Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (6): 1227-1235.DOI: 10.3969/j.issn.1004-1524.2022.06.13
• Plant protection • Previous Articles Next Articles
YANG Xiujuan1(), LI Weiya1, LI Caimiao1, CHENG Bijun1, GAO Fen2, ZHAO Jun3
Received:
2021-09-13
Online:
2022-06-25
Published:
2022-06-30
CLC Number:
YANG Xiujuan, LI Weiya, LI Caimiao, CHENG Bijun, GAO Fen, ZHAO Jun. Antifungal effect of Camellia seed cake on root rot pathogens of Astragalus membranaceus and Panax notoginseng[J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1227-1235.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.06.13
茶籽饼水浸提液终浓度 Concentrations of Camellia seed cake water extract/(g∙L-1) | 黄芪根腐病病原菌 Root rot pathogens of A. membranaceus | 三七根腐病病原菌 Root rot pathogens of P. notoginseng | ||||
---|---|---|---|---|---|---|
F. acuminatum | F. solani | F. oxysporum | F. solani | F. oxysporum | Ilyonectria sp. | |
2 | 52.08±4.66 a | 20.89±10.29 b | 41.98±1.83 a | 20.13±7.02 a | 8.60±4.07 b | 26.67±0.04 a |
5 | 47.69±5.18 a | 35.62±4.30 a | 46.94±4.06 a | 25.31±0.53 a | 30.51±4.21 a | 13.33±0.01 a |
10 | 28.36±21.44 a | 23.69±5.12 a | 32.22±5.90 b | 4.00±7.62 b | 35.60±3.29 a | 20.00±0.02 a |
Table 1 Inhibition rate of Camellia seed cake water extract on root rot pathogens at 4th day %
茶籽饼水浸提液终浓度 Concentrations of Camellia seed cake water extract/(g∙L-1) | 黄芪根腐病病原菌 Root rot pathogens of A. membranaceus | 三七根腐病病原菌 Root rot pathogens of P. notoginseng | ||||
---|---|---|---|---|---|---|
F. acuminatum | F. solani | F. oxysporum | F. solani | F. oxysporum | Ilyonectria sp. | |
2 | 52.08±4.66 a | 20.89±10.29 b | 41.98±1.83 a | 20.13±7.02 a | 8.60±4.07 b | 26.67±0.04 a |
5 | 47.69±5.18 a | 35.62±4.30 a | 46.94±4.06 a | 25.31±0.53 a | 30.51±4.21 a | 13.33±0.01 a |
10 | 28.36±21.44 a | 23.69±5.12 a | 32.22±5.90 b | 4.00±7.62 b | 35.60±3.29 a | 20.00±0.02 a |
Fig. 1 Inhibition rate of tea saponin on root rot pathogens A, B, C showed the inhibition rate of root rot pathogens from A. membranaceus of F. solani, F. oxysporum, F. acuminatum. D, E, F showed the inhibition rate of root rot pathogens from P. notoginseng of F. solani, F. oxysporum, Ilyonectria sp..
