its functional analysis under salt stress[J]. Acta Agriculturae Zhejiangensis, 2024, 36(11): 2501-2509.
| 引物名称 Primer name | 正向引物序列(5'→3') Forward primer sequence (5'→3') | 反向引物序列(5'→3') Reverse primer sequence (5'→3') | 用途 Application |
|---|---|---|---|
| AcWRKY94-CDS | CAGTGGTCTCACAACATGGGCATCCTTCGGCCTGA | CAGTGGTCTCATACACTCACCCTCACCAAAGCAAA | 基因克隆 Gene cloning |
| AcWRKY94-qPCR | AAGACCTTGGACGCATGGAT | ATTTGGTGGGGCTCCTCTTG | 实时荧光定量PCR qRT-PCR |
| AcActin | TGGAATGGAAGCTGCAGGA | CACCACTGAGCACAATGTTGC | 内参基因Reference gene |
| AcWRKY94-check | GAAGTGTGCGTGTGATTCGTGT | TGAGATTTTGAGGGTGTTTGTG | 转基因苗鉴定 |
| Identification of transgenic seedling |
表1 引物序列
Table 1 Sequences of primers
| 引物名称 Primer name | 正向引物序列(5'→3') Forward primer sequence (5'→3') | 反向引物序列(5'→3') Reverse primer sequence (5'→3') | 用途 Application |
|---|---|---|---|
| AcWRKY94-CDS | CAGTGGTCTCACAACATGGGCATCCTTCGGCCTGA | CAGTGGTCTCATACACTCACCCTCACCAAAGCAAA | 基因克隆 Gene cloning |
| AcWRKY94-qPCR | AAGACCTTGGACGCATGGAT | ATTTGGTGGGGCTCCTCTTG | 实时荧光定量PCR qRT-PCR |
| AcActin | TGGAATGGAAGCTGCAGGA | CACCACTGAGCACAATGTTGC | 内参基因Reference gene |
| AcWRKY94-check | GAAGTGTGCGTGTGATTCGTGT | TGAGATTTTGAGGGTGTTTGTG | 转基因苗鉴定 |
| Identification of transgenic seedling |
| 作用元件 Functional element | 序列 Sequence | 位置 Position | 位点功能 Function of site |
|---|---|---|---|
| ABRE | ACGTG | -160、-430、-734、-1005、-1613 | 参与ABA响应 |
| Cis-acting element involved in the abscisic acid responsiveness | |||
| TCA-element | CCATCTTTTT | -1170 | 参与SA响应 |
| Cis-acting element involved in salicylic acid responsiveness | |||
| CGTCA-motif | CGTCA | -171、-174、-185 | 参与MeJA响应 |
| Cis-acting regulatory element involved in the MeJA-responsiveness | |||
| GARE-motif | TCTGTTG | -463 | 参与赤霉素响应 |
| Cis-acting element involved in gibberellin-responsiveness | |||
| TATC-box | TATCCCA | -490、-1293、-1471 | 参与赤霉素响应 |
| Cis-acting element involved in gibberellin-responsiveness | |||
| MBS | CAACTG | -526 | 参与干旱诱导的MYB结合位点 |
| MYB binding site involved in drought-inducibility | |||
| ARE | AAACCA | -790、-1550 | 参与厌氧诱导 |
| Cis-acting regulatory element essential for the anaerobic induction | |||
| W box | TTGACC | -382 | WRKY转录因子结合位点 |
| WRKY transcription factor binding site |
表2 AcWRKY94 基因上游调控序列顺式作用元件分析
Table 2 Analysis of cis-acting regulatory elements in the upstream regulatory sequences of AcWRKY94
| 作用元件 Functional element | 序列 Sequence | 位置 Position | 位点功能 Function of site |
|---|---|---|---|
| ABRE | ACGTG | -160、-430、-734、-1005、-1613 | 参与ABA响应 |
| Cis-acting element involved in the abscisic acid responsiveness | |||
| TCA-element | CCATCTTTTT | -1170 | 参与SA响应 |
| Cis-acting element involved in salicylic acid responsiveness | |||
| CGTCA-motif | CGTCA | -171、-174、-185 | 参与MeJA响应 |
| Cis-acting regulatory element involved in the MeJA-responsiveness | |||
| GARE-motif | TCTGTTG | -463 | 参与赤霉素响应 |
| Cis-acting element involved in gibberellin-responsiveness | |||
| TATC-box | TATCCCA | -490、-1293、-1471 | 参与赤霉素响应 |
| Cis-acting element involved in gibberellin-responsiveness | |||
| MBS | CAACTG | -526 | 参与干旱诱导的MYB结合位点 |
| MYB binding site involved in drought-inducibility | |||
| ARE | AAACCA | -790、-1550 | 参与厌氧诱导 |
| Cis-acting regulatory element essential for the anaerobic induction | |||
| W box | TTGACC | -382 | WRKY转录因子结合位点 |
| WRKY transcription factor binding site |
图4 盐处理下猕猴桃叶(A)和根(B)中AcWRKY94的表达模式分析 *和****分别表示在P<0.05和P<0.0001水平差异显著。
Fig.4 Expression pattern analysis of AcWRKY94 in kiwifruit leaves (A) and roots (B) under salt treatment * and **** meant significant differences at the levels of P<0.05 and P<0.0001,respectively.
