浙江农业学报 ›› 2025, Vol. 37 ›› Issue (9): 1849-1859.DOI: 10.3969/j.issn.1004-1524.20250037
闫沛中1(
), 陈亮2,3, 张生银4, 刘斌1,3,*(
)
收稿日期:2025-01-10
出版日期:2025-09-25
发布日期:2025-10-15
作者简介:刘斌,E-mail:347582892@qq.com通讯作者:
刘斌
基金资助:
YAN Peizhong1(
), CHEN Liang2,3, ZHANG Shengyin4, LIU Bin1,3,*(
)
Received:2025-01-10
Online:2025-09-25
Published:2025-10-15
Contact:
LIU Bin
摘要: 发展现代农业节水技术是解决西北干旱地区水资源短缺和提高水资源效率的有效途径。为研究膜下滴灌水肥耦合对景电灌区玉米生长及产量的影响,寻找适宜的水肥运筹方案,特以当地滴灌灌溉量和推荐施肥量为对照(CK),设置3种土壤水基质势[-10 kPa(W1)、-20 kPa(W2)、-30 kPa(W3)]和3种施肥量[推荐施肥量的85%(F1)、75%(F2)、65%(F3)],开展田间小区试验。结果表明,W2F2处理的综合表现最好。该处理下,玉米孕穗期、灌浆期的地上部干物质质量分别较CK显著(p<0.05)提高了13.7%、9.0%,产量为18.23 t·hm-2,经济收益达42 548元·hm-2,较CK提高4.9%,水分利用效率、肥料偏生产力分别较CK显著提高12.5%、36.3%,对土壤含盐量无显著影响,可较CK节水24.7%、节肥25.0%。其具体水肥运筹为:全生育期灌水8次,灌溉定额2 880 m3·hm-2,施肥总量为N 157.5 kg·hm-2、P2O5 82.5 kg·hm-2、K2O 82.5 kg·hm-2,苗期、拔节期、孕穗期、灌浆期的施用量分别为20%、30%、30%、20%。
中图分类号:
闫沛中, 陈亮, 张生银, 刘斌. 水肥耦合对景电灌区膜下滴灌玉米产量及水肥利用效率的影响[J]. 浙江农业学报, 2025, 37(9): 1849-1859.
YAN Peizhong, CHEN Liang, ZHANG Shengyin, LIU Bin. Effects of water-fertilizer coupling regimes on maize yield and water and fertilizer use efficiency under mulched drip irrigation in Jingdian irrigation district of China[J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 1849-1859.
图1 不同处理的玉米株高 同一时期柱上无相同字母的表示处理间差异显著(p<0.05)。下同。
Fig.1 Plant height of maize under treatments Bars marked without the same letters indicate significant (p<0.05) differences within treatments at the same growth period. The same as below.
| 处理 Treatment | 经济产量 Economic yield/ (t·hm-2) | 水费投入 Water fee input/ (yuan·hm-2) | 肥料投入 Fertilizer input/ (yuan·hm-2) | 籽粒产值 Grain output value/ (yuan·hm-2) | 经济收益 Economic income/ (yuan·hm-2) |
|---|---|---|---|---|---|
| W1F1 | 17.53 ab | 1 277 | 2 190 | 43 825 | 40 358 |
| W1F2 | 16.79 b | 1 277 | 1 933 | 41 975 | 38 765 |
| W1F3 | 16.21 b | 1 277 | 1 675 | 40 525 | 37 573 |
| W2F1 | 18.26 a | 1 094 | 2 190 | 45 650 | 42 366 |
| W2F2 | 18.23 a | 1 094 | 1 933 | 45 575 | 42 548 |
| W2F3 | 15.82 b | 1 094 | 1 675 | 39 550 | 36 781 |
| W3F1 | 15.94 b | 889 | 2 190 | 39 850 | 36 771 |
| W3F2 | 14.68 c | 889 | 1 933 | 36 700 | 33 878 |
| W3F3 | 13.31 d | 889 | 1 675 | 33 275 | 30 711 |
| CK | 17.83 ab | 1 454 | 2 577 | 44 575 | 40 544 |
表1 不同处理玉米的产量和经济收益
Table 1 Yield and economic income of maize under treatments
| 处理 Treatment | 经济产量 Economic yield/ (t·hm-2) | 水费投入 Water fee input/ (yuan·hm-2) | 肥料投入 Fertilizer input/ (yuan·hm-2) | 籽粒产值 Grain output value/ (yuan·hm-2) | 经济收益 Economic income/ (yuan·hm-2) |
|---|---|---|---|---|---|
| W1F1 | 17.53 ab | 1 277 | 2 190 | 43 825 | 40 358 |
