Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (6): 1025-1034.DOI: 10.3969/j.issn.1004-1524.2021.06.07
• Horticultural Science • Previous Articles Next Articles
ZHAO Guofu1(), YAN Yaqin2, WANG Jinglei2, WEI Qingzhen2, BAO Chonglai2,*(
)
Received:
2021-01-20
Online:
2021-06-25
Published:
2021-06-25
Contact:
BAO Chonglai
CLC Number:
ZHAO Guofu, YAN Yaqin, WANG Jinglei, WEI Qingzhen, BAO Chonglai. Genome-wide identification and expression analysis of LOX gene family in eggplant (Solanum melongena)[J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 1025-1034.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2021.06.07
基因Gene | 正向引物Forward primer | 反向引物Reverse primer |
---|---|---|
SmeLOX1 | TGGATCATCATGACACAGTC | GGATGAGGAAGGCTTAGTTC |
SmeLOX2 | ATTGAAACCGTTAGCAATTGAA | CTCAAGACCATCTTCATGTGG |
SmeLOX3 | AGTAACTGCAGGTGAATCAG | CAAGTGTGAGTGACTTGAGA |
SmeLOX4 | CCCCCACTTAAAAGAGATAGA | AGCAATTCAGGAGTTCCAAA |
SmeLOX5 | AGGCCTTAACATTCTCCGGC | ATCTGGTAAATGGACTCCAACG |
SmeLOX6 | AATCAAACATGTCTGGTCAC | TCCCTAGATTTCTCCACCAA |
SmeLOX7 | TAAGCAGTTTCTCCTTGACC | CTCGTCTAGAGAATGTGTCG |
SmeLOX8 | AATTTATGGGTATTTCCCTGC | CCTGAATGCTTCTCTTGTCC |
SmeLOX9 | AGATTTACCTCGGACAAAGG | CAGTATTTGGTCACCATTCC |
SmeLOX10 | TGAATGTGTTTCAAGGAAGTG | GCTTTTGATTTTGCATGAGTTT |
SmeLOX11 | GGAACCATGACACTACAGA | ACTTCGTGAAATCGATCAAG |
SmeLOX12 | TAGCCAGACCTTTTAACGAG | AAATTTATGCAATTGCCCCC |
18S RNA | CGCGCGCTACACTGATGTATTCAA | TACAAAGGGCAGGGACGTAGTCAA |
Table 1 qRT-PCR primers used in this study
基因Gene | 正向引物Forward primer | 反向引物Reverse primer |
---|---|---|
SmeLOX1 | TGGATCATCATGACACAGTC | GGATGAGGAAGGCTTAGTTC |
SmeLOX2 | ATTGAAACCGTTAGCAATTGAA | CTCAAGACCATCTTCATGTGG |
SmeLOX3 | AGTAACTGCAGGTGAATCAG | CAAGTGTGAGTGACTTGAGA |
SmeLOX4 | CCCCCACTTAAAAGAGATAGA | AGCAATTCAGGAGTTCCAAA |
SmeLOX5 | AGGCCTTAACATTCTCCGGC | ATCTGGTAAATGGACTCCAACG |
SmeLOX6 | AATCAAACATGTCTGGTCAC | TCCCTAGATTTCTCCACCAA |
SmeLOX7 | TAAGCAGTTTCTCCTTGACC | CTCGTCTAGAGAATGTGTCG |
SmeLOX8 | AATTTATGGGTATTTCCCTGC | CCTGAATGCTTCTCTTGTCC |
SmeLOX9 | AGATTTACCTCGGACAAAGG | CAGTATTTGGTCACCATTCC |
SmeLOX10 | TGAATGTGTTTCAAGGAAGTG | GCTTTTGATTTTGCATGAGTTT |
SmeLOX11 | GGAACCATGACACTACAGA | ACTTCGTGAAATCGATCAAG |
SmeLOX12 | TAGCCAGACCTTTTAACGAG | AAATTTATGCAATTGCCCCC |
18S RNA | CGCGCGCTACACTGATGTATTCAA | TACAAAGGGCAGGGACGTAGTCAA |
基因名称 Gene name | 基因位置 Gene code | 氨基酸长度 Amino acids length/aa | 蛋白质相对分子质量 Molecular weight/u | 芳香度 Aromaticity | 不稳定指数 Instability index | 等电点 Isoelectric point | 亲水性 Gravy |
---|---|---|---|---|---|---|---|
SmeLOX1 | Smechr0101045.1 | 843 | 95 774.44 | 0.09 | 40.53 | 5.85 | -0.399 |