茶籽饼中挥发性气体浓度 Concentrations of volatile gases in Camellia seed cake/(g∙L-1) | 黄芪根腐病病原菌抑制率 Inhibition rate of root rot pathogens of A. membranaceus | 三七根腐病病原菌抑制率 Inhibition rate of root rot pathogens of P. notoginseng | ||||
---|---|---|---|---|---|---|
F. acuminatum | F. solani | F. oxysporum | F. solani | F. oxysporum | Ilyonectria sp. | |
10 | 22.24±22.92 a | 41.79±4.01 a | 45.22±1.30 a | 45.80±27.97 a | 48.72±8.21 a | 28.03±8.14 b |
50 | 35.73±9.88 a | 51.01±3.15 a | 52.36±1.13 a | 52.16±6.16 a | 60.16±2.28 a | 40.47±4.31 a |
Table 2 Inhibition rate of Camellia seed cake VOCs on root rot pathogens of A. membranaceus and P. notoginseng cultured for 6 d %
茶籽饼中挥发性气体浓度 Concentrations of volatile gases in Camellia seed cake/(g∙L-1) | 黄芪根腐病病原菌抑制率 Inhibition rate of root rot pathogens of A. membranaceus | 三七根腐病病原菌抑制率 Inhibition rate of root rot pathogens of P. notoginseng | ||||
---|---|---|---|---|---|---|
F. acuminatum | F. solani | F. oxysporum | F. solani | F. oxysporum | Ilyonectria sp. | |
10 | 22.24±22.92 a | 41.79±4.01 a | 45.22±1.30 a | 45.80±27.97 a | 48.72±8.21 a | 28.03±8.14 b |
50 | 35.73±9.88 a | 51.01±3.15 a | 52.36±1.13 a | 52.16±6.16 a | 60.16±2.28 a | 40.47±4.31 a |
药剂Pharmaceutics | 添加量 Addition /μL | 黄芪根腐病病原菌抑制率Inhibition rate of root rot pathogens of A. membranaceus | 三七根腐病病原菌抑制率Inhibition rate of root rot pathogens of P. notoginseng | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F. acuminatum | F. solani | F. oxysporum | F. solani | F. oxysporum | Ilyonectria sp. | ||||||||||||||
Day2 | Day4 | Day6 | Day2 | Day 4 | Day6 | Day2 | Day4 | Day6 | Day 2 | Day4 | Day 6 | Day 2 | Day4 | Day 6 | Day2 | Day 4 | Day6 | ||
1-辛烯-3-醇 1-Octen-3-ol | 10 | 63.89±4.81 a | 73.64±9.68 a | 56.61±17.48 b | 66.67±0.00 a | 42.67±8.33 b | 23.42±10.92 b | 78.38±0.00 a | 75.36±2.05 b | 38.37±4.93 b | 50.00±0.01 a | 60.32±2.75 b | 23.53±4.16 b | 60.61±5.25 a | 51.16±16.44 a | 32.35±12.48 a | 20.00±0.01 a | 75.00±0.01 a | 80.00±0.01 a |
50 | 66.67±0.01 a | 81.40±0.01 a | 87.30±0.01 a | 73.33±0.01 a | 84.00±0.01 a | 89.19±0.01 a | 78.38±0.01 a | 88.41±0.01 a | 90.70±0.01 a | 50.00±0.01 a | 80.95±0.01 a | 88.24±0.01 a | 63.64±0.01 a | 81.40±0.01 a | 88.24±0.01 a | 20.00±0.01 a | 75.00±0.01 a | 80.00±0.01 a | |
100 | 66.67±0.01 a | 81.40±0.01 a | 87.30±0.01 a | 73.33±0.01 a | 84.00±0.01 a | 89.19±0.01 a | 78.38±0.01 a | 88.41±0.01 a | 90.70±0.01 a | 50.00±0.01 a | 80.95±0.01 a | 88.24±0.01 a | 63.64±0.01 a | 81.40±0.01 a | 88.24±0.01 a | 20.00±0.01 a | 75.00±0.01 a | 80.00±0.01 a | |