| W1F2 | 16.79 b | 1 277 | 1 933 | 41 975 | 38 765 |
| W1F3 | 16.21 b | 1 277 | 1 675 | 40 525 | 37 573 |
| W2F1 | 18.26 a | 1 094 | 2 190 | 45 650 | 42 366 |
| W2F2 | 18.23 a | 1 094 | 1 933 | 45 575 | 42 548 |
| W2F3 | 15.82 b | 1 094 | 1 675 | 39 550 | 36 781 |
| W3F1 | 15.94 b | 889 | 2 190 | 39 850 | 36 771 |
| W3F2 | 14.68 c | 889 | 1 933 | 36 700 | 33 878 |
| W3F3 | 13.31 d | 889 | 1 675 | 33 275 | 30 711 |
| CK | 17.83 ab | 1 454 | 2 577 | 44 575 | 40 544 |
图5 不同处理的玉米收获指数 柱上无相同字母的表示差异显著(p<0.05)。下同。
Fig.5 Harvest index of maize under treatments Bars marked without the same letters indicate significant difference at p<0.05. The same as below.
| 处理 Treatment | 播种前土壤含盐量 Soil salt content before sowing/(g·kg-1) | 收获后土壤含盐量 Soil salt content after harvest/(g·kg-1) | 土壤含盐量增长率 Increment of soil salt content/% |
|---|---|---|---|
| W1F1 | 15.1±1.2 a | 21.8±0.9 c | 44.37±4.33 d |
| W1F2 | 15.4±0.8 a | 22.5±1.3 bc | 46.10±3.58 cd |
| W1F3 | 14.9±1.3 a | 22.1±1.6 bc | 48.32±2.41 c |
| W2F1 | 15.6±0.6 a | 22.8±1.8 bc | 46.15±3.28 cd |
| W2F2 | 15.4±0.4 a | 22.6±0.7 bc | 46.75±2.54 cd |
| W2F3 | 15.5±0.7 a | 23.1±1.3 b | 49.03±3.26 c |
| W3F1 | 15.5±0.3 a | 29.4±2.1 a | 89.68±3.38 a |
| W3F2 | 15.7±1.1 a | 28.7±2.4 a | 82.80±2.32 b |
| W3F3 | 15.1±0.7 a | 29.0±1.7 a | 92.05±3.18 a |
| CK | 14.8±0.6 a | 21.6±1.4 c | 45.95±4.46 cd |
表2 不同处理的土壤含盐量
Table 2 Soil salt content under treatments
| 处理 Treatment | 播种前土壤含盐量 Soil salt content before sowing/(g·kg-1) | 收获后土壤含盐量 Soil salt content after harvest/(g·kg-1) | 土壤含盐量增长率 Increment of soil salt content/% |
|---|---|---|---|
| W1F1 | 15.1±1.2 a | 21.8±0.9 c | 44.37±4.33 d |
| W1F2 | 15.4±0.8 a | 22.5±1.3 bc | 46.10±3.58 cd |
| W1F3 | 14.9±1.3 a | 22.1±1.6 bc | 48.32±2.41 c |
| W2F1 | 15.6±0.6 a | 22.8±1.8 bc | 46.15±3.28 cd |
| W2F2 | 15.4±0.4 a | 22.6±0.7 bc | 46.75±2.54 cd |
| W2F3 | 15.5±0.7 a | 23.1±1.3 b | 49.03±3.26 c |
| W3F1 | 15.5±0.3 a | 29.4±2.1 a | 89.68±3.38 a |
| W3F2 | 15.7±1.1 a | 28.7±2.4 a | 82.80±2.32 b |
| W3F3 | 15.1±0.7 a | 29.0±1.7 a | 92.05±3.18 a |
| CK | 14.8±0.6 a | 21.6±1.4 c | 45.95±4.46 cd |
| [1] | 王振华, 任孔聚, 尹飞虎, 等. 适宜水氮互作提升膜下滴灌瓜尔豆产量品质与水氮利用效率[J]. 农业工程学报, 2024, 40(20): 91-100. |
| WANG Z H, REN K J, YIN F H, et al. Yield quality and water and nitrogen use efficiency of guar beans under mulched drip irrigation in response to water and nitrogen interactions in arid areas[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(20): 91-100. (in Chinese with English abstract) | |