SmeLOX2 | Smechr0101046.1 | 836 | 95 455.10 | 0.11 | 42.00 | 5.60 | -0.410 |
SmeLOX3 | Smechr0101047.1 | 863 | 97 961.05 | 0.10 | 40.19 | 5.45 | -0.404 |
SmeLOX4 | Smechr0104163.1 | 898 | 101 947.77 | 0.11 | 40.69 | 6.05 | -0.353 |
SmeLOX5 | Smechr0104167.1 | 899 | 101 887.71 | 0.10 | 37.98 | 6.12 | -0.385 |
SmeLOX6 | Smechr0300687.1 | 909 | 103 351.01 | 0.09 | 45.09 | 8.35 | -0.404 |
SmeLOX7 | Smechr0300720.1 | 793 | 90 715.48 | 0.09 | 53.28 | 6.14 | -0.388 |
SmeLOX8 | Smechr0303656.1 | 908 | 102 036.25 | 0.09 | 40.27 | 6.67 | -0.349 |
SmeLOX9 | Smechr0800437.1 | 859 | 96 846.64 | 0.10 | 39.79 | 5.41 | -0.353 |
SmeLOX10 | Smechr0901372.1 | 846 | 97 216.76 | 0.10 | 45.77 | 8.54 | -0.496 |
SmeLOX11 | Smechr0902151.1 | 886 | 100 649.19 | 0.10 | 41.35 | 5.89 | -0.363 |
SmeLOX12 | Smechr0902152.1 | 851 | 97 626.82 | 0.10 | 45.39 | 5.89 | -0.433 |
Table 2 Basic information of LOX gene family in Solanum melongena
基因名称 Gene name | 基因位置 Gene code | 氨基酸长度 Amino acids length/aa | 蛋白质相对分子质量 Molecular weight/u | 芳香度 Aromaticity | 不稳定指数 Instability index | 等电点 Isoelectric point | 亲水性 Gravy |
---|---|---|---|---|---|---|---|
SmeLOX1 | Smechr0101045.1 | 843 | 95 774.44 | 0.09 | 40.53 | 5.85 | -0.399 |
SmeLOX2 | Smechr0101046.1 | 836 | 95 455.10 | 0.11 | 42.00 | 5.60 | -0.410 |
SmeLOX3 | Smechr0101047.1 | 863 | 97 961.05 | 0.10 | 40.19 | 5.45 | -0.404 |
SmeLOX4 | Smechr0104163.1 | 898 | 101 947.77 | 0.11 | 40.69 | 6.05 | -0.353 |
SmeLOX5 | Smechr0104167.1 | 899 | 101 887.71 | 0.10 | 37.98 | 6.12 | -0.385 |
SmeLOX6 | Smechr0300687.1 | 909 | 103 351.01 | 0.09 | 45.09 | 8.35 | -0.404 |
SmeLOX7 | Smechr0300720.1 | 793 | 90 715.48 | 0.09 | 53.28 | 6.14 | -0.388 |
SmeLOX8 | Smechr0303656.1 | 908 | 102 036.25 | 0.09 | 40.27 | 6.67 | -0.349 |
SmeLOX9 | Smechr0800437.1 | 859 | 96 846.64 | 0.10 | 39.79 | 5.41 | -0.353 |
SmeLOX10 | Smechr0901372.1 | 846 | 97 216.76 | 0.10 | 45.77 | 8.54 | -0.496 |
SmeLOX11 | Smechr0902151.1 | 886 | 100 649.19 | 0.10 | 41.35 | 5.89 | -0.363 |
SmeLOX12 | Smechr0902152.1 | 851 | 97 626.82 | 0.10 | 45.39 | 5.89 | -0.433 |
Fig.3 Phylogenetic relationships and classification among LOX family proteins from Solanum melongena and other species Gm, Glycine max; Hv, Hordeum vulgare; Lc, Lens culinaris; Le, Lycopersicon esculentum; Na, Nicotiana attenuate; Nt, Nicotiana tabacum; Os, Oryza sativa; Ps, Pisum sativum; Pv, Phaseolus vulgaris; St, Solanum tuberosum; Zm, Zea mays; Vv, Vitis vinifera; Pt, Populus trichocarpa; Rsa, Raphanus sativus; At, Arabidopsis thaliana; Bra, Brassica rapa; Bol, Brassica oleracea.