2-甲基丁酯 2-Methylbutyl ester | 10 | 11.11±4.81 b | 8.53±5.37 b | 1.59±3.17 b | 8.89±3.85 c | 0 b | 4.50±1.56 b | 15.32±3.12 c | 12.08±4.43 c | 0 b | 0 c | 0 c | -2.94±0.01c | 12.12±5.25 c | -0.78±5.37 b | -5.88±0.01b | 0 b | 35.42±3.61 b | 5.00±0.01 b |
50 | 30.56±12.73 b | 20.93±8.06 b | 8.99±4.85 b | 35.56±3.85 b | 22.67±4.62 a | 18.92±2.70 a | 42.34±8.26 b | 23.67±6.03 b | 1.55±2.69 b | 16.67±7.22 b | 12.70±2.75 b | 6.86±1.70 b | 27.27±0.01 b | -2.33±0.01b | -0.98±1.70 b | 6.67±11.55 b | 39.58±3.61 b | 20.00±5.00 a | |
100 | 58.33±14.43 a | 47.29±14.95 a | 26.98±8.40 a | 44.44±3.85 a | 25.33±2.31 a | 21.62±2.70 a | 71.17±8.26 a | 48.79±4.43 a | 27.13±1.34 a | 37.50±0.01 a | 38.10±0.01 a | 18.63±4.49 a | 54.55±0.01 a | 37.98±10.74 a | 17.65±5.88 a | 20.00±0.01 a | 52.08±3.61 a | 23.33±2.89 a | |
2-甲基丁酸 2-Methylbutyric | 10 | 66.67±0.01 a | 81.40±0.01 a | 87.30±0.01 a | 73.33±0.01 a | 84.00±0.01 a | 72.97±3.82 b | 78.38±0.01 a | 88.41±0.01 a | 80.62±17.45 a | 50.00±0.01 a | 80.95±0.01 a | 80.88±2.08 b | 63.64±0.01 a | 81.40±0.01 a | 73.53±0.01 a | 20.00±0.01a | 75.00±0.01 a | 80.00±0.01 a |
50 | 66.67±0.01 a | 81.40±0.01 a | 87.30±0.01 a | 73.33±0.01 a | 84.00±0.01 a | 89.19±0.01 a | 78.38±0.01 a | 88.41±0.01 a | 90.70±0.01 a | 50.00±0.01 a | 80.95±0.01 a | 88.24±0.01 a | 63.64±0.01 a | 81.40±0.01 a | 88.24±0.01 a | 20.00±0.01 a | 75.00±0.01 a | 80.00±0.01 a | |
100 | 66.67±0.01 a | 81.40±0.01 a | 87.30±0.01 a | 73.33±0.01 a | 84.00± 0.01 a | 89.19±0.01 a | 78.38±0.01 a | 88.41±0.01a | 90.70± 0.01 a | 50.00±0.01 a | 80.95±0.01 a | 88.24±0.01 a | 63.64±0.01 a | 81.40±0.01 a | 88.24± 0.01 a | 20.00±0.01 a | 75.00±0.01 a | 80.00±0.01 a | |
丁酸丁酯 Butyl butyrate | 10 | 22.22±4.81 b | 13.18±5.37 b | 6.88±1.83 b | 20.00±0.01 b | 10.67±2.31 b | 6.31±1.56 b | 63.96±13.60 a | 45.89±11.71 b | 27.13±7.10 b | 0 c | 2.38±3.37 b | -0.98±3.40 b | 36.36±0.01 c | 10.08±2.69 b | 0.98±1.70 b | 0 a | 39.58±7.22 b | 11.67±5.77 b |
50 | 63.89±4.81 a | 51.94±14.95 a | 30.16±11.00 a | 53.33±6.67 a | 32.00±4.00 a | 23.42±1.56 a | 71.17±12.48 a | 58.45±12.07 b | 38.76±12.81 b | 33.33±7.22 b | 15.87±7.27 b | 12.75±1.70 a | 45.45±0.01 b | 16.28±0.01 b | 10.78±1.70 a | 20.00±0.01 a | 75.00±0.01 a | 80.00±0.01 a | |
100 | 66.67±0.01 a | 62.79±4.65 a | 43.92±4.85 a | 57.78±3.85 a | 26.67±2.31 a | 19.82±3.12 a | 78.38±0.01 a | 81.64±6.03 a | 61.24±16.33 a | 45.83±7.22 a | 35.71±16.84 a | 16.18±6.24 a | 60.61±5.25 a | 34.88±12.31 a | 15.69±7.40 a | 20.00±0.01 a | 75.00±0.01 a | 80.00±0.01 a | |