| [2] | NING S R, SHI J C, ZUO Q, et al. Generalization of the root length density distribution of cotton under film mulched drip irrigation[J]. Field Crops Research, 2015, 177: 125-136. |
| [3] | 康静, 黄兴法. 膜下滴灌的研究及发展[J]. 节水灌溉, 2013(9): 71-74. |
| KANG J, HUANG X F. Research contents and future development of drip irrigation under plastic film[J]. Water Saving Irrigation, 2013(9): 71-74. (in Chinese with English abstract) | |
| [4] | 姬祥祥, 张体彬, 朱晓华, 等. 河套灌区膜下滴灌研究进展[J]. 节水灌溉, 2019(1): 92-95. |
| JI X X, ZHANG T B, ZHU X H, et al. Advances in the study of mulched drip irrigation in Hetao irrigation district[J]. Water Saving Irrigation, 2019(1): 92-95. (in Chinese with English abstract) | |
| [5] | 王文婷, 贾丽炯, 王多平. 膜下滴灌水氮耦合对玉米水分产量的影响研究[J]. 河南水利与南水北调, 2022, 51(9): 95-96. |
| WANG W T, JIA L J, WANG D P. Research on effect of water-nitrogen coupling on maize water yield with drip irrigation under plastic film[J]. Henan Water Resources and South-to-North Water Diversion, 2022, 51(9): 95-96. (in Chinese with English abstract) | |
| [6] | 杨宏羽, 李欣, 王波, 等. 膜下滴灌油葵土壤水热高效利用及高产效应[J]. 农业工程学报, 2016, 32(8): 82-88. |
| YANG H Y, LI X, WANG B, et al. Effect of drip irrigation under plastic film mulching on soil water-heat utilization and high yield of oil sunflower[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(8): 82-88. (in Chinese with English abstract) | |
| [7] | 曹巍, 刘宏权, 陈任强, 等. 膜下滴灌对玉米生长及土壤影响的研究进展[J]. 节水灌溉, 2023(4): 39-51. |
| CAO W, LIU H Q, CHEN R Q, et al. Research progress on effects of drip irrigation under mulch on maize and soil[J]. Water Saving Irrigation, 2023(4): 39-51. (in Chinese with English abstract) | |
| [8] | FANG S B, TU W R, MU L, et al. Saline alkali water desalination project in Southern Xinjiang of China: a review of desalination planning, desalination schemes and economic analysis[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109268. |
| [9] | SUN J L, LI S N, GUO H J, et al. Ion homeostasis and Na+ transport-related gene expression in two cotton (Gossypium hirsutum L.) varieties under saline, alkaline and saline-alkaline stresses[J]. PLoS One, 2021, 16(8): e0256000. |
| [10] | 郝远远, 徐旭, 任东阳, 等. 河套灌区土壤水盐和作物生长的HYDRUS-EPIC模型分布式模拟[J]. 农业工程学报, 2015, 31(11): 110-116. |
| HAO Y Y, XU X, REN D Y, et al. Distributed modeling of soil water-salt dynamics and crop yields based on HYDRUS-EPIC model in Hetao Irrigation District[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(11): 110-116. (in Chinese with English abstract) | |
| [11] | PAREDES P, RODRIGUES G C, ALVES I, et al. Partitioning evapotranspiration, yield prediction and economic returns of maize under various irrigation management strategies[J]. Agricultural Water Management, 2014, 135: 27-39. |
