Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (11): 2501-2509.DOI: 10.3969/j.issn.1004-1524.20240485
• Horticultural Science • Previous Articles Next Articles
GAO Jing1,2(), LU Linghong2, GU Xianbin2, FAN Fei2, SONG Genhua2, ZHANG Huiqin2,*(
)
Received:
2024-06-05
Online:
2024-11-25
Published:
2024-11-27
CLC Number:
GAO Jing, LU Linghong, GU Xianbin, FAN Fei, SONG Genhua, ZHANG Huiqin. Cloning of AcWRKY94 gene from kiwifruit and its functional analysis under salt stress[J]. Acta Agriculturae Zhejiangensis, 2024, 36(11): 2501-2509.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240485
引物名称 Primer name | 正向引物序列(5'→3') Forward primer sequence (5'→3') | 反向引物序列(5'→3') Reverse primer sequence (5'→3') | 用途 Application |
---|---|---|---|
AcWRKY94-CDS | CAGTGGTCTCACAACATGGGCATCCTTCGGCCTGA | CAGTGGTCTCATACACTCACCCTCACCAAAGCAAA | 基因克隆 Gene cloning |
AcWRKY94-qPCR | AAGACCTTGGACGCATGGAT | ATTTGGTGGGGCTCCTCTTG | 实时荧光定量PCR qRT-PCR |
AcActin | TGGAATGGAAGCTGCAGGA | CACCACTGAGCACAATGTTGC | 内参基因Reference gene |
AcWRKY94-check | GAAGTGTGCGTGTGATTCGTGT | TGAGATTTTGAGGGTGTTTGTG | 转基因苗鉴定 |
Identification of transgenic seedling |
Table 1 Sequences of primers
引物名称 Primer name | 正向引物序列(5'→3') Forward primer sequence (5'→3') | 反向引物序列(5'→3') Reverse primer sequence (5'→3') | 用途 Application |
---|---|---|---|
AcWRKY94-CDS | CAGTGGTCTCACAACATGGGCATCCTTCGGCCTGA | CAGTGGTCTCATACACTCACCCTCACCAAAGCAAA | 基因克隆 Gene cloning |
AcWRKY94-qPCR | AAGACCTTGGACGCATGGAT | ATTTGGTGGGGCTCCTCTTG | 实时荧光定量PCR qRT-PCR |
AcActin | TGGAATGGAAGCTGCAGGA | CACCACTGAGCACAATGTTGC | 内参基因Reference gene |
AcWRKY94-check | GAAGTGTGCGTGTGATTCGTGT | TGAGATTTTGAGGGTGTTTGTG | 转基因苗鉴定 |
Identification of transgenic seedling |
作用元件 Functional element | 序列 Sequence | 位置 Position | 位点功能 Function of site |
---|---|---|---|
ABRE | ACGTG | -160、-430、-734、-1005、-1613 | 参与ABA响应 |
Cis-acting element involved in the abscisic acid responsiveness | |||
TCA-element | CCATCTTTTT | -1170 | 参与SA响应 |
Cis-acting element involved in salicylic acid responsiveness | |||
CGTCA-motif | CGTCA | -171、-174、-185 | 参与MeJA响应 |
Cis-acting regulatory element involved in the MeJA-responsiveness | |||
GARE-motif | TCTGTTG | -463 | 参与赤霉素响应 |
Cis-acting element involved in gibberellin-responsiveness | |||
TATC-box | TATCCCA | -490、-1293、-1471 | 参与赤霉素响应 |
Cis-acting element involved in gibberellin-responsiveness | |||
MBS | CAACTG | -526 | 参与干旱诱导的MYB结合位点 |
MYB binding site involved in drought-inducibility | |||
ARE | AAACCA | -790、-1550 | 参与厌氧诱导 |
Cis-acting regulatory element essential for the anaerobic induction | |||
W box | TTGACC | -382 | WRKY转录因子结合位点 |
WRKY transcription factor binding site |
Table 2 Analysis of cis-acting regulatory elements in the upstream regulatory sequences of AcWRKY94
作用元件 Functional element | 序列 Sequence | 位置 Position | 位点功能 Function of site |
---|---|---|---|
ABRE | ACGTG | -160、-430、-734、-1005、-1613 | 参与ABA响应 |
Cis-acting element involved in the abscisic acid responsiveness | |||
TCA-element | CCATCTTTTT | -1170 | 参与SA响应 |
Cis-acting element involved in salicylic acid responsiveness | |||
CGTCA-motif | CGTCA | -171、-174、-185 | 参与MeJA响应 |
Cis-acting regulatory element involved in the MeJA-responsiveness | |||
GARE-motif | TCTGTTG | -463 | 参与赤霉素响应 |