正丁醇 1-Butanol | 10 | 19.44±12.73 b | 17.83±14.21 b | 11.11±9.52 c | 2.22±3.85 c | 8.00±4.00 c | 7.21±4.13 b | 17.12±6.24 c | 19.81±6.69 b | 12.40±5.85 c | 4.17±7.22 b | 1.59±2.75 c | 0 c | 9.09±0.01 c | 8.53±5.37 b | 3.92±3.40 b | 6.67±11.55 a | 54.17±3.61 c | 36.67±12.58 c |
50 | 66.67±0.01 a | 70.54±2.69 a | 61.90±3.17 b | 28.89±10.18 b | 25.33±9.24 b | 26.13±10.23 b | 42.34±3.12 b | 38.16±4.43 b | 30.23±8.06 b | 16.67±7.22 b | 20.63±2.75 b | 16.67±1.70 b | 30.30±5.25 b | 17.83±2.69 b | 12.75±6.12 b | 20.00±0.01 a | 66.67±3.61 b | 58.33±2.89 b | |
100 | 66.67±0.01 a | 81.40±0.01 a | 87.30±0.01 a | 66.67±6.67 a | 48.00±0.01 a | 48.65±11.47 a | 72.97±9.36 a | 71.98±13.39 a | 64.34±9.68 a | 41.67±7.22 a | 50.00±3.37 a | 42.65±2.08 a | 57.58±5.25 a | 67.44±9.30 a | 52.94±8.32 a | 20.00±0.01 a | 75.00±0.01 a | 80.00±0.01 a |
Table 3 Inhibition rate of five VOCs on A. membranaceus and P. notoginseng root rot pathogens %
药剂Pharmaceutics | 添加量 Addition /μL | 黄芪根腐病病原菌抑制率Inhibition rate of root rot pathogens of A. membranaceus | 三七根腐病病原菌抑制率Inhibition rate of root rot pathogens of P. notoginseng | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F. acuminatum | F. solani | F. oxysporum | F. solani | F. oxysporum | Ilyonectria sp. | ||||||||||||||
Day2 | Day4 | Day6 | Day2 | Day 4 | Day6 | Day2 | Day4 | Day6 | Day 2 | Day4 | Day 6 | Day 2 | Day4 | Day 6 | Day2 | Day 4 | Day6 | ||
1-辛烯-3-醇 1-Octen-3-ol | 10 | 63.89±4.81 a | 73.64±9.68 a | 56.61±17.48 b | 66.67±0.00 a | 42.67±8.33 b | 23.42±10.92 b | 78.38±0.00 a | 75.36±2.05 b | 38.37±4.93 b | 50.00±0.01 a | 60.32±2.75 b | 23.53±4.16 b | 60.61±5.25 a | 51.16±16.44 a | 32.35±12.48 a | 20.00±0.01 a | 75.00±0.01 a | 80.00±0.01 a |
50 | 66.67±0.01 a | 81.40±0.01 a | 87.30±0.01 a | 73.33±0.01 a | 84.00±0.01 a | 89.19±0.01 a | 78.38±0.01 a | 88.41±0.01 a | 90.70±0.01 a | 50.00±0.01 a | 80.95±0.01 a | 88.24±0.01 a | 63.64±0.01 a | 81.40±0.01 a | 88.24±0.01 a | 20.00±0.01 a | 75.00±0.01 a | 80.00±0.01 a | |
100 | 66.67±0.01 a | 81.40±0.01 a | 87.30±0.01 a | 73.33±0.01 a | 84.00±0.01 a | 89.19±0.01 a | 78.38±0.01 a | 88.41±0.01 a | 90.70±0.01 a | 50.00±0.01 a | 80.95±0.01 a | 88.24±0.01 a | 63.64±0.01 a | 81.40±0.01 a | 88.24±0.01 a | 20.00±0.01 a | 75.00±0.01 a | 80.00±0.01 a | |
2-甲基丁酯 2-Methylbutyl ester | 10 | 11.11±4.81 b | 8.53±5.37 b | 1.59±3.17 b | 8.89±3.85 c | 0 b | 4.50±1.56 b | 15.32±3.12 c | 12.08±4.43 c | 0 b | 0 c | 0 c | -2.94±0.01c | 12.12±5.25 c | -0.78±5.37 b | -5.88±0.01b | 0 b | 35.42±3.61 b | 5.00±0.01 b |
50 | 30.56±12.73 b | 20.93±8.06 b | 8.99±4.85 b | 35.56±3.85 b | 22.67±4.62 a | 18.92±2.70 a | 42.34±8.26 b | 23.67±6.03 b | 1.55±2.69 b | 16.67±7.22 b | 12.70±2.75 b | 6.86±1.70 b | 27.27±0.01 b | -2.33±0.01b | -0.98±1.70 b | 6.67±11.55 b | 39.58±3.61 b | 20.00±5.00 a | |