| [12] | 张雪晨, 李越, 陈志君, 等. 膜下滴灌土壤水盐与玉米产量对节水控盐灌溉模式响应的模拟[J]. 农业工程学报, 2022, 38(增刊): 47-58. |
| ZHANG X C, LI Y, CHEN Z J, et al. Simulation of the responses of soil water, salt and maize yield to water-saving irrigation and salinity control regimes under mulched drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(Supp.): 47-58. (in Chinese with English abstract) | |
| [13] | 孟翔燕. 玉米膜下滴灌水肥耦合的生物性状与土壤水分分析[D]. 哈尔滨: 东北农业大学, 2014. |
| MENG X Y. Analyses of biological characters and soil moisture under water and fertilizer coupling with drip irrigation under mulch[D]. Harbin: Northeast Agricultural University, 2014. (in Chinese with English abstract) | |
| [14] | 王新, 马富裕, 刁明, 等. 不同施氮水平下加工番茄植株生长和氮素积累与利用率的动态模拟[J]. 应用生态学报, 2014, 25(4): 1043-1050. |
| WANG X, MA F Y, DIAO M, et al. Dynamics simulation on plant growth, N accumulation and utilization of processing tomato at different N fertilization rates[J]. Chinese Journal of Applied Ecology, 2014, 25(4): 1043-1050. (in Chinese with English abstract) | |
| [15] | 史中兴, 闫立泰, 刘斌, 等. 盐碱地原位工程化根治技术在盐碱地春小麦上的应用效果[J]. 甘肃农业科技, 2019, 50(9): 49-54. |
| SHI Z X, YAN L T, LIU B, et al. Study on the effect of the saline land situ engineering radical resection technology of spring wheat in saline[J]. Gansu Agricultural Science and Technology, 2019, 50(9): 49-54. (in Chinese with English abstract) | |
| [16] | 刘斌, 寇燕燕, 何巨峰, 等. 盐碱地原位工程化根治技术对盐碱地土壤养分及玉米生长发育的影响[J]. 甘肃农业科技, 2020, 51(4): 43-46. |
| LIU B, KOU Y Y, HE J F, et al. Effect of in situ engineering radical cure technology on soil nutrients and corn growth and development in saline-alkali soil[J]. Gansu Agricultural Science and Technology, 2020, 51(4): 43-46. (in Chinese with English abstract) | |
| [17] | 朱琪, 史中兴, 寇燕燕, 等. 原位工程化根治技术和增施生物有机肥对盐碱地土壤酶活性及甜瓜产量、品质的影响[J]. 中国瓜菜, 2023, 36(3): 77-84. |
| ZHU Q, SHI Z X, KOU Y Y, et al. In-situ engineering radical resection technology and increased application of bio-organic fertilizers affects soil enzyme activity, yield and quality of melon in saline land[J]. China Cucurbits and Vegetables, 2023, 36(3): 77-84. (in Chinese with English abstract) | |
| [18] | 吴霞玉, 李盼, 韦金贵, 等. 减量灌水及有机无机肥配施对西北灌区玉米光合生理、籽粒产量及品质的影响[J]. 作物学报, 2024, 50(4): 1065-1079. |
| WU X Y, LI P, WEI J G, et al. Effect of reduced irrigation and combined application of organic and chemical fertilizers on photosynthetic physiology, grain yield and quality of maize in northwestern irrigation areas[J]. Acta Agronomica Sinica, 2024, 50(4): 1065-1079. (in Chinese with English abstract) | |
