浙江农业学报 ›› 2025, Vol. 37 ›› Issue (8): 1666-1679.DOI: 10.3969/j.issn.1004-1524.20241009
李宇静1,2(), 黄倩茹2, 张爱冬2, 吴雪霞2, 朱栋幸3, 肖凯2,*(
)
收稿日期:
2024-11-21
出版日期:
2025-08-25
发布日期:
2025-09-03
作者简介:
李宇静(2000—),女,河南新乡人,硕士,主要从事茄子遗传育种研究。E-mail:zyllyj@163.com
通讯作者:
*肖凯,E-mali:15562791500@163.com
基金资助:
LI Yujing1,2(), HUANG Qianru2, ZHANG Aidong2, WU Xuexia2, ZHU Dongxing3, XIAO Kai2,*(
)
Received:
2024-11-21
Online:
2025-08-25
Published:
2025-09-03
Contact:
XIAO Kai
摘要: 为探究茄子(Solanum melongena L.)SmMYB13基因在干旱胁迫中的功能,从茄子中克隆转录因子SmMYB13,进行生物信息学分析并检测干旱胁迫下该基因的表达情况。采用花序浸染法在拟南芥(Arabidopsis thaliana)中异源过表达SmMYB13基因,分析转基因植株的抗旱性和脱落酸(abscisic acid, ABA)相关基因的表达。结果表明,SmMYB13基因全长777 bp,编码258个氨基酸,属于亲水性不稳定蛋白,无信号肽和跨膜结构,主要定位于细胞核和线粒体。系统进化树分析表明,SmMYB13蛋白与马铃薯和番茄MYB13蛋白的亲缘关系较近。qRT-PCR分析显示,SmMYB13基因在茄子根、茎、叶、果皮、花和果肉中均有表达,在果皮中的表达水平最高。干旱胁迫下,与野生型拟南芥相比,SmMYB13基因过表达拟南芥的叶片细胞膜通透性降低,不易被甲苯胺蓝(toluidine blue, TB)染色,失水率显著下降,超氧化物歧化酶(superoxide dismutase, SOD)、过氧化物酶(peroxidase, POD)和过氧化氢酶(catalase, CAT)活性显著升高,MDA含量降低,抗旱能力增强。ABA处理下,与野生型拟南芥相比,SmMYB13基因过表达拟南芥的ABA负调节基因表达水平上调,正调节基因表达水平下调,对ABA的敏感性降低。上述结果说明,茄子SmMYB13基因是干旱胁迫响应因子,在茄子干旱胁迫中起正调控作用。
中图分类号:
李宇静, 黄倩茹, 张爱冬, 吴雪霞, 朱栋幸, 肖凯. 茄子SmMYB13基因在干旱胁迫响应中的功能[J]. 浙江农业学报, 2025, 37(8): 1666-1679.
LI Yujing, HUANG Qianru, ZHANG Aidong, WU Xuexia, ZHU Dongxing, XIAO Kai. Function of the SmMYB13 gene in drought stress response in eggplant (Solanum melongena L.)[J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1666-1679.