100 | 58.33±14.43 a | 47.29±14.95 a | 26.98±8.40 a | 44.44±3.85 a | 25.33±2.31 a | 21.62±2.70 a | 71.17±8.26 a | 48.79±4.43 a | 27.13±1.34 a | 37.50±0.01 a | 38.10±0.01 a | 18.63±4.49 a | 54.55±0.01 a | 37.98±10.74 a | 17.65±5.88 a | 20.00±0.01 a | 52.08±3.61 a | 23.33±2.89 a | |
2-甲基丁酸 2-Methylbutyric | 10 | 66.67±0.01 a | 81.40±0.01 a | 87.30±0.01 a | 73.33±0.01 a | 84.00±0.01 a | 72.97±3.82 b | 78.38±0.01 a | 88.41±0.01 a | 80.62±17.45 a | 50.00±0.01 a | 80.95±0.01 a | 80.88±2.08 b | 63.64±0.01 a | 81.40±0.01 a | 73.53±0.01 a | 20.00±0.01a | 75.00±0.01 a | 80.00±0.01 a |
50 | 66.67±0.01 a | 81.40±0.01 a | 87.30±0.01 a | 73.33±0.01 a | 84.00±0.01 a | 89.19±0.01 a | 78.38±0.01 a | 88.41±0.01 a | 90.70±0.01 a | 50.00±0.01 a | 80.95±0.01 a | 88.24±0.01 a | 63.64±0.01 a | 81.40±0.01 a | 88.24±0.01 a | 20.00±0.01 a | 75.00±0.01 a | 80.00±0.01 a | |
100 | 66.67±0.01 a | 81.40±0.01 a | 87.30±0.01 a | 73.33±0.01 a | 84.00± 0.01 a | 89.19±0.01 a | 78.38±0.01 a | 88.41±0.01a | 90.70± 0.01 a | 50.00±0.01 a | 80.95±0.01 a | 88.24±0.01 a | 63.64±0.01 a | 81.40±0.01 a | 88.24± 0.01 a | 20.00±0.01 a | 75.00±0.01 a | 80.00±0.01 a | |
丁酸丁酯 Butyl butyrate | 10 | 22.22±4.81 b | 13.18±5.37 b | 6.88±1.83 b | 20.00±0.01 b | 10.67±2.31 b | 6.31±1.56 b | 63.96±13.60 a | 45.89±11.71 b | 27.13±7.10 b | 0 c | 2.38±3.37 b | -0.98±3.40 b | 36.36±0.01 c | 10.08±2.69 b | 0.98±1.70 b | 0 a | 39.58±7.22 b | 11.67±5.77 b |
50 | 63.89±4.81 a | 51.94±14.95 a | 30.16±11.00 a | 53.33±6.67 a | 32.00±4.00 a | 23.42±1.56 a | 71.17±12.48 a | 58.45±12.07 b | 38.76±12.81 b | 33.33±7.22 b | 15.87±7.27 b | 12.75±1.70 a | 45.45±0.01 b | 16.28±0.01 b | 10.78±1.70 a | 20.00±0.01 a | 75.00±0.01 a | 80.00±0.01 a | |
100 | 66.67±0.01 a | 62.79±4.65 a | 43.92±4.85 a | 57.78±3.85 a | 26.67±2.31 a | 19.82±3.12 a | 78.38±0.01 a | 81.64±6.03 a | 61.24±16.33 a | 45.83±7.22 a | 35.71±16.84 a | 16.18±6.24 a | 60.61±5.25 a | 34.88±12.31 a | 15.69±7.40 a | 20.00±0.01 a | 75.00±0.01 a | 80.00±0.01 a | |
正丁醇 1-Butanol | 10 | 19.44±12.73 b | 17.83±14.21 b | 11.11±9.52 c | 2.22±3.85 c | 8.00±4.00 c | 7.21±4.13 b | 17.12±6.24 c | 19.81±6.69 b | 12.40±5.85 c | 4.17±7.22 b | 1.59±2.75 c | 0 c | 9.09±0.01 c | 8.53±5.37 b | 3.92±3.40 b | 6.67±11.55 a | 54.17±3.61 c | 36.67±12.58 c |
50 | 66.67±0.01 a | 70.54±2.69 a | 61.90±3.17 b | 28.89±10.18 b | 25.33±9.24 b | 26.13±10.23 b | 42.34±3.12 b | 38.16±4.43 b | 30.23±8.06 b | 16.67±7.22 b | 20.63±2.75 b | 16.67±1.70 b | 30.30±5.25 b | 17.83±2.69 b | 12.75±6.12 b | 20.00±0.01 a | 66.67±3.61 b | 58.33±2.89 b | |