| [19] | XU X, HUANG G H, SUN C, et al. Assessing the effects of water table depth on water use, soil salinity and wheat yield: searching for a target depth for irrigated areas in the upper Yellow River Basin[J]. Agricultural Water Management, 2013, 125: 46-60. |
| [20] | 谢光辉, 韩东倩, 王晓玉, 等. 中国禾谷类大田作物收获指数和秸秆系数[J]. 中国农业大学学报, 2011, 16(1): 1-8. |
| XIE G H, HAN D Q, WANG X Y, et al. Harvest index and residue factor of cereal crops in China[J]. Journal of China Agricultural University, 2011, 16(1): 1-8. (in Chinese with English abstract) | |
| [21] | 刘斌, 魏慧, 寇燕燕, 等. 灌溉制度对甜瓜/向日葵间作系统叶片水分状况和水分利用效率的影响[J]. 中国农学通报, 2022, 38(2): 19-25. |
| LIU B, WEI H, KOU Y Y, et al. Effects of irrigation system on leaf water status and water use efficiency of melon/sunflower intercropping system[J]. Chinese Agricultural Science Bulletin, 2022, 38(2): 19-25. (in Chinese with English abstract) | |
| [22] | 刘斌, 谢飞, 凌一波, 等. 不同间作播期和密度对甜瓜/向日葵间作系统氮素利用效率的影响[J]. 中国生态农业学报, 2016, 24(1): 36-46. |
| LIU B, XIE F, LING Y B, et al. Effects of intercropping time and planting density on nitrogen use efficiency of melon-sunflower intercropping system[J]. Chinese Journal of Eco-Agriculture, 2016, 24(1): 36-46. (in Chinese with English abstract) | |
| [23] | 郭金金. 水氮调控与缓释氮肥-尿素配施对冬小麦/夏玉米生长和水氮利用的影响研究[D]. 杨凌: 西北农林科技大学, 2022. |
| GUO J J. Effects of water and nitrogen regulation and slow-release nitrogen fertilizer combined with urea on growth, water and nitrogen utilization of winter wheat/summer maize[D]. Yangling: Northwest A & F University, 2022. (in Chinese with English abstract) | |
| [24] | 王秀康. 黄土塬区水肥供应和覆膜对玉米生长和氮素吸收的影响[D]. 北京: 中国科学院大学, 2014. |
| WANG X K. Effects of irrigation, fertilization and mulching on maize growth and nitrogen absorption in the Loess Plateau[D]. Beijing: University of Chinese Academy of Sciences, 2014. (in Chinese with English abstract) | |
| [25] | 宋金鑫, 谷岩, 于寒, 等. 覆膜和氮肥施用量对滴灌玉米生长发育及产量的影响[J]. 分子植物育种, 2019, 17(21): 7251-7255. |
| SONG J X, GU Y, YU H, et al. Effects of film mulching and nitrogen application rate on growth and yield of drip irrigation corn[J]. Molecular Plant Breeding, 2019, 17(21): 7251-7255. (in Chinese with English abstract) | |
| [26] | 王蒙. 吉林半干旱区春玉米膜下滴灌条件下水肥高效利用研究[D]. 北京: 中国农业大学, 2017. |
| WANG M. Strategies for achieving high irrigation and fertilization efficiency for spring maize under mulched drip irrigation in semi arid area of Jilin Province[D]. Beijing: China Agricultural University, 2017. (in Chinese with English abstract) | |
| [27] | 刘水, 李伏生. 不同水氮条件下灌溉方式对玉米干物质量和氮钾利用的影响[J]. 生态学报, 2014, 34(18): 5249-5256. |