引物名称Primer name | 引物序列Primer sequences(5'-3') | 用途Usage |
---|---|---|
SmMYB13-F SmMYB13-R | GCTGTGAGAAGAAGGGATTGAA GCCCATAGTACCTCGGACCAAA | 基因克隆 Gene cloning |
pEarleyGate 103-MYB13-F pEarleyGate 103-MYB13-R | CTATCTGTCACTTCATCGAAAGGAC CTTGGTTGTTGCTGAATCTCAATAC | 载体构建 Vector construction |
EF1α-F EF1α-R | CCACACTTCTCATATTGCTGTCA ACCAGCATCACCATTCTTCAAAA | 实时荧光定量PCR qRT-PCR |
qSmMYB13-F qSmMYB13-R | GCTGTGAGAAGAAGGGATTGAA GCCCATAGTACCTCGGACCAAA | 实时荧光定量PCR qRT-PCR |
表1 实验所用引物
Table 1 Primers used in this study
引物名称Primer name | 引物序列Primer sequences(5'-3') | 用途Usage |
---|---|---|
SmMYB13-F SmMYB13-R | GCTGTGAGAAGAAGGGATTGAA GCCCATAGTACCTCGGACCAAA | 基因克隆 Gene cloning |
pEarleyGate 103-MYB13-F pEarleyGate 103-MYB13-R | CTATCTGTCACTTCATCGAAAGGAC CTTGGTTGTTGCTGAATCTCAATAC | 载体构建 Vector construction |
EF1α-F EF1α-R | CCACACTTCTCATATTGCTGTCA ACCAGCATCACCATTCTTCAAAA | 实时荧光定量PCR qRT-PCR |
qSmMYB13-F qSmMYB13-R | GCTGTGAGAAGAAGGGATTGAA GCCCATAGTACCTCGGACCAAA | 实时荧光定量PCR qRT-PCR |
基因名称 Gene name | 正向引物序列 Forward primer sequences(5'-3') | 反向引物序列 Reverse primer sequences(5'-3') |
---|---|---|
ACTIN2 | TTACCCGATGGGCAAGTCG | CTCATACGGTCAGCGATACC |
ABI1 | AGAGTGTGCCTTTGTATGGTTTTA | CATCCTCTCTCTACAATAGTTCGCT |
ABI2 | GATGGAAGATTCTGTCTCAACGAT | TGTTTCTCCTTCACTATCTCCTCCG |
ABI5 | CAATAAGAGAGGGATAGCGAACG | AGCGTCCATTGCTGTCTCCTCCA |
ABF4 | AACAACTTAGGAGGTGGTGGTC | CTTCAGGAGTTCATCCATGTTC |
SnRK2.2 | ATATGCCATCGGGATCTGAAT | TGGTTGGGAATGAAGAACAG |
SnRK2.3 | GTTGGATGGAAGTCCTGCTC | TGCCATCATATTCCTGACGA |
PYR1 | GAACAAACTTCGAGAGCGCGCG | CGGGAGTTACGAGCCATAGCTTC |
PYL2 | ATGAAGAGCAGAAAACCCTC | TTCAAGAACTCATTGACCGA |
GTG1 | GAGAGTCTTATGATTGTTTGGCG | TATAAGAAATTTTGAACTGATC |
GTG2 | TCAAGATGACCAAAAGGAGCAA | ACACACAGTAAATGGAACACGCA |
RD29A | GGCGTAACAGGTAAACCTAG | AGTCCGATGTAAACGTCGTCC |
RD22 | GGTTCGGAAGAAGCGGAGG | AAACAGCCCTGACGTGATAT |
COR47 | GGAGTACAAGAACAACGTTCCCG | ATGTCGTCGCTGGTGATTCCTCT |
NCED3 | CAGCTTGTAGCTTTTGGGCTGTA | TAACAGAAACCAGCTGAGCTCGA |
COR15A | GGCCACAAAGAAAGCTTCA | GCTTGTTTGCGGCTTCTTTTC |
KIN1 | AACAAGAATGCCTTCCAAGC | CGCATCCGATACACTCTTTCC |
表2 ABA信号调节基因引物
Table 2 Primers for ABA signal regulatory factor genes
基因名称 Gene name | 正向引物序列 Forward primer sequences(5'-3') | 反向引物序列 Reverse primer sequences(5'-3') |
---|---|---|
ACTIN2 | TTACCCGATGGGCAAGTCG | CTCATACGGTCAGCGATACC |
ABI1 | AGAGTGTGCCTTTGTATGGTTTTA | CATCCTCTCTCTACAATAGTTCGCT |