Cis-acting element involved in gibberellin-responsiveness | |||
TATC-box | TATCCCA | -490、-1293、-1471 | 参与赤霉素响应 |
Cis-acting element involved in gibberellin-responsiveness | |||
MBS | CAACTG | -526 | 参与干旱诱导的MYB结合位点 |
MYB binding site involved in drought-inducibility | |||
ARE | AAACCA | -790、-1550 | 参与厌氧诱导 |
Cis-acting regulatory element essential for the anaerobic induction | |||
W box | TTGACC | -382 | WRKY转录因子结合位点 |
WRKY transcription factor binding site |
Fig.4 Expression pattern analysis of AcWRKY94 in kiwifruit leaves (A) and roots (B) under salt treatment * and **** meant significant differences at the levels of P<0.05 and P<0.0001,respectively.
Fig.5 PCR (A) and qRT-PCR (B) identification of AcWRKY94 overexpressing tobacco +represented a positive plasmid control,-represented a negative control, and the numbers 1 to 4, 6 and 7 represented 6 transgenic positive lines. WT represented the wild type and OE represented the overexpressed line. *** meant significant differences at the level of P<0.001, The same as below.
Fig.6 Phenotype (A) and fresh weight (B) of wild-type and AcWRKY94-overexpressed tobacco under salt stress * and ** meant significant differences at the levels of P<0.05 and P<0.01, respectively. The same as below.
Fig.7 Analysis of physiological indices in the wild-type and AcWRKY94-overexpressed tobacco under salt stress Data was detected based on fresh weight. The bars marked without the same lowercase letter indicated significant differences at P<0.05.
[1] | VAN ZELM E, ZHANG Y X, TESTERINK C. Salt tolerance mechanisms of plants[J]. Annual Review of Plant Biology, 2020, 71: 403-433. |
[2] | LIANG X Y, LI J F, YANG Y Q, et al. Designing salt stress-resilient crops: current progress and future challenges[J]. Journal of Integrative Plant Biology, 2024, 66(3): 303-329. |
[3] | MUNNS R. Genes and salt tolerance: bringing them together[J]. The New Phytologist, 2005, 167(3): 645-663. |
[4] | MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651-681. |
[5] | 国庆. 小黑杨转录因子PsnHDZ01基因调控抗旱耐盐的分子机制研究[D]. 哈尔滨: 东北林业大学, 2022. |
GUO Q. Molecular mechanism of transcription factor PsnHDZ01 in regulation of drought and salt tolerance in Populus simonii×Populus nigra[D]. Harbin:Northeast Forestry University, 2022. (in Chinese with English abstract) | |
[6] | EULGEM T, RUSHTON P J, ROBATZEK S, et al. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science, 2000, 5(5): 199-206. |
[7] | CHEN L G, ZHANG L P, LI D B, et al. WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(21): E1963-E1971. |
[8] | HU Y R, CHEN L G, WANG H P, et al. Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance[J]. The Plant Journal, 2013, 74(5): 730-745. |
[9] | QIU Y, YU D. Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis[J]. Environmental and Experimental Botany, 2009, 65(1): 35-47. |
[10] | DONG Q L, ZHENG W Q, DUAN D Y, et al. MdWRKY30, a group IIa WRKY gene from apple, confers tolerance to salinity and osmotic stresses in transgenic apple callus and Arabidopsis seedlings[J]. Plant Science, 2020, 299: 110611. |
[11] | 相立, 赵蕾, 王玫, 等. 苹果MdWRKY74的克隆和功能分析[J]. 园艺学报, 2022, 49(3): 482-492. |
XIANG L, ZHAO L, WANG M, et al. Cloning and functional analysis of MdWRKY74 in apple[J]. Acta Horticulturae Sinica, 2022, 49(3): 482-492. (in Chinese with English abstract) | |