Fig.4 Analyses of structure of SmeLOX family genes and proteins inSolanum melongena A, Phylogenetic tree of SmeLOX proteins;B, Exon-intron structures of SmeLOX gene; C, Schematic representation of the conserved motifs in SmeLOX protein; D, A 38-residue sequence motif of SmeLOX protein;E, Alignment of a 38-residue conserved motif of SmeLOX protein.
基因Gene | 根Root | 花Flower | 叶片Leaf | 茎秆Stem | 果实Fruit |
---|---|---|---|---|---|
SmeLOX1 | 0.10±0.05 gE | 1.30±0.05 eB | 0.60±0.02 hC | 0.30±0.09 efD | 2.10±0.06 cA |
SmeLOX2 | 0.30±0.02 fD | 1.60±0.09 dA | 0.50±0.04 hiC | 0 fE | 1.30±0.01dB |
SmeLOX3 | 0 gC | 0 hC | 0.90±0.05 gB | 2.01±0.04 bA | 2.10±0.10 cA |
SmeLOX4 | 1.60±0.05 dC | 3.63±0.12 aA | 1.20±0.03 fD | 0.76±0.02 dE | 2.63±0.23 bB |
SmeLOX5 | 0 gE | 2.85±0.09 bA | 2.30±0.14 dC | 0.72±0.03 dC | 0.30±0.06 fgD |
SmeLOX6 | 3.20±0.07 bA | 0.30±0.05 fD | 0.40±0.02 iD | 1.69±0.16 cB | 0.86±0.04 eC |
SmeLOX7 | 3.60±0.19 aA | 0.50±0.03 fC | 0.20±0.04 iD | 0 fE | 1.23±0.08 dB |
SmeLOX8 | 0.62±0.04 eD | 3.01±0.12 bB | 1.90±0.03 eC | 3.70±0.27 aB | 6.30±0.27 aA |
SmeLOX9 | 0 gD | 2.65±0.15 cA | 1.89±0.05 eB | 0.30±0.07 efC | 0.46±0.05 fC |
SmeLOX10 | 2.60±0.11 cA | 0 gC | 2.60±0.16 cA | 0.16±0.05 fC | 2.35±0.01 cB |
SmeLOX11 | 1.50±0.02 dB | 0.50±0.05 gD | 4.60±0.15 aA | 1.30±0.03 dC | 0 hE |
SmeLOX12 | 0 gC | 0 gC | 4.20±0.13 bA | 0.55±0.02 efB | 0.23±0.01 gC |
Table 3 Relative expression level of SmeLOX family genes in different tissue of eggplantby qRT-PCR analysis
基因Gene | 根Root | 花Flower | 叶片Leaf | 茎秆Stem | 果实Fruit |
---|---|---|---|---|---|
SmeLOX1 | 0.10±0.05 gE | 1.30±0.05 eB | 0.60±0.02 hC | 0.30±0.09 efD | 2.10±0.06 cA |
SmeLOX2 | 0.30±0.02 fD | 1.60±0.09 dA | 0.50±0.04 hiC | 0 fE | 1.30±0.01dB |
SmeLOX3 | 0 gC | 0 hC | 0.90±0.05 gB | 2.01±0.04 bA | 2.10±0.10 cA |
SmeLOX4 | 1.60±0.05 dC | 3.63±0.12 aA | 1.20±0.03 fD | 0.76±0.02 dE | 2.63±0.23 bB |
SmeLOX5 | 0 gE | 2.85±0.09 bA | 2.30±0.14 dC | 0.72±0.03 dC | 0.30±0.06 fgD |
SmeLOX6 | 3.20±0.07 bA | 0.30±0.05 fD | 0.40±0.02 iD | 1.69±0.16 cB | 0.86±0.04 eC |
SmeLOX7 | 3.60±0.19 aA | 0.50±0.03 fC | 0.20±0.04 iD | 0 fE | 1.23±0.08 dB |
SmeLOX8 | 0.62±0.04 eD | 3.01±0.12 bB | 1.90±0.03 eC | 3.70±0.27 aB | 6.30±0.27 aA |
SmeLOX9 | 0 gD | 2.65±0.15 cA | 1.89±0.05 eB | 0.30±0.07 efC | 0.46±0.05 fC |
SmeLOX10 | 2.60±0.11 cA | 0 gC | 2.60±0.16 cA | 0.16±0.05 fC | 2.35±0.01 cB |
SmeLOX11 | 1.50±0.02 dB | 0.50±0.05 gD | 4.60±0.15 aA | 1.30±0.03 dC | 0 hE |
SmeLOX12 | 0 gC | 0 gC | 4.20±0.13 bA | 0.55±0.02 efB | 0.23±0.01 gC |
[1] |
BRASH A R. Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate[J]. The Journal of Biological Chemistry, 1999,274(34):23679-23682.
