Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (1): 178-188.DOI: 10.3969/j.issn.1004-1524.20240273
• Food Science • Previous Articles Next Articles
YANG Guiren#(), MU Honglei#(
), WU Weijie, FANG Xiangjun, CHEN Huizhi, NIU Ben, CHEN Hangjun*(
), GAO Haiyan*(
)
Received:
2024-03-22
Online:
2025-01-25
Published:
2025-02-14
CLC Number:
YANG Guiren, MU Honglei, WU Weijie, FANG Xiangjun, CHEN Huizhi, NIU Ben, CHEN Hangjun, GAO Haiyan. Research on the process optimization and maintenance of anthocyanins in Chinese bayberry juice by casein[J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 178-188.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240273
Fig.1 Effects of different processing conditions on anthocyanin retention rate and sensory score Capital letters are significant differences in anthocyanin retention rate among different treatment groups, while lowercase letters are significant differences in sensory scores among different treatment groups. Different letters indicate significant differences among groups (P<0.05), the same as below.
处理 Treatment | A酪蛋白添加量 Casein addition/% | B作用温度 Temperature/℃ | C作用时间 Treatment time/min | Y花色苷保留率 Anthocyanin retention rate/% | Z感官评分 Sensory score |
---|---|---|---|---|---|
1 | 0(0.9) | -1(30) | 1(40) | 77.34 | 84.69 |
2 | 0 | 0(40) | 0(30) | 93.17 | 87.33 |
3 | -1(0.6) | 0 | 1 | 86.12 | 74.33 |
4 | 1(1.2) | 0 | -1(20) | 90.54 | 76.34 |
5 | -1 | 1(50) | 0 | 80.97 | 76.94 |
6 | 1 | -1 | 0 | 85.17 | 79.61 |
7 | 0 | 1 | 1 | 88.97 | 87.39 |
8 | 1 | 0 | 1 | 86.31 | 80.16 |
9 | 1 | 1 | 0 | 88.61 | 82.69 |
10 | 0 | 0 | 0 | 93.93 | 88.76 |
11 | 0 | 0 | 0 | 92.76 | 87.96 |
12 | 0 | 1 | -1 | 81.94 | 81.67 |
13 | 0 | 0 | 0 | 92.64 | 85.67 |
14 | 0 | 0 | 0 | 93.84 | 89.64 |
15 | -1 | -1 | 0 | 78.31 | 72.66 |
16 | 0 | -1 | -1 | 87.64 | 77.62 |
17 | -1 | 0 | -1 | 79.95 | 69.61 |
Table 1 Design and results of response surface experiment
处理 Treatment | A酪蛋白添加量 Casein addition/% | B作用温度 Temperature/℃ | C作用时间 Treatment time/min | Y花色苷保留率 Anthocyanin retention rate/% | Z感官评分 Sensory score |
---|---|---|---|---|---|
1 | 0(0.9) | -1(30) | 1(40) | 77.34 | 84.69 |
2 | 0 | 0(40) | 0(30) | 93.17 | 87.33 |
3 | -1(0.6) | 0 | 1 | 86.12 | 74.33 |
4 | 1(1.2) | 0 | -1(20) | 90.54 | 76.34 |
5 | -1 | 1(50) | 0 | 80.97 | 76.94 |
6 | 1 | -1 | 0 | 85.17 | 79.61 |
7 | 0 | 1 | 1 | 88.97 | 87.39 |
8 | 1 | 0 | 1 | 86.31 | 80.16 |
9 | 1 | 1 | 0 | 88.61 | 82.69 |
10 | 0 | 0 | 0 | 93.93 | 88.76 |
11 | 0 | 0 | 0 | 92.76 | 87.96 |
12 | 0 | 1 | -1 | 81.94 | 81.67 |
13 | 0 | 0 | 0 | 92.64 | 85.67 |
14 | 0 | 0 | 0 | 93.84 | 89.64 |
15 | -1 | -1 | 0 | 78.31 | 72.66 |
16 | 0 | -1 | -1 | 87.64 | 77.62 |
17 | -1 | 0 | -1 | 79.95 | 69.61 |
方差来源 Source | 平方和 SS | 自由度 Degree of freedom | 均方 MS | F值 F-value | P值 P-value | 显著性 Significance |
---|---|---|---|---|---|---|
模型Model | 495.79 | 9 | 55.09 | 58.84 | <0.000 1 | ** |