图5 过表达AcWRKY94烟草的PCR(A)和qRT-PCR(B)鉴定 +表示质粒阳性对照,-表示阴性对照,数字1~4、6、7表示6个转基因阳性株系。WT表示野生型,OE表示过表达株系。***表示在P<0.001水平差异显著。下同。
Fig.5 PCR (A) and qRT-PCR (B) identification of AcWRKY94 overexpressing tobacco +represented a positive plasmid control,-represented a negative control, and the numbers 1 to 4, 6 and 7 represented 6 transgenic positive lines. WT represented the wild type and OE represented the overexpressed line. *** meant significant differences at the level of P<0.001, The same as below.
图6 野生型和过表达AcWRKY94烟草在盐处理下的表型(A)和鲜重(B) *、**分别表示在P<0.05和P<0.01水平差异显著。下同。
Fig.6 Phenotype (A) and fresh weight (B) of wild-type and AcWRKY94-overexpressed tobacco under salt stress * and ** meant significant differences at the levels of P<0.05 and P<0.01, respectively. The same as below.
图7 盐胁迫条件下野生型和过表达AcWRKY94烟草的生理指标分析 数据以鲜重计。柱上无相同小写字母表示差异显著(P<0.05)。
Fig.7 Analysis of physiological indices in the wild-type and AcWRKY94-overexpressed tobacco under salt stress Data was detected based on fresh weight. The bars marked without the same lowercase letter indicated significant differences at P<0.05.
| [1] | VAN ZELM E, ZHANG Y X, TESTERINK C. Salt tolerance mechanisms of plants[J]. Annual Review of Plant Biology, 2020, 71: 403-433. |
| [2] | LIANG X Y, LI J F, YANG Y Q, et al. Designing salt stress-resilient crops: current progress and future challenges[J]. Journal of Integrative Plant Biology, 2024, 66(3): 303-329. |
| [3] | MUNNS R. Genes and salt tolerance: bringing them together[J]. The New Phytologist, 2005, 167(3): 645-663. |
| [4] | MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651-681. |
| [5] | 国庆. 小黑杨转录因子PsnHDZ01基因调控抗旱耐盐的分子机制研究[D]. 哈尔滨: 东北林业大学, 2022. |
| GUO Q. Molecular mechanism of transcription factor PsnHDZ01 in regulation of drought and salt tolerance in Populus simonii×Populus nigra[D]. Harbin:Northeast Forestry University, 2022. (in Chinese with English abstract) | |
| [6] | EULGEM T, RUSHTON P J, ROBATZEK S, et al. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science, 2000, 5(5): 199-206. |
| [7] | CHEN L G, ZHANG L P, LI D B, et al. WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(21): E1963-E1971. |
| [8] | HU Y R, CHEN L G, WANG H P, et al. Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance[J]. The Plant Journal, 2013, 74(5): 730-745. |
| [9] | QIU Y, YU D. Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis[J]. Environmental and Experimental Botany, 2009, 65(1): 35-47. |