DOI URL |
[2] |
LIAVONCHANKA A, FEUSSNER I. Lipoxygenases: occurrence, functions and catalysis[J]. Journal of Plant Physiology, 2006,163(3):348-357.
DOI URL |
[3] |
ANDREOU A, FEUSSNER I. Lipoxygenases: structure and reaction mechanism[J]. Phytochemistry, 2009,70(13/14):1504-1510.
DOI URL |
[4] | 曹嵩晓, 张冲, 汤雨凡, 等. 植物脂氧合酶蛋白特性及其在果实成熟衰老和逆境胁迫中的作用[J]. 植物生理学报, 2014,50(8):1096-1108. |
CAO S X, ZHANG C, TANG Y F, et al. Protein characteristic of the plant lipoxygenase and the function on fruit ripening and senescence and adversity stress[J]. Plant Physiology Journal, 2014,50(8):1096-1108.(in Chinese with English abstract) | |
[5] |
BANNENBERG G, MARTÍNEZ M, HAMBERG M, et al. Diversity of the enzymatic activity in the lipoxygenase gene family of Arabidopsis thaliana[J]. Lipids, 2008,44(2):85-95.
DOI URL |
[6] |
MELAN M A, DONG X, ENDARA M E, et al. An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyl jasmonate[J]. Plant Physiology, 1993,101(2):441-450.
DOI URL |
[7] |
BELL E, CREELMAN R A, MULLET J E. A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 1995,92(19):8675-8679.
DOI URL |
[8] |
CHAUVIN A, CALDELARI D, WOLFENDER J L, et al. Four 13-lipoxygenases contribute to rapid jasmonate synjournal in wounded Arabidopsis thaliana leaves: a role for lipoxygenase 6 in responses to long-distance wound signals[J]. New Phytologist, 2013,197(2):566-575.
DOI URL |
[9] |
FERRIE B J, BEAUDOIN N, BURKHART W, et al. The cloning of two tomato lipoxygenase genes and their differential expression during fruit ripening[J]. Plant Physiology, 1994,106(1):109-118.
DOI URL |
[10] |
GRIFFITHS A, BARRY C, ALPUCHE-SOLIS A G, et al. Ethylene and developmental signals regulate expression of lipoxygenase genes during tomato fruit ripening[J]. Journal of Experimental Botany, 1999,50(335):793-798.
DOI URL |
[11] |
HEITZ T, BERGEY D R, RYAN C A. A gene encoding a chloroplast-targeted lipoxygenase in tomato leaves is transiently induced by wounding, systemin, and methyl jasmonate[J]. Plant Physiology, 1997,114(3):1085-1093.
DOI URL |
[12] |
CHEN G P, HACKETT R, WALKER D, et al. Identification of a specific isoform of tomato lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavor compounds[J]. Plant Physiology, 2004,136(1):2641-2651.
DOI URL |
[13] |
HU T Z, HU Z L, ZENG H, et al. Tomato lipoxygenase D involved in the biosynjournal of jasmonic acid and tolerance to abiotic and biotic stress in tomato[J]. Plant Biotechnology Reports, 2015,9(1):37-45.
DOI URL |
[14] |
MARIUTTO M, DUBY F, ADAM A, et al. The elicitation of a systemic resistance by Pseudomonas putida BTP1 in tomato involves the stimulation of two lipoxygenase isoforms[J]. BMC Plant Biology, 2011,11:29.
DOI URL |
[15] |
LIU S Q, LIU X H, JIANG L W. Genome-wide identification, phylogeny and expression analysis of the lipoxygenase gene family in cucumber[J]. Genetics and Molecular Research, 2011,10(4):2613-2636.
DOI URL |
[16] |
YANG X Y, JIANG W J, YU H J. The expression profiling of the lipoxygenase (LOX) family genes during fruit development, abiotic stress and hormonal treatments in cucumber (Cucumis sativus L.)[J]. International Journal of Molecular Sciences, 2012,13(2):2481-2500.