A | 79.88 | 1 | 79.88 | 85.32 | <0.000 1 | ** |
B | 18.09 | 1 | 18.09 | 19.32 | 0.003 2 | ** |
C | 0.22 | 1 | 0.22 | 0.24 | 0.641 8 | |
AB | 0.15 | 1 | 0.15 | 0.16 | 0.698 9 | |
AC | 27.04 | 1 | 27.04 | 28.88 | 0.001 0 | ** |
BC | 75.08 | 1 | 75.08 | 80.19 | <0.000 1 | ** |
A2 | 71.57 | 1 | 71.57 | 76.44 | <0.000 1 | ** |
B2 | 145.59 | 1 | 145.59 | 155.50 | <0.000 1 | ** |
C2 | 49.11 | 1 | 49.11 | 52.45 | 0.000 2 | ** |
残差Residual | 6.55 | 7 | 0.94 | |||
失拟项Lack of fit | 5.13 | 3 | 1.71 | 4.79 | 0.082 2 | 不显著Not significant |
纯误差Pure error | 1.43 | 4 | 0.36 | |||
总离差Cor total | 502.34 | 16 |
Table 2 Analysis of variance and significance test of response surface model for anthocyanin retention rate
方差来源 Source | 平方和 SS | 自由度 Degree of freedom | 均方 MS | F值 F-value | P值 P-value | 显著性 Significance |
---|---|---|---|---|---|---|
模型Model | 495.79 | 9 | 55.09 | 58.84 | <0.000 1 | ** |
A | 79.88 | 1 | 79.88 | 85.32 | <0.000 1 | ** |
B | 18.09 | 1 | 18.09 | 19.32 | 0.003 2 | ** |
C | 0.22 | 1 | 0.22 | 0.24 | 0.641 8 | |
AB | 0.15 | 1 | 0.15 | 0.16 | 0.698 9 | |
AC | 27.04 | 1 | 27.04 | 28.88 | 0.001 0 | ** |
BC | 75.08 | 1 | 75.08 | 80.19 | <0.000 1 | ** |
A2 | 71.57 | 1 | 71.57 | 76.44 | <0.000 1 | ** |
B2 | 145.59 | 1 | 145.59 | 155.50 | <0.000 1 | ** |
C2 | 49.11 | 1 | 49.11 | 52.45 | 0.000 2 | ** |
残差Residual | 6.55 | 7 | 0.94 | |||
失拟项Lack of fit | 5.13 | 3 | 1.71 | 4.79 | 0.082 2 | 不显著Not significant |
纯误差Pure error | 1.43 | 4 | 0.36 | |||
总离差Cor total | 502.34 | 16 |
方差来源 Source | 平方和 SS | 自由度 Degree of freedom | 均方 MS | F值 F-value | P值 P-value | 显著性 Significance |
---|---|---|---|---|---|---|
模型Model | 585.44 | 9 | 65.05 | 40.04 | <0.000 1 | ** |
A | 79.76 | 1 | 79.76 | 49.10 | 0.000 2 | ** |
B | 24.89 | 1 | 24.89 | 15.32 | 0.005 8 | ** |
C | 56.87 | 1 | 56.87 | 35.01 | 0.000 6 | ** |
AB | 0.36 | 1 | 0.36 | 0.22 | 0.652 1 | |
AC | 0.25 | 1 | 0.20 | 0.12 | 0.734 4 | |
BC | 0.46 | 1 | 0.46 | 0.28 | 0.612 8 | |
A2 | 327.16 | 1 | 327.16 | 201.39 | <0.000 1 | ** |
B2 | 4.93 | 1 | 4.93 | 3.04 | 0.12 | |
C2 | 65.60 | 1 | 65.60 | 40.38 | 0.000 4 | ** |
残差Residual | 11.37 | 7 | 1.62 | |||
失拟项Lack of fit | 2.31 | 3 | 0.77 | 0.34 | 0.80 | 不显著Not significant |
纯误差Pure error | 9.06 | 4 | 2.27 | |||
总离差Cor total | 596.81 | 16 |
Table 3 Analysis of variance and significance test of response surface model for sensory score
方差来源 Source | 平方和 SS | 自由度 Degree of freedom | 均方 MS | F值 F-value | P值 P-value | 显著性 Significance |
---|---|---|---|---|---|---|
模型Model | 585.44 | 9 | 65.05 | 40.04 | <0.000 1 | ** |
A | 79.76 | 1 | 79.76 | 49.10 | 0.000 2 | ** |
B | 24.89 | 1 | 24.89 | 15.32 | 0.005 8 | ** |
C | 56.87 | 1 | 56.87 | 35.01 | 0.000 6 | ** |
AB | 0.36 | 1 | 0.36 | 0.22 | 0.652 1 | |
AC | 0.25 | 1 | 0.20 | 0.12 | 0.734 4 | |
BC | 0.46 | 1 | 0.46 | 0.28 | 0.612 8 | |
A2 | 327.16 | 1 | 327.16 | 201.39 | <0.000 1 | ** |
B2 | 4.93 | 1 | 4.93 | 3.04 | 0.12 | |