ABI2 | GATGGAAGATTCTGTCTCAACGAT | TGTTTCTCCTTCACTATCTCCTCCG |
ABI5 | CAATAAGAGAGGGATAGCGAACG | AGCGTCCATTGCTGTCTCCTCCA |
ABF4 | AACAACTTAGGAGGTGGTGGTC | CTTCAGGAGTTCATCCATGTTC |
SnRK2.2 | ATATGCCATCGGGATCTGAAT | TGGTTGGGAATGAAGAACAG |
SnRK2.3 | GTTGGATGGAAGTCCTGCTC | TGCCATCATATTCCTGACGA |
PYR1 | GAACAAACTTCGAGAGCGCGCG | CGGGAGTTACGAGCCATAGCTTC |
PYL2 | ATGAAGAGCAGAAAACCCTC | TTCAAGAACTCATTGACCGA |
GTG1 | GAGAGTCTTATGATTGTTTGGCG | TATAAGAAATTTTGAACTGATC |
GTG2 | TCAAGATGACCAAAAGGAGCAA | ACACACAGTAAATGGAACACGCA |
RD29A | GGCGTAACAGGTAAACCTAG | AGTCCGATGTAAACGTCGTCC |
RD22 | GGTTCGGAAGAAGCGGAGG | AAACAGCCCTGACGTGATAT |
COR47 | GGAGTACAAGAACAACGTTCCCG | ATGTCGTCGCTGGTGATTCCTCT |
NCED3 | CAGCTTGTAGCTTTTGGGCTGTA | TAACAGAAACCAGCTGAGCTCGA |
COR15A | GGCCACAAAGAAAGCTTCA | GCTTGTTTGCGGCTTCTTTTC |
KIN1 | AACAAGAATGCCTTCCAAGC | CGCATCCGATACACTCTTTCC |
物种 Species | 蛋白质序列号 Protein serial number | 相似度 Similarity/% |
---|---|---|
马铃薯Solanum tuberosum L. | XP—006352742. | 82 |
番茄Solanum lycopersicum L. | XP—015078812.2 | 77 |
辣椒Capsicum annuum | XP—016576820.1 | 72 |
烟草Nicotiana tabacum | XP—016496658.1 | 74 |
樟树Cinnamomum camphora L. | XP—009770485.1 | 73 |
巴西橡胶树Hevea brasiliensis | XP—021640273.1 | 49 |
莴苣Lactuca sativa | XP—023769776.1 | 49 |
牵牛花Ipomoea nil | XP—019189153.1 | 51 |
铁皮石斛 | XP—020684786.1 | 51 |
Dendrobium officinale Kimura et Migo. |
表3 茄子SmMYB13蛋白序列与其他物种蛋白序列的相似度
Table 3 The similarity of SmMYB13 protein sequence between eggplant and other species
物种 Species | 蛋白质序列号 Protein serial number | 相似度 Similarity/% |
---|---|---|
马铃薯Solanum tuberosum L. | XP—006352742. | 82 |
番茄Solanum lycopersicum L. | XP—015078812.2 | 77 |
辣椒Capsicum annuum | XP—016576820.1 | 72 |
烟草Nicotiana tabacum | XP—016496658.1 | 74 |
樟树Cinnamomum camphora L. | XP—009770485.1 | 73 |
巴西橡胶树Hevea brasiliensis | XP—021640273.1 | 49 |
莴苣Lactuca sativa | XP—023769776.1 | 49 |
牵牛花Ipomoea nil | XP—019189153.1 | 51 |
铁皮石斛 | XP—020684786.1 | 51 |
Dendrobium officinale Kimura et Migo. |
图4 SmMYB13基因转录激活活性的验证(A)及其在茄子不同器官中的相对表达水平(B) 柱上无相同小写字母表示差异显著(p<0.05)。
Fig.4 Verification of the transcriptional activation activity of the SmMYB13 gene (A) and its relative expression levels in different organs of Solanum melongena L. (B) The bars marked without the same lowercase letter indicated significant differences (p<0.05).