100 | 66.67±0.01 a | 81.40±0.01 a | 87.30±0.01 a | 66.67±6.67 a | 48.00±0.01 a | 48.65±11.47 a | 72.97±9.36 a | 71.98±13.39 a | 64.34±9.68 a | 41.67±7.22 a | 50.00±3.37 a | 42.65±2.08 a | 57.58±5.25 a | 67.44±9.30 a | 52.94±8.32 a | 20.00±0.01 a | 75.00±0.01 a | 80.00±0.01 a |
Fig. 2 Effects of five volatile organic compounds on growth of root rot pathogens of A. membranaceus and P. notoginseng A, B, C were colony morphology of Ilyonectria sp., F. solani and F. oxysporum cultured for 6 d. 1, 2, 3, 4, 5 were treatments of 1-octen-3-ol, 2-methylbutyl ester, 2-methylbutyric acid, butyl butyrate and n-butanol, respectively.
[1] | 国家药典委员会. 中华人民共和国药典:一部[M].2020年版. 北京:中国医药科技出版社, 2020. |
[2] | 孙海峰, 康宝玲, 高彦云, 等. 基于ARISA指纹图谱技术的浑源黄芪根际微生物菌群特征剖析[J]. 中草药, 2016, 47(12): 2157-2162. |
SUN H F, KANG B L, GAO Y Y, et al. Characterization of rhizospheric microbial flora of Hunyuan Astragali Mongolici Radix by ARISA fingerprinting[J]. Chinese Traditional and Herbal Drugs, 2016, 47(12): 2157-2162. (in Chinese with English abstract) | |
[3] | 高芬, 赵晓霞, 秦雪梅, 等. 山西省蒙古黄芪根腐病优势致病菌群分析[J]. 植物保护学报, 2018, 45(4): 878-885. |
GAO F, ZHAO X X, QIN X M, et al. Analysis of dominant pathogen community causing Astragalus membranaceus var. mongholicus root rot in Shanxi Province[J]. Journal of Plant Protection, 2018, 45(4): 878-885. (in Chinese with English abstract) | |
[4] | 游春梅, 官会林, 屠文, 等. 三七免耕连作土壤障碍因素及其消减措施的理论思考[J]. 云南师范大学学报(自然科学版), 2010, 30(3): 44-48. |
YOU C M, GUAN H L, TU W, et al. Theoretical thinking about Panax notoginseng's no-tillage cropping soil barriers and mitigation measures[J]. Journal of Yunnan Normal University (Natural Sciences Edition), 2010, 30(3): 44-48. (in Chinese with English abstract) | |
[5] | 赵庆芳, 张艳芳, 李巧峡. 黄芪根腐病病根的显微及超微结构研究[J]. 西北师范大学学报(自然科学版), 2012, 48(5): 84-88. |
ZHAO Q F, ZHANG Y F, LI Q X. Study on the structure of Astragalus membranaceus roots infected by the root rot disease[J]. Journal of Northwest Normal University (Natural Science), 2012, 48(5): 84-88. (in Chinese with English abstract) | |
[6] | 姚春芝, 蒋宇婷, 杨玉婷, 等. 三七连作土壤浸提液对其根腐病菌的化感效应[J]. 应用生态学报, 2020, 31(7): 2227-2235. |
YAO C Z, JIANG Y T, YANG Y T, et al. Allelopathic effect of extracts from Panax notoginseng mono-cropped soil on its root rot pathogens[J]. Chinese Journal of Applied Ecology, 2020, 31(7): 2227-2235. (in Chinese with English abstract) | |
[7] | 乔新国. 三七根腐病病原真菌的初步研究[D]. 昆明: 云南大学, 2015. |