C2 | 65.60 | 1 | 65.60 | 40.38 | 0.000 4 | ** |
残差Residual | 11.37 | 7 | 1.62 | |||
失拟项Lack of fit | 2.31 | 3 | 0.77 | 0.34 | 0.80 | 不显著Not significant |
纯误差Pure error | 9.06 | 4 | 2.27 | |||
总离差Cor total | 596.81 | 16 |
酪蛋白添加量 Casein addition/(g·L-1) | k/h-1 | t1/2/h | R2 |
---|---|---|---|
0 | 0.282×102 a | 246 e | 0.997 |
3 | 0.240×102 b | 288 d | 0.988 |
6 | 0.205×102 c | 339 c | 0.991 |
9 | 0.160×102 e | 434 a | 0.992 |
12 | 0.171×102 d | 405 b | 0.963 |
Table 4 Degradation kinetic parameters of C3G under different concentrations of casein
酪蛋白添加量 Casein addition/(g·L-1) | k/h-1 | t1/2/h | R2 |
---|---|---|---|
0 | 0.282×102 a | 246 e | 0.997 |
3 | 0.240×102 b | 288 d | 0.988 |
6 | 0.205×102 c | 339 c | 0.991 |
9 | 0.160×102 e | 434 a | 0.992 |
12 | 0.171×102 d | 405 b | 0.963 |
[1] | ZHU Y Y, LV J M, GU Y, et al. Mixed fermentation of Chinese bayberry pomace using yeast, lactic acid bacteria and acetic acid bacteria: effects on color, phenolics and antioxidant ingredients[J]. LWT, 2022, 163: 113503. |
[2] | 熊小迪, 刘群, 李丽, 等. 冷等离子体结合气调包装对杨梅贮藏品质的影响[J]. 保鲜与加工, 2023, 23(12): 10-17. |
XIONG X D, LIU Q, LI L, et al. Effects of cold atmospheric plasma combined with modified atmosphere packaging on storage quality of bayberry[J]. Storage and Process, 2023, 23(12): 10-17. (in Chinese with English abstract) | |
[3] | 杨涵, 李雪, 王立芹, 等. 杨梅采后保鲜研究进展[J]. 浙江大学学报(农业与生命科学版), 2023, 49(2): 200-212. |
YANG H, LI X, WANG L Q, et al. Research progress on postharvest preservation of Chinese bayberry fruit[J]. Journal of Zhejiang University(Agriculture and Life Sciences), 2023, 49(2): 200-212. (in Chinese with English abstract) | |
[4] | 崔海鹏, 郭健龙, 王大全, 等. 花青素加工稳定性及其研究进展[J]. 食品与发酵工业, 2024, 50(13): 388-397. |
CUI H P, GUO J L, WANG D Q, et al. Stability of anthocyanins during processing and research progress[J]. Food and Fermentation Industries, 2024, 50(13): 388-397. (in Chinese with English abstract) | |
[5] | 黄金萍, 吴继红, 廖小军, 等. 果蔬汁饮料中花色苷与VC相互作用研究进展[J]. 食品科学, 2022, 43(21): 358-371. |
HUANG J P, WU J H, LIAO X J, et al. Recent progress in the study on the interaction between anthocyanins and vitamin C in fruit and vegetable beverages[J]. Food Science, 2022, 43(21): 358-371. (in Chinese with English abstract) | |
[6] | ALMEIDA NASCIMENTO A L A, BORGES L L R, FERNANDES J G, et al. Exploring strategies to enhance anthocyanin bioavailability and bioaccessibility in food: a literature review[J]. Food Bioscience, 2023, 56: 103388. |
[7] | FEITOSA B F, DECKER B L A, DE BRITO E S, et al. Microencapsulation of anthocyanins as natural dye extracted from fruits-A systematic review[J]. Food Chemistry, 2023, 424: 136361. |
[8] | MANSOUR M, SALAH M, XU X Y. Effect of microencapsulation using soy protein isolate and gum Arabic as wall material on red raspberry anthocyanin stability, characterization, and simulated gastrointestinal conditions[J]. Ultrasonics Sonochemistry, 2020, 63: 104927. |