图5 不同非生物胁迫下茄子幼苗叶片中SmMYB13基因的相对表达水平 “****”表示与野生型相比在p<0.001水平存在显著差异,“ns”表示与野生型相比差异不显著(p>0.05)。同一处理不同时间无相同小写字母表示差异显著(p<0.05)。下同。
Fig.5 Relative expression levels of the SmMYB13 gene in eggplant seedling leaves under different abiotic stresses “****” indicates significant differences compared with the wild type at the p<0.001 level,“ns” indicates no significant difference compared with the wild type (p>0.05). Different lowercase letters for the same treatment at different sampling times indicate significant differences (p<0.05). The same as below.
图6 SmMYB13基因过表达拟南芥的Basta抗性筛选(A)、PCR(B)和qRT-PCR(C)鉴定 +表示阳性对照(质粒);-表示阴性对照(野生型植株);数字1~10表示10个转基因阳性株系。Col-0表示野生型植株,OE表示SmMYB13基因过表达株系。
Fig.6 Identification of SmMYB13 overexpression Arabidopsis thaliana lines by Basta resistance screening (A), PCR (B), and qRT-PCR (C) “+” indicates the positive control (plasmid); “-” indicates the negative control (wild-type plant); Numbers 1-10 represent ten transgenic positive lines. Col-0 indicates the wild-type plant, and OE represents the SmMYB13 overexpression line.
图7 干旱胁迫下拟南芥叶片的失水率、TB染色结果和植株的表型 A,干旱处理后0~6 h拟南芥叶片的失水率,“**”“****”分别表示与野生型相比在p<0.01和p<0.001水平存在显著差异;B,干旱处理后拟南芥叶片的TB染色结果;C,干旱处理10 d后拟南芥植株的表型。Col-0表示野生型植株,OE表示SmMYB13基因过表达株系。下同。
Fig.7 Water loss rate and Trypan blue (TB) staining results of Arabidopsis thaliana leaves, and phenotypes of Arabidopsis thaliana plants under drought stress A, Water loss rate of Arabidopsis thaliana leaves during 0-6 h under drought treatment, “**” and “****” indicate significant differences compared with the wild type at p <0.01 and p<0.001 levels, respectively; B, Trypan blue (TB) staining results of Arabidopsis thaliana leaves after drought treatment; C, Phenotype of Arabidopsis thaliana plants after 10 days of drought treatment. Col-0 indicates the wild-type plant, and OE represents the SmMYB13 overexpression lines. The same as below.
图8 干旱胁迫后拟南芥叶片的POD(A)、CAT(B)、SOD(C)活性和MDA含量(D) POD,过氧化物酶;CAT,过氧化氢酶;SOD,超氧化物歧化酶;MDA,丙二醛。
Fig.8 Activities of POD (A), CAT (B), SOD (C) and MDA content (D) in Arabidopsis thaliana leaves after drought stress POD, Peroxidase; CAT, Catalase; SOD, Superoxide dismutase; MDA, Malondialdehyde.
图9 不同培养基处理7 d后拟南芥根部的表型(A~C)和主根长度(D) 相同培养基中无相同小写字母表示在p<0.05水平存在显著差异。
Fig.9 Phenotype (A-C) and primary root length (D) of Arabidopsis thaliana roots after 7-day treatment with different culture media The bars marked without the same lowercase letter in the same culture medium indicate significant differences (p<0.05).
图10 ABA处理下拟南芥中ABA应答基因和调节基因的相对表达水平 A~F,ABA处理0~12 h时ABA应答基因的相对表达水平;G,ABA处理3 h时调节基因的相对表达水平。“*”“**”分别表示与野生型相比在p<0.05、p<0.01水平存在显著差异。
Fig.10 The relative expression levels of ABA-responsive genes and regulatory genes in Arabidopsis thaliana under ABA treatment A-F, Relative expression levels of ABA-responsive genes within 0-12 h of ABA treatment; G, Relative expression levels of regulatory genes after 3 h of ABA treatment. “*” and “**” indicate significant differences compared with wild type at p<0.05 and p<0.01 levels, respectively.