| [10] | DONG Q L, ZHENG W Q, DUAN D Y, et al. MdWRKY30, a group IIa WRKY gene from apple, confers tolerance to salinity and osmotic stresses in transgenic apple callus and Arabidopsis seedlings[J]. Plant Science, 2020, 299: 110611. |
| [11] | 相立, 赵蕾, 王玫, 等. 苹果MdWRKY74的克隆和功能分析[J]. 园艺学报, 2022, 49(3): 482-492. |
| XIANG L, ZHAO L, WANG M, et al. Cloning and functional analysis of MdWRKY74 in apple[J]. Acta Horticulturae Sinica, 2022, 49(3): 482-492. (in Chinese with English abstract) | |
| [12] | YU Y A, HE L Y, WU Y X. Wheat WRKY transcription factor TaWRKY24 confers drought and salt tolerance in transgenic plants[J]. Plant Physiology and Biochemistry, 2023, 205: 108137. |
| [13] | SHI W Y, DU Y T, MA J, et al. The WRKY transcription factor GmWRKY12 confers drought and salt tolerance in soybean[J]. International Journal of Molecular Sciences, 2018, 19(12): 4087. |
| [14] | ZHU H, JIANG Y N, GUO Y, et al. A novel salt inducible WRKY transcription factor gene, AhWRKY 75, confers salt tolerance in transgenic peanut[J]. Plant Physiology and Biochemistry, 2021, 160: 175-183. |
| [15] | LONG L X, GU L J, WANG S J, et al. Progress in the understanding of WRKY transcription factors in woody plants[J]. International Journal of Biological Macromolecules, 2023, 242(Pt 1): 124379. |
| [16] | WANG H P, CHEN W Q, XU Z Y, et al. Functions of WRKYs in plant growth and development[J]. Trends in Plant Science, 2023, 28(6): 630-645. |
| [17] | XING M Y, WANG W Q, ZHANG C, et al. Identification and functional analyses of the transcription factors AcWRKY117 and AcWRKY29 involved in waterlogging response in kiwifruit plant[J]. Scientia Horticulturae, 2024, 324: 112568. |
| [18] | GAN Z Y, YUAN X, SHAN N, et al. AcWRKY40 mediates ethylene biosynthesis during postharvest ripening in kiwifruit[J]. Plant Science, 2021, 309: 110948. |
| [19] | WANG J, LIU X F, ZHANG H Q, et al. Transcriptional and post-transcriptional regulation of ethylene biosynthesis by exogenous acetylsalicylic acid in kiwifruit[J]. Horticulture Research, 2022, 9: uhac116. |
| [20] | GULZAR F, FU J Y, ZHU C Y, et al. Maize WRKY transcription factor ZmWRKY79 positively regulates drought tolerance through elevating ABA biosynthesis[J]. International Journal of Molecular Sciences, 2021, 22(18): 10080. |
| [21] | DONG Q L, DUAN D Y, WANG F, et al. The MdVQ37-MdWRKY100 complex regulates salicylic acid content and MdRPM1 expression to modulate resistance to Glomerella leaf spot in apples[J]. Plant Biotechnology Journal, 2024, 22(8): 2364-2376. |