[9] | RABELO C A S, TAARJI N, KHALID N, et al. Formulation and characterization of water-in-oil nanoemulsions loaded with açaí berry anthocyanins: insights of degradation kinetics and stability evaluation of anthocyanins and nanoemulsions[J]. Food Research International, 2018, 106: 542-548. |
[10] | LU X X, HUANG Q Q, XIAO J, et al. Milled miscellaneous black rice particles stabilized Pickering emulsions with enhanced antioxidation activity[J]. Food Chemistry, 2022, 385: 132639. |
[11] | ALI T, KIM M J, REHMAN S U, et al. Anthocyanin-loaded PEG-gold nanoparticles enhanced the neuroprotection of anthocyanins in an Aβ1-42 mouse model of Alzheimer’s disease[J]. Molecular Neurobiology, 2017, 54(8): 6490-6506. |
[12] | IVANOV V K, USATENKO A V, SHCHERBAKOV A B. Antioxidant activity of nanocrystalline ceria to anthocyanins[J]. Russian Journal of Inorganic Chemistry, 2009, 54(10): 1522-1527. |
[13] | SALAH M, MANSOUR M, ZOGONA D, et al. Nanoencapsulation of anthocyanins-loaded β-lactoglobulin nanoparticles: characterization, stability, and bioavailability in vitro[J]. Food Research International, 2020, 137: 109635. |
[14] | HE Z Y, XU M Z, ZENG M M, et al. Interactions of milk α-and β-casein with malvidin-3-O-glucoside and their effects on the stability of grape skin anthocyanin extracts[J]. Food Chemistry, 2016, 199: 314-322. |
[15] | KE C X, LIU B S, DUDU O E, et al. Modification of structural and functional characteristics of casein treated with quercetin via two interaction modes: covalent and non-covalent interactions[J]. Food Hydrocolloids, 2023, 137: 108394. |
[16] | HARATIFAR S, CORREDIG M. Interactions between tea catechins and casein micelles and their impact on renneting functionality[J]. Food Chemistry, 2014, 143: 27-32. |
[17] | VAN DE LANGERIJT T M, O’MAHONY J A, CROWLEY S V. The influence of sodium caseinate and β-casein concentrate on the physicochemical properties of casein micelles and the role of tea polyphenols in mediating these interactions[J]. LWT, 2022, 154: 112775. |
[18] | WU J E, GUAN Y G, ZHONG Q X. Yeast mannoproteins improve thermal stability of anthocyanins at pH 7.0[J]. Food Chemistry, 2015, 172: 121-128. |
[19] | WEI J, XU D X, YANG J, et al. Analysis of the interaction mechanism of anthocyanins (Aronia melanocarpa Elliot) with β-casein[J]. Food Hydrocolloids, 2018, 84: 276-281. |
[20] | 唐杰, 零东宁, 李丽, 等. 果胶酶酶解桑葚和杨梅果汁工艺研究[J]. 轻工科技, 2020, 36(8): 21-23, 51. |
TANG J, LING D N, LI L, et al. Study on enzymatic hydrolysis of mulberry and Myrica rubra juice by pectinase[J]. Light Industry Science and Technology, 2020, 36(8): 21-23, 51. (in Chinese) | |
[21] | JIANG Y T, YIN Z C, WU Y R, et al. Inhibitory effects of soy protein and its hydrolysate on the degradation of anthocyanins in mulberry extract[J]. Food Bioscience, 2021, 40: 100911. |