QIAO X G. The study of pathogenic fungi with Panax notoginseng root rot[D]. Kunming: Yunnan University, 2015. (in Chinese with English abstract) | |
[8] | 陆宁, 刘云龙, 陈昱君, 等. 引起三七根腐病的两种病原菌[C]// 中国植病学会. 中国菌物学会北海联合年会论文集, 2005: 25-27. |
[9] | 何晓婷, 王均慧, 李娇, 等. 9种植物提取物对三七根腐病病原菌的抑菌活性测定[J]. 山西农业科学, 2020, 48(5): 789-792. |
HE X T, WANG J H, LI J, et al. Determination of antimicrobial activity of 9 plant extracts against the pathogen of Panax notoginseng root rot[J]. Journal of Shanxi Agricultural Sciences, 2020, 48(5): 789-792. (in Chinese with English abstract) | |
[10] | 王亚萍, 费学谦, 陆宽宽, 等. 油茶籽饼粕中甲醇提取物抑制黄曲霉菌效果及成分分析[J]. 农业工程学报, 2019, 35(11): 322-329. |
WANG Y P, FEI X Q, LU K K, et al. Inhibitory effect of Aspergillus flavus and component analysis of methanol extraction from Camellia seed cake[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(11): 322-329. (in Chinese with English abstract) | |
[11] |
LI Z, WANG Z C, ZHANG L B, et al. Pharmacological activities of components contained in Camellia oil and Camellia oil cake and their applications in various industries[J]. Current Traditional Medicine, 2020, 6(2): 86-105.
DOI URL |
[12] |
YU X L, HE Y. Tea saponins: effective natural surfactants beneficial for soil remediation, from preparation to application[J]. RSC Advances, 2018, 8(43): 24312-24321.
DOI URL |
[13] | 彭游, 柏杨, 喻国贞, 等. 茶皂素的提取及应用研究新进展[J]. 食品工业科技, 2013, 34(10): 357-362. |
PENG Y, BAI Y, YU G Z, et al. Advances in studies on extraction and application of tea saponin[J]. Science and Technology of Food Industry, 2013, 34(10): 357-362. (in Chinese with English abstract) | |
[14] | 黄继光, 陈秀贤, 徐汉虹, 等. 茶皂素对12种植物病原菌的抑菌活性[J]. 华中农业大学学报, 2013, 32(2): 50-53. |
HUANG J G, CHEN X X, XU H H, et al. Studies on inhibitory activity of tea saponin against twelve plant pathogenic fungi[J]. Journal of Huazhong Agricultural University, 2013, 32(2): 50-53. (in Chinese with English abstract) | |
[15] |
WANG Y P, YANG L, FEI X Q, et al. Antifungal effect of Camellia seed cake extract on Aspergillus flavus[J]. Journal of Food Protection, 2019, 82(3): 463-469.
DOI URL |
[16] |
MENG X C, LI J, BI F C, et al. Antifungal activities of crude extractum from Camellia semiserrata Chi (Nanshancha) seed cake against Colletotrichum musae, Colletotrichum gloeosporioides and Penicillium italicum in vitro and in vivo fruit test[J]. The Plant Pathology Journal, 2015, 31(4): 414-420.
DOI URL |
[17] |
YANG X J, XUE C, SU L X, et al. Exploring patterns of Camellia seed cake application in relation to plant growth, soil Nematodes and microbial biomass[J]. Soil Science and Plant Nutrition, 2018, 64(2): 253-264.