[12] | YU Y A, HE L Y, WU Y X. Wheat WRKY transcription factor TaWRKY24 confers drought and salt tolerance in transgenic plants[J]. Plant Physiology and Biochemistry, 2023, 205: 108137. |
[13] | SHI W Y, DU Y T, MA J, et al. The WRKY transcription factor GmWRKY12 confers drought and salt tolerance in soybean[J]. International Journal of Molecular Sciences, 2018, 19(12): 4087. |
[14] | ZHU H, JIANG Y N, GUO Y, et al. A novel salt inducible WRKY transcription factor gene, AhWRKY 75, confers salt tolerance in transgenic peanut[J]. Plant Physiology and Biochemistry, 2021, 160: 175-183. |
[15] | LONG L X, GU L J, WANG S J, et al. Progress in the understanding of WRKY transcription factors in woody plants[J]. International Journal of Biological Macromolecules, 2023, 242(Pt 1): 124379. |
[16] | WANG H P, CHEN W Q, XU Z Y, et al. Functions of WRKYs in plant growth and development[J]. Trends in Plant Science, 2023, 28(6): 630-645. |
[17] | XING M Y, WANG W Q, ZHANG C, et al. Identification and functional analyses of the transcription factors AcWRKY117 and AcWRKY29 involved in waterlogging response in kiwifruit plant[J]. Scientia Horticulturae, 2024, 324: 112568. |
[18] | GAN Z Y, YUAN X, SHAN N, et al. AcWRKY40 mediates ethylene biosynthesis during postharvest ripening in kiwifruit[J]. Plant Science, 2021, 309: 110948. |
[19] | WANG J, LIU X F, ZHANG H Q, et al. Transcriptional and post-transcriptional regulation of ethylene biosynthesis by exogenous acetylsalicylic acid in kiwifruit[J]. Horticulture Research, 2022, 9: uhac116. |
[20] | GULZAR F, FU J Y, ZHU C Y, et al. Maize WRKY transcription factor ZmWRKY79 positively regulates drought tolerance through elevating ABA biosynthesis[J]. International Journal of Molecular Sciences, 2021, 22(18): 10080. |
[21] | DONG Q L, DUAN D Y, WANG F, et al. The MdVQ37-MdWRKY100 complex regulates salicylic acid content and MdRPM1 expression to modulate resistance to Glomerella leaf spot in apples[J]. Plant Biotechnology Journal, 2024, 22(8): 2364-2376. |
[22] | WANG Z R, GAO M, LI Y F, et al. The transcription factor SlWRKY37 positively regulates jasmonic acid and dark-induced leaf senescence in tomato[J]. Journal of Experimental Botany, 2022, 73(18): 6207-6225. |
[23] | JIANG J J, MA S H, YE N H, et al. WRKY transcription factors in plant responses to stresses[J]. Journal of Integrative Plant Biology, 2017, 59(2): 86-101. |
[24] | LU K K, SONG R F, GUO J X, et al. CycC1;1-WRKY75 complex-mediated transcriptional regulation of SOS1 controls salt stress tolerance in Arabidopsis[J]. The Plant Cell, 2023, 35(7): 2570-2591. |
[25] | MA J L, LI C H, SUN L L, et al. The SlWRKY57-SlVQ21/SlVQ16 module regulates salt stress in tomato[J]. Journal of Integrative Plant Biology, 2023, 65(11): 2437-2455. |
[26] | YU J, ZHU C S, XUAN W, et al. Genome-wide association studies identify OsWRKY53 as a key regulator of salt tolerance in rice[J]. Nature Communications, 2023, 14(1): 3550. |
[1] | YU Qinpei, SUN Li, ZHANG Shuwen, YU Zheping, ZHENG Xiliang, QI Xingjiang. Research progress of β-galactosidase in fruits of horticultural crops [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2184-2192. |