DOI URL |
[17] | WANG J L, HU T H, WANG W H, et al. Bioinformatics analysis of the lipoxygenase gene family in radish (Raphanus sativus) and functional characterization in response to abiotic and biotic stresses[J]. International Journal of Molecular Sciences, 2019,20(23):E6095. |
[18] |
WEI Q Z, WANG J L, WANG W H, et al. A high-quality chromosome-level genome assembly reveals genetics for important traits in eggplant[J]. Horticulture Research, 2020,7:153.
DOI URL |
[19] | 赵国富, 魏庆镇, 汪精磊 , 等. 萝卜(Raphanus sativus)Dof基因家族全基因组鉴定分析[J]. 分子植物育种, 2019,17(23):7683-7691. |
ZHAO G F, WEI Q Z, WANG J L, et al. Genome-wide identification and analysis of the Dof gene family in radish(Raphanus sativus)[J]. Molecular Plant Breeding, 2019,17(23):7683-7691.(in Chinese with English abstract) | |
[20] |
CHEN C J, CHEN H, ZHANG Y, et al. TBtools, a toolkit for biologists integrating various HTS-data handling tools with a user-friendly interface[J]. Molecular Plant, 2020,13(8):1194-1202.
DOI URL |
[21] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method[J]. Methods, 2001,25(4):402-408.
DOI URL |
[22] | UMATE P. Genome-wide analysis of lipoxygenase gene family in Arabidopsis and rice[J]. Plant Signaling & Behavior, 2011,6(3):335-338. |
[23] |
OGUNOLA O F, HAWKINS L K, MYLROIE E, et al. Characterization of the maize lipoxygenase gene family in relation to aflatoxin accumulation resistance[J]. PLoS One, 2017,12(7):e0181265.
DOI URL |
[24] |
SARDE S J, KUMAR A, REMME R N, et al. Genome-wide identification, classification and expression of lipoxygenase gene family in pepper[J]. Plant Molecular Biology, 2018,98(4/5):375-387.
DOI URL |
[25] |
ROYO J, VANCANNEYT G, PÉREZ A G, et al. Characterization of three potato lipoxygenases with distinct enzymatic activities and different organ-specific and wound-regulated expression patterns[J]. Journal of Biological Chemistry, 1996,271(35):21012-21019.
DOI URL |
[26] | 宋辉, 赵术珍, 侯蕾, 等. 野生花生全基因组抗病相关LOX基因的生物信息学分析[J]. 山东农业科学, 2015,47(10):1-7. |
SONG H, ZHAO S Z, HOU L, et al. Bioinformatics analysis on LOX genes related to disease resistance in whole genome of Arachis duranensis and Arachis ipaёnsis[J]. Shandong Agricultural Sciences, 2015,47(10):1-7.(in Chinese with English abstract) | |
[27] |
MINOR W, STECZKO J, STEC B, et al. Crystal structure of soybean lipoxygenase L-1 at 1.4 Å resolution[J]. Biochemistry, 1996,35(33):10687-10701.
DOI URL |
[28] | 沙伟, 任巍巍, 马天意. 脂氧合酶基因在植物中的研究进展[J]. 分子植物育种, 2019,17(24):8102-8107. |
SHA W, REN W W, MA T Y. Research advances of lipoxygenase genes in plants[J]. Molecular Plant Breeding, 2019,17(24):8102-8107.(in Chinese with English abstract) | |
[29] |
HALITSCHKE R, BALDWIN I T. Antisense LOX expression increases herbivore performance by decreasing defense responses and inhibiting growth-related transcriptional reorganization in Nicotiana attenuata[J]. The Plant Journal, 2003,36(6):794-807.