| [22] | WANG Z R, GAO M, LI Y F, et al. The transcription factor SlWRKY37 positively regulates jasmonic acid and dark-induced leaf senescence in tomato[J]. Journal of Experimental Botany, 2022, 73(18): 6207-6225. |
| [23] | JIANG J J, MA S H, YE N H, et al. WRKY transcription factors in plant responses to stresses[J]. Journal of Integrative Plant Biology, 2017, 59(2): 86-101. |
| [24] | LU K K, SONG R F, GUO J X, et al. CycC1;1-WRKY75 complex-mediated transcriptional regulation of SOS1 controls salt stress tolerance in Arabidopsis[J]. The Plant Cell, 2023, 35(7): 2570-2591. |
| [25] | MA J L, LI C H, SUN L L, et al. The SlWRKY57-SlVQ21/SlVQ16 module regulates salt stress in tomato[J]. Journal of Integrative Plant Biology, 2023, 65(11): 2437-2455. |
| [26] | YU J, ZHU C S, XUAN W, et al. Genome-wide association studies identify OsWRKY53 as a key regulator of salt tolerance in rice[J]. Nature Communications, 2023, 14(1): 3550. |
| [1] | 胡莹洁, 杜晨琪, 王鎏帆, 寿建昕, 王超, 徐梅, 严旭. 囊泡运输调控植物盐胁迫响应的研究进展[J]. 浙江农业学报, 2025, 37(9): 2003-2011. |
| [2] | 关秀生, 刘铁山, 王娟, 张茂林, 刘春晓, 董瑞, 关海英, 刘强, 徐扬, 何春梅. 玉米NF-YA家族基因的生物信息学分析与克隆[J]. 浙江农业学报, 2025, 37(8): 1605-1614. |
| [3] | 蒋明, 张胜, 陈孝赏, 张慧娟. 西兰花灰霉病响应基因BoWRKY15的克隆与功能鉴定[J]. 浙江农业学报, 2025, 37(8): 1723-1732. |
| [4] | 谭海霞, 彭红丽, 王连龙, 魏建梅. 马铃薯健康株与疮痂病株根区土壤微生物群落多样性差异分析[J]. 浙江农业学报, 2025, 37(8): 1743-1754. |
| [5] | 崔博文, 张思懿, 王佳玲, 王竞红, 蔺吉祥, 杨青杰. 宽叶苔草WRKY家族成员生物信息学分析与耐旱基因挖掘[J]. 浙江农业学报, 2025, 37(10): 2087-2103. |
| [6] | 廖小龙, 王兴胜, 陈勇, 李斌, 洪思丹, 梅利那, 国颖. 杨属植物HKT基因家族成员鉴定与盐胁迫下的表达模式分析[J]. 浙江农业学报, 2025, 37(10): 2104-2115. |
| [7] | 李强, 刘思彤, 黄显斌, 姜君龙, 邓建宇, 王教瑜, 李玲. 山区猕猴桃溃疡病病原菌的鉴定及不同类型高效防治药剂的筛选[J]. 浙江农业学报, 2025, 37(10): 2116-2128. |
| [8] | 刘洵, 夏其乐, 李彦坡, 王阳光, 陆胜民. 瓯柑果渣可溶性和不溶性膳食纤维的提取工艺优化及其理化和功能特性的差异[J]. 浙江农业学报, 2025, 37(1): 189-202. |
| [9] | 俞沁佩, 孙鹂, 张淑文, 俞浙萍, 郑锡良, 戚行江. 园艺作物果实β-半乳糖苷酶研究进展[J]. 浙江农业学报, 2024, 36(9): 2184-2192. |
| [10] | 蒋文骏, 舒红锁, 陈正满, 任典挺, 杨党, 田荣江, 杜照奎. 秋茄KoWRKY43基因克隆、表达与生物信息学分析[J]. 浙江农业学报, 2024, 36(8): 1832-1843. |
| [11] | 齐学礼, 李莹, 段俊枝. 耐盐基因在小麦耐盐基因工程中的应用[J]. 浙江农业学报, 2024, 36(6): 1447-1457. |
| [12] | 张翰生, 昌秦湘, 康建忠, 梁宗锁. 核桃的营养价值及其开发利用研究进展[J]. 浙江农业学报, 2024, 36(4): 905-919. |
| [13] | 唐跃辉, 陈淑颖, 何文琼, 王涵瑾, 包欣欣, 贾赛男, 王瑶瑶, 陈宇阳, 杨同文. 麻风树JcERF22基因的克隆与功能分析[J]. 浙江农业学报, 2024, 36(10): 2219-2228. |
| [14] | 皮艺萌, 鲁艳辉, 吕仲贤, 许益鹏, 徐红星. 农田杂草在害虫防治中的作用[J]. 浙江农业学报, 2024, 36(10): 2426-2436. |
| [15] | 乔红雍, 袁涛, 赵信勇, 杨会岩. 不同株龄鲁菏红细根内生微生物群落变化特征[J]. 浙江农业学报, 2024, 36(1): 115-126. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||