[2] | JIANG Wenjun, SHU Hongsuo, CHEN Zhengman, REN Dianting, YANG Dang, TIAN Rongjiang, DU Zhaokui. Cloning, expression, and bioinformatics analysis of KoWRKY43 gene in Kandelia obovata [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1832-1843. |
[3] | QI Xueli, LI Ying, DUAN Junzhi. Application of salt tolerance genes in wheat salt tolerance genetic engineering [J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1447-1457. |
[4] | ZHANG Hansheng, CHANG Qinxiang, KANG Jianzhong, LIANG Zongsuo. Research progress on nutritional value and utilization of walnut [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 905-919. |
[5] | TANG Yuehui, CHEN Shuying, HE Wenqiong, WANG Hanjin, BAO Xinxin, JIA Sainan, WANG Yaoyao, CHEN Yuyang, YANG Tongwen. Cloning and functional analysis of JcERF22 gene from Jatropha curcas [J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2219-2228. |
[6] | PI Yimeng, LU Yanhui, LYU Zhongxian, XU Yipeng, XU Hongxing. The role of farmland weeds in pest control [J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2426-2436. |
[7] | QIAO Hongyong, YUAN Tao, ZHAO Xinyong, YANG Huiyan. Characteristics of endophyte’s community changes of Paeonia suffruticosa cv. Lu He Hong fine root in different plant ages [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 115-126. |
[8] | ZHANG Yi, WANG Feng, CAI Liuti, WANG Hancheng, XIONG Jing, CHEN Xingjiang. Phyllosphere microecology of brown spot and healthy tobacco leaves after application of myclobutanil [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 156-167. |
[9] | LI Biyuan, YUE Zhichen, ZHAO Yanting, LEI Juanli, HU Qizan, TAO Peng. Identification and functional analysis of the BrLCYB gene of lycopene β-cyclase from Chinese cabbage [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2090-2096. |
[10] | ZHANG Yan, ZHOU Baoping, WANG Yu, FENG Jie, YE Fankai, HE Yunlong. Identification of harm grades of cotton spider mites based on transfer learning and improved residual network [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1729-1739. |
[11] | WANG Bo, CHEN Qiulin, WAN Jingjing. Space-time logic and breakthrough direction of China’s rural development in the new development stage [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 468-476. |
[12] | HAO Liuliu, DAI Lili, PENG Liang, CHEN Siyuan, TAO Ling, LI Gu, ZHANG Hui. Active organic carbon, microbial community structure and their relationship in rice rhizosphere soil of rice-crayfish co-culture systems [J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2901-2913. |
[13] | PENG Dandan, CHEN Dagang, XU Kaiwei, YOU Haoyu, YANG Ran, LIAO Huiping, CHEN Yuanxue. Effects of coconut-bran compound substrate on the growth and root characteristics of kiwifruit rootstock seedlings [J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2364-2377. |
[14] | MA Zhonghua, WU Na, CHEN Juan, ZHAO Cong, YAN Chenghong, LIU Jili. Effects of salt stress and phosphorus supply on physiological characteristics of switchgrass seedlings [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1205-1216. |
[15] | LI Liyan, TAN Haixia, LI Jing, WANG Lianlong, DU Yinghui, XU Zhiwen. Screening of salt-tolerant growth-promoting Bacillus strains and their effect on oat growth under salt stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1268-1276. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||