[22] | ZHANG Z W, ZHANG J, FAN L P, et al. Degradation of cyanidin-3-O-glucoside induced by antioxidant compounds in model Chinese bayberry wine: kinetic studies and mechanisms[J]. Food Chemistry, 2022, 373: 131426. |
[23] | 周莉, 赵路苹, 刘莹, 等. 葵花籽油体富集物添加量对低脂冰淇淋浆料及产品品质的影响[J]. 中国油脂, 2023, 48(8): 121-127, 148. |
ZHOU L, ZHAO L P, LIU Y, et al. Effect of dosage of sunflower seed oil body enrichment on the quality of low fat ice cream slurry and product[J]. China Oils and Fats, 2023, 48(8): 121-127, 148. (in Chinese with English abstract) | |
[24] | 马静, 李丽, 由耀辉, 等. 共存抗坏血酸下明胶对花色苷稳定性的影响及机理研究[J]. 食品工业科技, 2023, 44(17): 84-90. |
MA J, LI L, YOU Y H, et al. Effect of gelatin on the stability of cyanidin-3-O-glucoside in the presence of ascorbic acid and its mechanism[J]. Science and Technology of Food Industry, 2023, 44(17): 84-90. (in Chinese with English abstract) | |
[25] | ATTARIBO T, JIANG X Z, HUANG G Q, et al. Studies on the interactional characterization of preheated silkworm pupae protein (SPP) with anthocyanins (C3G) and their effect on anthocyanin stability[J]. Food Chemistry, 2020, 326: 126904. |
[26] | LI Y W, YAO L, ZHANG L W, et al. Enhanced physicochemical stabilities of cyanidin-3-O-glucoside via combination with silk fibroin peptide[J]. Food Chemistry, 2021, 355: 129479. |
[27] | 闫露露, 邢明霞, 艾连中, 等. 牛奶乳清蛋白、酪蛋白对巴西莓多酚的保护作用及其互作机制研究[J]. 食品与发酵科技, 2023, 59(2): 35-42. |
YAN L L, XING M X, AI L Z, et al. Study on protective effects of milk whey protein and casein on Açaí berry polyphenols and their interaction mechanism[J]. Food and Fermentation Science & Technology, 2023, 59(2): 35-42. (in Chinese with English abstract) | |
[28] | FOROUTANI Z, AFSHAR MOGADDAM M R, GHASEMPOUR Z, et al. Application of deep eutectic solvents in the extraction of anthocyanins: stability, bioavailability, and antioxidant property[J]. Trends in Food Science & Technology, 2024, 144: 104324. |
[29] | TANG R, HE Y, FAN K. Recent advances in stability improvement of anthocyanins by efficient methods and its application in food intelligent packaging: a review[J]. Food Bioscience, 2023, 56: 103164. |
[30] | HE Z Y, ZHU H D, XU M Z, et al. Complexation of bovine β-lactoglobulin with malvidin-3-O-glucoside and its effect on the stability of grape skin anthocyanin extracts[J]. Food Chemistry, 2016, 209: 234-240. |
[31] | CACACE J E, MAZZA G. Mass transfer process during extraction of phenolic compounds from milled berries[J]. Journal of Food Engineering, 2003, 59(4): 379-389. |
[32] | WANG Y W, YE Y, WANG L, et al. Antioxidant activity and subcritical water extraction of anthocyanin from raspberry process optimization by response surface methodology[J]. Food Bioscience, 2021, 44: 101394. |
[33] | CHUNG C, ROJANASASITHARA T, MUTILANGI W, et al. Enhanced stability of anthocyanin-based color in model beverage systems through whey protein isolate complexation[J]. Food Research International, 2015, 76: 761-768. |
