[1] |
VAN ZELM E, ZHANG Y X, TESTERINK C. Salt tolerance mechanisms of plants[J]. Annual Review of Plant Biology, 2020, 71: 403-433.
|
[2] |
LIANG X Y, LI J F, YANG Y Q, et al. Designing salt stress-resilient crops: current progress and future challenges[J]. Journal of Integrative Plant Biology, 2024, 66(3): 303-329.
|
[3] |
MUNNS R. Genes and salt tolerance: bringing them together[J]. The New Phytologist, 2005, 167(3): 645-663.
|
[4] |
MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651-681.
|
[5] |
国庆. 小黑杨转录因子PsnHDZ01基因调控抗旱耐盐的分子机制研究[D]. 哈尔滨: 东北林业大学, 2022.
|
|
GUO Q. Molecular mechanism of transcription factor PsnHDZ01 in regulation of drought and salt tolerance in Populus simonii×Populus nigra[D]. Harbin:Northeast Forestry University, 2022. (in Chinese with English abstract)
|
[6] |
EULGEM T, RUSHTON P J, ROBATZEK S, et al. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science, 2000, 5(5): 199-206.
|
[7] |
CHEN L G, ZHANG L P, LI D B, et al. WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(21): E1963-E1971.
|
[8] |
HU Y R, CHEN L G, WANG H P, et al. Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance[J]. The Plant Journal, 2013, 74(5): 730-745.
|
[9] |
QIU Y, YU D. Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis[J]. Environmental and Experimental Botany, 2009, 65(1): 35-47.
|
[10] |
DONG Q L, ZHENG W Q, DUAN D Y, et al. MdWRKY30, a group IIa WRKY gene from apple, confers tolerance to salinity and osmotic stresses in transgenic apple callus and Arabidopsis seedlings[J]. Plant Science, 2020, 299: 110611.
|
[11] |
相立, 赵蕾, 王玫, 等. 苹果MdWRKY74的克隆和功能分析[J]. 园艺学报, 2022, 49(3): 482-492.
|
|
XIANG L, ZHAO L, WANG M, et al. Cloning and functional analysis of MdWRKY74 in apple[J]. Acta Horticulturae Sinica, 2022, 49(3): 482-492. (in Chinese with English abstract)
|
[12] |
YU Y A, HE L Y, WU Y X. Wheat WRKY transcription factor TaWRKY24 confers drought and salt tolerance in transgenic plants[J]. Plant Physiology and Biochemistry, 2023, 205: 108137.
|
[13] |
SHI W Y, DU Y T, MA J, et al. The WRKY transcription factor GmWRKY12 confers drought and salt tolerance in soybean[J]. International Journal of Molecular Sciences, 2018, 19(12): 4087.
|
[14] |
ZHU H, JIANG Y N, GUO Y, et al. A novel salt inducible WRKY transcription factor gene, AhWRKY 75, confers salt tolerance in transgenic peanut[J]. Plant Physiology and Biochemistry, 2021, 160: 175-183.
|
[15] |
LONG L X, GU L J, WANG S J, et al. Progress in the understanding of WRKY transcription factors in woody plants[J]. International Journal of Biological Macromolecules, 2023, 242(Pt 1): 124379.
|
[16] |
WANG H P, CHEN W Q, XU Z Y, et al. Functions of WRKYs in plant growth and development[J]. Trends in Plant Science, 2023, 28(6): 630-645.
|
[17] |
XING M Y, WANG W Q, ZHANG C, et al. Identification and functional analyses of the transcription factors AcWRKY117 and AcWRKY29 involved in waterlogging response in kiwifruit plant[J]. Scientia Horticulturae, 2024, 324: 112568.
|
[18] |
GAN Z Y, YUAN X, SHAN N, et al. AcWRKY40 mediates ethylene biosynthesis during postharvest ripening in kiwifruit[J]. Plant Science, 2021, 309: 110948.
|
[19] |
WANG J, LIU X F, ZHANG H Q, et al. Transcriptional and post-transcriptional regulation of ethylene biosynthesis by exogenous acetylsalicylic acid in kiwifruit[J]. Horticulture Research, 2022, 9: uhac116.
|
[20] |
GULZAR F, FU J Y, ZHU C Y, et al. Maize WRKY transcription factor ZmWRKY79 positively regulates drought tolerance through elevating ABA biosynthesis[J]. International Journal of Molecular Sciences, 2021, 22(18): 10080.
|
[21] |
DONG Q L, DUAN D Y, WANG F, et al. The MdVQ37-MdWRKY100 complex regulates salicylic acid content and MdRPM1 expression to modulate resistance to Glomerella leaf spot in apples[J]. Plant Biotechnology Journal, 2024, 22(8): 2364-2376.
|
[22] |
WANG Z R, GAO M, LI Y F, et al. The transcription factor SlWRKY37 positively regulates jasmonic acid and dark-induced leaf senescence in tomato[J]. Journal of Experimental Botany, 2022, 73(18): 6207-6225.
|
[23] |
JIANG J J, MA S H, YE N H, et al. WRKY transcription factors in plant responses to stresses[J]. Journal of Integrative Plant Biology, 2017, 59(2): 86-101.
|
[24] |
LU K K, SONG R F, GUO J X, et al. CycC1;1-WRKY75 complex-mediated transcriptional regulation of SOS1 controls salt stress tolerance in Arabidopsis[J]. The Plant Cell, 2023, 35(7): 2570-2591.
|
[25] |
MA J L, LI C H, SUN L L, et al. The SlWRKY57-SlVQ21/SlVQ16 module regulates salt stress in tomato[J]. Journal of Integrative Plant Biology, 2023, 65(11): 2437-2455.
|
[26] |
YU J, ZHU C S, XUAN W, et al. Genome-wide association studies identify OsWRKY53 as a key regulator of salt tolerance in rice[J]. Nature Communications, 2023, 14(1): 3550.
|