DOI URL |
[30] | ALLMANN S, HALITSCHKE R, SCHUURINK R C, et al. Oxylipin channelling in Nicotiana attenuata: lipoxygenase 2 supplies substrates for green leaf volatile production[J]. Plant, Cell & Environment, 2010,33(12):2028-2040. |
[31] | 陈竹. 杨树脂氧合酶(LOX)家族的全基因组分析及PtLOX11基因的功能研究[D]. 合肥: 安徽农业大学, 2017. |
CHEN Z. Genome-wide identification of lipoxygenase gene family in poplar and function analysis of PtLOX11[D]. Hefei: Anhui Agricultural University, 2017. (in Chinese with English abstract) | |
[32] | 张冲. 甜瓜脂氧合酶基因家族成员鉴定、表达调控及CmLOX8在果实香气合成中的作用[D]. 沈阳: 沈阳农业大学, 2016. |
ZHANG C. Identification, expression and regulation of lipoxygenase gene family in melon (Cucumis melo var. makuwa Makino) and the role of CmLOX18 in synthesis of fruit aroma volatiles[D]. Shenyang: Shenyang Agricultural University, 2016. (in Chinese with English abstract) |
[1] | YANG Xinxia, ZHANG Bin. Identification of soybean LAZ1 gene family and functional analysis of GmLAZ1-9 [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 586-594. |
[2] | HUANG Yongming, SONG Fang, WANG Ce, YAO Jinglei, WANG Zhijing, HE Ligang, WU Liming, JIANG Yingchun. Effects of root pruning on growth and expression of related genes in Poncirus trifoliata [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 270-277. |
[3] | XU Xiuhong, LIU Jinliang, LI Dongcheng, LIU Renxiang. Analysis of nicotine content and related gene expression in different types of tobacco germplasm [J]. , 2020, 32(9): 1555-1563. |
[4] | LIU Kunju, ZHANG Xiaohui, PANG Youzhi, ZHAO Shujuan, QI Yanxia, WANG Qiankun. Relationship of plumage color with expression and polymorphism of GNAS gene in Korean quail [J]. , 2020, 32(8): 1369-1377. |
[5] | LI Qiuling, QI Ying, WANG Chen, ZHANG Yiming, WANG Xinyu, SHANG Xiaolan, JIA Yonghong, LI Meiru, CHU Mingxing. Effect of heat stress on gene expressions and signaling pathways of mammary gland in Chinese Holstein [J]. , 2020, 32(5): 770-778. |
[6] | PU Lusha, SU Shibo, CHEN Xiaohan, ZHAO Lili, CHEN Hongyan. Prokaryotic expression and phylogenetic analysis of ORF2 gene of goose astrovirus [J]. , 2020, 32(5): 789-797. |
[7] | LU Yi, GAO Youling, WANG Shuitao, HE Shengsheng. Effects of microRNA-499 on lipid metabolism-related gene expression in Pelodiscus sinensis [J]. , 2020, 32(5): 798-803. |
[8] | LI Weifang, WANG Chunlei, WANG Ni, DENG Yuzheng, YAO Yandong, WEI Lijuan, LIAO Weibiao. Research progress on effect of nitric oxide on adventitious root formation in plants [J]. , 2020, 32(4): 742-752. |
[9] | QIN Ling, ZHANG Xin, RONG Chunxiao, MO Chuanyuan, FAN Lu, YAN Jie, MENG Ying, ZHANG Manrang. Identification and expression analysis of polyamine oxidase (PAO) gene family in apple [J]. , 2020, 32(2): 262-273. |
[10] | ZHANG Zheng, WANG Xiaorong, QIAN Hong, ZHANG Lan, YAN Peng, ZHANG Liping, ZHANG Xinfu, LI Xin, HAN Wenyan. Effects of anthracnose disease on photosynthetic characteristics in tea leaves (Camellia sinensis L.) [J]. , 2020, 32(11): 2020-2026. |
[11] | ZHANG Aiju, LIU Shili, LIU Jindian, ZHANG Genfang, ZHOU Zhiming. Cloning, characterization, and expression patterns of one sarco/endoplasmic reticulum calcium ATPase isoform from freshwater mussel Hyriopsis cumingii [J]. , 2019, 31(4): 545-555. |
[12] | CHEN Hongqiang, XIA Hui, WANG Jin, DENG Qunxian, LIANG Dong, LYU Xiulan, TANG Liping. Identification and expression analysis of STS gene family in grape [J]. , 2019, 31(3): 401-407. |
[13] | XIN Shijie, WANG Xiaohui, DAI Guojun, AN Tingting, ZHANG Tao, ZHANG Genxi, XIE Kaizhou, WANG Jinyu, WANG Hongsheng. Effect and correlation analysis of Eimeria tenella infection on IL-6, IL-8 and CCLi2 genes expression in spleen and caecum of Jinghai Yellow Chicken (Gallus gallus) [J]. , 2019, 31(1): 39-46. |
[14] | NING Qiuyan, FAN Kai, WANG Min, SHI Yuanzhi. Responses of Expansins and XTHs to different aluminum concentrationa in roots of tea plant [Camellia sinensis (L.) O. Kuntze] [J]. , 2018, 30(6): 961-969. |
[15] | BAI Qi, LU Yanhui, ZHENG Xusong, LYU Zhongxian. Spatiotemporal expression profiling of two P450 genes, CYP4M38 and CYP4M39, in rice stem borer, Chilo suppressalis (Lepidoptera: Crambidae) [J]. , 2018, 30(4): 521-527. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||