DOI URL |
[18] |
YANG X J, WANG X, WANG K, et al. The nematicidal effect of Camellia seed cake on root-knot nematode Meloidogyne javanica of banana[J]. PLoS One, 2015, 10(4): e0119700.
DOI URL |
[19] | 孟祥春, 黄泽鹏, 凡超, 等. 茶树油粕中茶皂素的提取及其对果蔬采后致病菌的抑制作用[J]. 保鲜与加工, 2019, 19(3): 90-96. |
MENG X C, HUANG Z P, FAN C, et al. Extraction of tea saponin from Camellia semiserrata Chi oil residua and its inhibiting effects on postharvest pathogen of fruit and vegetable[J]. Storage and Process, 2019, 19(3): 90-96. (in Chinese with English abstract) | |
[20] | 王媛媛. 竹叶精油的复配及其抑菌机理研究[D]. 北京: 北京林业大学, 2016. |
WANG Y Y. Antimicrobial mechanism of essential oil from Phyllostachys pubescens leaf and its combination[D]. Beijing: Beijing Forestry University, 2016. (in Chinese with English abstract) | |
[21] | 段一帆. 竹类植物挥发性有机物(BVOCs)抑菌活性及干旱对其释放的影响研究[D]. 雅安: 四川农业大学, 2019. |
DUAN Y F. Study on the antibacterial activity of volatile organic compounds(BVOCs) in bamboo and the effect of drought on their emission[D]. Ya’an: Sichuan Agricultural University, 2019. (in Chinese with English abstract) | |
[22] | 赵亚红, 徐翠霞, 马玲, 等. 3种常绿树挥发物成分对空气负离子及微生物的影响[J]. 浙江农林大学学报, 2020, 37(4): 654-663. |
ZHAO Y H, XU C X, MA L, et al. Effects of volatile components of three evergreen plants on air anion and microorganism[J]. Journal of Zhejiang A & F University, 2020, 37(4): 654-663. (in Chinese with English abstract) | |
[23] | 卫强, 王燕红. 棕榈花、 叶、茎挥发油成分及抑菌活性研究[J]. 浙江农业学报, 2016, 28(5): 875-884. |
WEI Q, WANG Y H. Study on chemical components of the essential oils in flower, leaf and stem of Trachycarpus fortune(Hook) H. Wendl. and their antimicrobial activities[J]. Acta Agriculturae Zhejiangensis, 2016, 28(5): 875-884. (in Chinese with English abstract) | |
[24] | 翟永彪. 三种挥发性化合物对山东地区灰霉病菌的毒力及作用方式研究[D]. 泰安: 山东农业大学, 2016. |
ZHAI Y B. Toxicity and mode of action of three kind of volatile compounds against Botrytis cinerea in Shandong Province[D]. Tai’an: Shandong Agricultural University, 2016. (in Chinese with English abstract) | |
[25] | 刘元元, 庞学兵, 李国, 等. 棉花黄萎病生防菌的筛选及挥发性抑菌物质检测[J]. 西北农业学报, 2019, 28(5): 820-829. |
LIU Y Y, PANG X B, LI G, et al. Screening for bio-control bacteria against cotton Verticillium wilt and detection of volatile antimicrobial substances[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 28(5): 820-829. (in Chinese with English abstract) |
[1] | ZHANG Hongling, LI Sen, ZHANG Yang, SONG Yifan, SHANG Zhaocong. Remediation of perchloroethylene and polycyclic aromatic hydrocarbons contaminated soil by foam-blocking coupled with oxidants [J]. , 2019, 31(7): 1138-1144. |
[2] | LAI Yu\|qing, WANG Mei\|xian, XIE Ying\|ran, LIU Yan*. Analysis of volatile organic compounds emitted from Pinus armandii in winter [J]. , 2016, 28(2): 284-. |
[3] | LIU Qing\|e;XIAO Jian\|zhong;CHEN Hai\|yan;ZHONG Xian\|long. Optimization of hot\|water extraction conditions for polysaccharide in Lentinus edodes waste substrate by quadratic regression rotation\|orthogonal combination design [J]. , 2013, 25(6): 0-1271. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||