[1] | 刘守梅, 孙玉强, 王慧中. 植物MYB转录因子研究[J]. 杭州师范大学学报(自然科学版), 2012, 11(2): 146-150. |
LIU S M, SUN Y Q, WANG H Z. Researches on plant MYB transcription factors[J]. Journal of Hangzhou Normal University(Natural Science Edition), 2012, 11(2): 146-150. (in Chinese with English abstract) | |
[2] | DUBOS C, STRACKE R, GROTEWOLD E, et al. MYB transcription factors in Arabidopsis[J]. Trends in Plant Science, 2010, 15(10): 573-581. |
[3] | HUANG Y J, ZHAO H X, GAO F, et al. A R2R3-MYB transcription factor gene, FtMYB13, from Tartary buckwheat improves salt/drought tolerance in Arabidopsis[J]. Plant Physiology and Biochemistry, 2018, 132: 238-248. |
[4] | ZHANG P, WANG R L, YANG X P, et al. The R2R3-MYB transcription factor AtMYB49 modulates salt tolerance in Arabidopsis by modulating the cuticle formation and antioxidant defence[J]. Plant, Cell & Environment, 2020, 43(8): 1925-1943. |
[5] | FANG Q, WANG X Q, WANG H Y, et al. The poplar R2R3 MYB transcription factor PtrMYB94 coordinates with abscisic acid signaling to improve drought tolerance in plants[J]. Tree Physiology, 2020, 40(1): 46-59. |
[6] | ZHU N, DUAN B L, ZHENG H L, et al. An R2R3 MYB gene GhMYB3 functions in drought stress by negatively regulating stomata movement and ROS accumulation[J]. Plant Physiology and Biochemistry, 2023, 197: 107648. |
[7] | ZHANG X, CHEN L C, SHI Q H, et al. SlMYB 102, an R2R3-type MYB gene, confers salt tolerance in transgenic tomato[J]. Plant Science, 2020, 291: 110356. |
[8] | 邱文怡, 王诗雨, 李晓芳, 等. MYB转录因子参与植物非生物胁迫响应与植物激素应答的研究进展[J]. 浙江农业学报, 2020, 32(7): 1317-1328. |
QIU W Y, WANG S Y, LI X F, et al. Functions of plant MYB transcription factors in response to abiotic stress and plant hormones[J]. Acta Agriculturae Zhejiangensis, 2020, 32(7): 1317-1328. (in Chinese with English abstract) | |
[9] | JIANG Z, SHEN L, HE J, et al. Functional analysis of SmMYB39 in salt stress tolerance of eggplant (Solanum melongena L.)[J]. Horticulturae, 2023, 9(8): 848. |
[10] | 刘丹, 崔彦玲, 潜宗伟. 茄子种业现状及遗传育种研究进展[J]. 北方园艺, 2019(1): 165-170. |
LIU D, CUI Y L, QIAN Z W. Research advances in the seed industry and breeding of eggplant[J]. Northern Horticulture, 2019(1): 165-170. (in Chinese with English abstract) | |
[11] | CHEN K, LI G J, BRESSAN R A, et al. Abscisic acid dynamics, signaling, and functions in plants[J]. Journal of Integrative Plant Biology, 2020, 62(1): 25-54. |
[12] | SUN W J, MA Z T, CHEN H, et al. MYB gene family in potato (Solanum tuberosum L.): genome-wide identification of hormone-responsive reveals their potential functions in growth and development[J]. International Journal of Molecular Sciences, 2019, 20(19): 4847. |