[34] | CHEN J Y, DU J, LI M L, et al. Degradation kinetics and pathways of red raspberry anthocyanins in model and juice systems and their correlation with color and antioxidant changes during storage[J]. LWT, 2020, 128: 109448. |
[35] | PHAM T N, LE X T, PHAM V T, et al. Effects of process parameters in microwave-assisted extraction on the anthocyanin-enriched extract from Rhodomyrtus tomentosa(Ait.) Hassk and its storage conditions on the kinetic degradation of anthocyanins in the extract[J]. Heliyon, 2022, 8(6): e09518. |
[36] | AGCAM E. Degradation kinetics of pomegranate juice phenolics under cold and warm sonication process[J]. Innovative Food Science & Emerging Technologies, 2022, 80: 103080. |
[37] | ZANG Z H, CHOU S R, GENG L J, et al. Interactions of blueberry anthocyanins with whey protein isolate and bovine serum protein: color stability, antioxidant activity, in vitro simulation, and protein functionality[J]. LWT, 2021, 152: 112269. |
[38] | MA G Q, TANG C Y, SUN X J, et al. The interaction mechanism of β-casein with oligomeric proanthocyanidins and its effect on proanthocyanidin bioaccessibility[J]. Food Hydrocolloids, 2021, 113: 106485. |
[39] | 郭东起, 殷秀秀, 程焕, 等. 甘草多糖与酪蛋白的相互作用及乳化性能[J]. 中国食品学报, 2023, 23(12): 12-19. |
GUO D Q, YIN X X, CHENG H, et al. The interaction mechanism and emulsifying properties of Glycyrrhiza polysaccharide and casein[J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23(12): 12-19. (in Chinese with English abstract) | |
[40] | LIU Y, GUO R. pH-dependent structures and properties of casein micelles[J]. Biophysical Chemistry, 2008, 136(2/3): 67-73. |
[41] | YIN Z C, WU Y R, CHEN Y, et al. Analysis of the interaction between cyanidin-3-O-glucoside and casein hydrolysates and its effect on the antioxidant ability of the complexes[J]. Food Chemistry, 2021, 340: 127915. |
[42] | ZHANG Q, FAN W, SHI Y, et al. Interaction between soy protein isolate/whey protein isolate and sucrose ester during microencapsulation: multi-spectroscopy and molecular docking[J]. LWT, 2023, 188: 115363. |
[1] | SUN Li, ZHANG Shuwen, YU Zheping, ZHENG Xiliang, LIANG Senmiao, REN Haiying, QI Xingjiang. Effects of potassium humate on soil improvement, tree growth and fruiting of Chinese bayberry (Myrica rubra) [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1878-1886. |
[2] | NIU Yu, LI Jing, WANG Junwen, LI Ruirui, TIAN Qiang, WU Yue, YU Jihua. Research progress of anthocyanin biosynthesis, regulation, bioactivity and detection in higher plants [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 978-996. |
[3] | HAN Yanchao, CHEN Huizhi, NIU Ben, ZHANG Xiaoshuan, HAN Shuren, WANG Xiaoyan, WANG Guannan, LIU Ruiling, GAO Haiyan. Effect of vibration stress on anthocyanin metabolism and related gene expression in blueberry [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 622-633. |