| LIU S, LI F S. Effect of irrigation method on dry mass and nitrogen and potassium utilization of maize under different water and nitrogen conditions[J]. Acta Ecologica Sinica, 2014, 34(18): 5249-5256. (in Chinese with English abstract) | |
| [28] | 任中生, 屈忠义, 李哲, 等. 水氮互作对河套灌区膜下滴灌玉米产量与水氮利用的影响[J]. 水土保持学报, 2016, 30(5): 149-155. |
| REN Z S, QU Z Y, LI Z, et al. Interactive effects of nitrogen fertilization and irrigation on grain yield, water use efficiency and nitrogen use efficiency of mulched drip-irrigated maize in Hetao irrigation district, China[J]. Journal of Soil and Water Conservation, 2016, 30(5): 149-155. (in Chinese with English abstract) | |
| [29] | 曹伟. 水肥耦合对盐碱地土壤水盐及基质栽培番茄生长特性的影响研究[D]. 兰州: 兰州理工大学, 2024. |
| CAO W. Effects of water and fertilizer coupling on soil water and salt in saline-alkali soil and growth characteristics of tomato cultivated in substrate[D]. Lanzhou: Lanzhou University of Technology, 2024. (in Chinese with English abstract) |
| [1] | 许卫猛, 徐妍, 陈国立. 基于多种分析方法的糯玉米品质综合评价[J]. 浙江农业学报, 2025, 37(9): 1840-1848. |
| [2] | 关秀生, 刘铁山, 王娟, 张茂林, 刘春晓, 董瑞, 关海英, 刘强, 徐扬, 何春梅. 玉米NF-YA家族基因的生物信息学分析与克隆[J]. 浙江农业学报, 2025, 37(8): 1605-1614. |
| [3] | 咸若彤, 缪青梅, 彭城, 陈笑芸, 杨蕾, 徐晓丽, 魏巍, 徐俊锋, 李玥莹, 汪小福. 转基因玉米WYN17132转化体特异性实时荧光PCR检测方法的建立与应用[J]. 浙江农业学报, 2025, 37(7): 1397-1406. |
| [4] | 王闻琦, 王盼盼, 张严玲, 刘青青, 洪双双, 赵高鹏, 刘泓畅, 王翠玲. 玉米生物钟基因ZmPRR1-2互作蛋白质的筛选[J]. 浙江农业学报, 2025, 37(5): 977-986. |
| [5] | 万绍媛, 刘现波, 才硕, 时红, 程婕. 灌溉方式和种植方式对双季稻产量和稻米品质的影响[J]. 浙江农业学报, 2025, 37(2): 257-268. |
| [6] | 王晓阳, 李强, 赵武云, 戴飞, 严兆荣, 王久鑫. 铲式青贮玉米起茬及残膜回收联合作业机设计与试验[J]. 浙江农业学报, 2024, 36(9): 2132-2145. |
| [7] | 李清超, 杨珊, 张登峰, 刘建新, 孙开利, 吴迅. 四百八十七份玉米地方种质资源穗部性状的表型多样性[J]. 浙江农业学报, 2024, 36(7): 1481-1491. |
| [8] | 周丽丽, 冯海宽, 聂臣巍, 许晓斌, 刘媛, 孟麟, 薛贝贝, 明博, 梁齐云, 苏涛, 金秀良. 无人机观测时间对玉米冠层叶绿素密度估算的影响[J]. 浙江农业学报, 2024, 36(1): 18-31. |
| [9] | 冷益丰, 罗樊, 陈从顺, 丁鑫, 蔡光泽. 基于GBS测序的全基因组SNP揭示大凉山玉米地方品种资源的亲缘关系与遗传分化[J]. 浙江农业学报, 2024, 36(1): 32-47. |
| [10] | 马启良, 杨小明, 胡水星, 黄子鸿, 祁亨年. 基于Mask RCNN和视觉技术的玉米种子发芽自动检测方法[J]. 浙江农业学报, 2023, 35(8): 1927-1936. |
| [11] | 雷联. 膜下滴灌调亏对制种玉米植株生长、产量和水分利用的影响[J]. 浙江农业学报, 2023, 35(7): 1542-1549. |
| [12] | 张淑红, 张运峰, 武秋颖, 高凤菊, 李亚子, 纪景欣, 许可, 范永山. 玉米大斑病菌醇脱氢酶基因家族的鉴定和生物信息学分析[J]. 浙江农业学报, 2023, 35(5): 1108-1115. |
| [13] | 王宁柯, 张瑞, 章胜勇. 机械化服务程度和农地经营规模对玉米生产效率的影响[J]. 浙江农业学报, 2023, 35(3): 698-707. |
| [14] | 郑冉, 吕丹, 武清贵, 邸晓红, 朱通通, 邱冠杰, 罗红兵. 玉米C型胞质不育系S37-2败育的生物学与生理生化机制分析[J]. 浙江农业学报, 2023, 35(2): 259-265. |
| [15] | 李娅楠, 冶文兴, 朱相德, 陈林, 徐晓锋, 张力莉. 基于LC-MS/MS技术研究稻草替代部分玉米青贮对奶牛血浆代谢产物的影响[J]. 浙江农业学报, 2023, 35(2): 266-274. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||