[13] | 刘慧娟, 冯志国, 李先文, 等. 采用农杆菌花序浸染法获得转crtB基因拟南芥[J]. 湖北农业科学, 2013, 52(1): 200-202. |
LIU H J, FENG Z G, LI X W, et al. Obtaining crtB transgenic Arabidopsis thaliana by Agrobacterium tumefaciens-floral dip method[J]. Hubei Agricultural Sciences, 2013, 52(1): 200-202. (in Chinese with English abstract) | |
[14] | LI L Z, LI S H, GE H Y, et al. A light-responsive transcription factor SmMYB35 enhances anthocyanin biosynthesis in eggplant (Solanum melongena L.)[J]. Planta, 2021, 255(1): 12. |
[15] | LIM C W, BAEK W, JUNG J, et al. Function of ABA in stomatal defense against biotic and drought stresses[J]. International Journal of Molecular Sciences, 2015, 16(7): 15251-15270. |
[16] | MA Q B, XIA Z L, CAI Z D, et al. GmWRKY16 enhances drought and salt tolerance through an ABA-mediated pathway in Arabidopsis thaliana[J]. Frontiers in Plant Science, 2019, 9: 1979. |
[17] | LUO X, CUI N, ZHU Y M, et al. Over-expression of GsZFP1, an ABA-responsive C2H2-type zinc finger protein lacking a QALGGH motif, reduces ABA sensitivity and decreases stomata size[J]. Journal of Plant Physiology, 2012, 169(12): 1192-1202. |
[18] | 居利香, 雷欣, 赵成志, 等. 辣椒MYB基因家族的鉴定及与辣味关系分析[J]. 园艺学报, 2020, 47(5): 875-892. |
JU L X, LEI X, ZHAO C Z, et al. Identification of MYB family genes and its relationship with pungency of pepper[J]. Acta Horticulturae Sinica, 2020, 47(5): 875-892. (in Chinese with English abstract) | |
[19] | MOGLIA A, FLORIO F E, IACOPINO S, et al. Identification of a new R3 MYB type repressor and functional characterization of the members of the MBW transcriptional complex involved in anthocyanin biosynthesis in eggplant (S. melongena L.)[J]. PLoS One, 2020, 15(5): e0232986. |
[20] | LI Y M, KUI L W L, LIU Z, et al. Genome-wide analysis and expression profiles of the StR2R3-MYB transcription factor superfamily in potato (Solanum tuberosum L.)[J]. International Journal of Biological Macromolecules, 2020, 148: 817-832. |
[21] | CUI J, JIANG N, ZHOU X X, et al. Tomato MYB49 enhances resistance to Phytophthora infestans and tolerance to water deficit and salt stress[J]. Planta, 2018, 248(6): 1487-1503. |
[22] | 田治国, 王飞, 张文娥, 等. 高温胁迫对孔雀草和万寿菊不同品种生长和生理的影响[J]. 园艺学报, 2011, 38(10): 1947-1954. |
TIAN Z G, WANG F, ZHANG W E, et al. Effects of heat stress on growth and physiology of marigold cultivars[J]. Acta Horticulturae Sinica, 2011, 38(10): 1947-1954. (in Chinese with English abstract) | |