[4] | ZHENG Xiliang, LIANG Senmiao, YU Zheping, REN Haiying, SUN Li, LIN Rui, ZHANG Shuwen, QI Xingjiang. Quantitative evaluation indicators of Chinese bayberry tree health status [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1945-1954. |
[5] | ZHENG Yuanyua, YU Zheping, ZHANG Shuwen, LI Yougui, SUN Li, ZHENG Xiliang, QI Xingjiang. Effect of alcohol extracts from Chinese bayberry branch on proliferation and apoptosis of A375 cells and its molecular mechanism [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 974-983. |
[6] | YANG Haijian, ZHANG Yungui, ZHOU Xinzhi, HONG Lin, YANG Lei, PENG Fangfang, WANG Wu. Analysis of anthocyanin synthesis and related gene expression in blood orange peel under different PE materials shading during fruit coloring period [J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1861-1869. |
[7] | MA Xiaohua, YU Zheping, ZHENG Xiliang, HU Xiaojin, ZHANG Shuwen, QI Xingjiang, MA Jingyan. Introduction experiment and phenotype cluster analysis of Chinese bayberry in Jingzhou [J]. , 2020, 32(11): 1987-1993. |
[8] | ZHANG Shuwen, LIANG Senmiao, ZHU Tingting, REN Haiying, ZHENG Xiliang, QI Xingjiang. Cold tolerance of different Chinese bayberry varieties [J]. , 2020, 32(10): 1772-1779. |
[9] | LIN Yicheng, FU Qinglin, GUO Bin, LIU Chen, DING Nengfei. Effects of salt stress on anthocyanin content and activities of antioxidant enzymes in leaves of Photinia frasery [J]. , 2018, 30(6): 970-977. |
[10] | XIA Qile, CAO Yan, CHEN Jianbing, HAN Yanchao, LIU Ruiling. Investigation of improving color stability of bayberry integrated alcoholic beverage [J]. , 2018, 30(10): 1775-1781. |
[11] | LIANG Senmiao, GUO Xiuzhu, ZHENG Xiliang, ZHANG Shuwen, WEN Luhua, HUANG Pinhu, QI Xingjiang. Mineral nutritional characteristics of different organs in fruit-bearing tree of Myrica rubra Lour. [J]. , 2017, 29(10): 1669-1677. |
[12] | XU Yun-huan, LIANG Sen-miao, ZHENG Xi-liang, REN Hai-ying, QI Xing-jiang. Effects of foliar nutrition on fruit yield and quality of Chinese bayberry (Myrica rubra Sieb. et Zucc.) [J]. , 2016, 28(10): 1711-1717. |
[13] | MIAO Li\|xiang1, RONG Ning\|ning1,2, ZHANG Yu\|chao1, YANG Xiao\|fang1, ZHANG Qin3, JIANG Gui\|hua1,*. Preliminary study on molecular regulation mechanism of anthocyanin biosynthesis in strawberry#br# [J]. , 2015, 27(8): 1373-. |
[14] | CHEN Wei1, LIANG Sen\|miao2, GUO Xiu\|zhu1, HUANG Pin\|hu1, QIU Ying\|ying2, QI Xing\|jiang2,*. Effects of foliar nutrition on fruit quality and postharvest storage of Chinese bayberry [J]. , 2014, 26(6): 1491-. |
[15] | RONG Ningning;MIAO Lixiang;YANG Xiaofang;ZHANG Yuchao;CHENG Jianhui;CHEN Junwei;JIANG Guihua;* . Determination of pelargonidin 3Oglucoside in strawberry by reversed phase high performance liquid chromatography [J]. , 2014, 26(3): 0-626631. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||