[23] | 耿鑫鑫, 于丽杰, 陈超, 等. 番茄SlUDP基因的克隆及其在镉、干旱和盐胁迫中的响应分析[J]. 华北农学报, 2021, 36(2): 46-53. |
GENG X X, YU L J, CHEN C, et al. Cloning of SlUDP gene and its response to cadmium, drought and salt stress in Lycopersicon esculentum Mill[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(2): 46-53. (in Chinese with English abstract) | |
[24] | 刘保国, 张艳文, 姚珂心, 等. 四季秋海棠BsMYB62的抗旱性功能研究[J]. 西北农林科技大学学报(自然科学版), 2024, 52(4): 95-104. |
LIU B G, ZHANG Y W, YAO K X, et al. Drought tolerance functions of BsMYB62 in Begonia semperflorens[J]. Journal of Northwest A&F University(Natural Science Edition), 2024, 52(4): 95-104. (in Chinese with English abstract) | |
[25] | RODRIGUES J A, ESPLEY R V, ALLAN A C. Genomic analysis uncovers functional variation in the C-terminus of anthocyanin-activating MYB transcription factors[J]. Horticulture Research, 2021, 8: 77. |
[26] | LIM J, LIM C W, LEE S C. Role of pepper MYB transcription factor CaDIM1 in regulation of the drought response[J]. Frontiers in Plant Science, 2022, 13: 1028392. |
[1] | 王小慧, 贾赛男, 冯佳宇, 尹馨悦, 刘子萱, 刘雯洁, 赵帅滢, 王姝婧, 唐跃辉. 麻风树JcMYB27基因的克隆与功能分析[J]. 浙江农业学报, 2025, 37(8): 1658-1665. |
[2] | 蒋明, 张胜, 陈孝赏, 张慧娟. 西兰花灰霉病响应基因BoWRKY15的克隆与功能鉴定[J]. 浙江农业学报, 2025, 37(8): 1723-1732. |
[3] | 狄延翠, 嵇泽琳, 王媛媛, 娄世浩, 张涛, 国志信, 申顺善, 朴凤植, 杜南山, 董晓星, 董韩. 番茄SlMYB52基因鉴定、亚细胞定位及表达分析[J]. 浙江农业学报, 2025, 37(4): 808-819. |
[4] | 任元龙, 马蓉, 王晓卓, 张雪艳. 叶面喷施褪黑素对甘蓝幼苗干旱胁迫的缓解作用[J]. 浙江农业学报, 2025, 37(2): 338-348. |
[5] | 刘辉, 王晓蒙, 闫留延, 王永芳, 杨朋娟, 龚珂珂, 李兴杰, 董志平, 贾小平. 谷子B3转录因子可变剪切体分析[J]. 浙江农业学报, 2024, 36(9): 1969-1976. |
[6] | 闵江艳, 唐卓磊, 杨雪, 黄小燕, 黄凯丰, 何佩云. 不同干旱-复水模式对苦荞生长与产量的影响[J]. 浙江农业学报, 2024, 36(9): 2000-2009. |
[7] | 张鑫, 刘鹏. 植物顺式调控元件研究进展[J]. 浙江农业学报, 2024, 36(8): 1945-1956. |
[8] | 诸燕, 丁兰, 陈忆乾, 黄秀静, 姜伟伟, 陈东红. 铁皮石斛CLE基因家族鉴定与功能分析[J]. 浙江农业学报, 2024, 36(7): 1583-1590. |
[9] | 齐学礼, 李莹, 段俊枝. 耐盐基因在小麦耐盐基因工程中的应用[J]. 浙江农业学报, 2024, 36(6): 1447-1457. |
[10] | 杨明凤, 吉春容, 刘勇, 白书军, 陈雪, 刘爱琳. 花铃期持续干旱胁迫对棉花生长与土壤干旱阈值的影响[J]. 浙江农业学报, 2024, 36(4): 738-747. |
[11] | 牛钰, 李晶, 王俊文, 李瑞瑞, 田强, 武玥, 郁继华. 高等植物花青素生物合成、调控、生物活性及其检测的研究进展[J]. 浙江农业学报, 2024, 36(4): 978-996. |
[12] | 张露荷, 王多锋, 张德, 张广忠, 赵通, 吕斌燕, 张洋军, 李毅. 枣树novel-miR16靶基因ZjTCP4鉴定及生物信息学分析[J]. 浙江农业学报, 2024, 36(3): 534-543. |
[13] | 陈尚昱, 宋雪薇, 齐振宇, 周艳虹, 喻景权, 夏晓剑. 植物侧枝发育的遗传基础及激素、代谢与环境调控[J]. 浙江农业学报, 2024, 36(3): 690-703. |
[14] | 田晓明, 向光锋, 牟村, 吕浩, 马涛, 朱路, 彭静, 张敏, 何艳. 四种红豆属植物耐旱性综合评价[J]. 浙江农业学报, 2024, 36(2): 308-324. |
[15] | 唐跃辉, 陈淑颖, 何文琼, 王涵瑾, 包欣欣, 贾赛男, 王瑶瑶, 陈宇阳, 杨同文. 麻风树JcERF22基因的克隆与功能分析[J]. 浙江农业学报, 2024, 36(10): 2219-2228. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||