Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (1): 18-31.DOI: 10.3969/j.issn.1004-1524.20230284
• Crop Science • Previous Articles Next Articles
ZHOU Lili1,2,3(), FENG Haikuan4, NIE Chenwei2,3, XU Xiaobin5, LIU Yuan1,2,3, MENG Lin2,3, XUE Beibei2, MING Bo2, LIANG Qiyun1, SU Tao1,*(
), JIN Xiuliang2,3,*(
)
Received:
2023-03-06
Online:
2024-01-25
Published:
2024-02-18
CLC Number:
ZHOU Lili, FENG Haikuan, NIE Chenwei, XU Xiaobin, LIU Yuan, MENG Lin, XUE Beibei, MING Bo, LIANG Qiyun, SU Tao, JIN Xiuliang. Influence of unmanned aerial vehicle observation time on estimation of canopy chlorophyll density of maize[J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 18-31.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230284
处理 Treatment | 不同种植时间的肥料施用量Application rate of fertilizer at different time | |||||
---|---|---|---|---|---|---|
50 d | 60 d | 70 d | 80 d | 90 d | 100 d | |
ND1 | 0 | 0 | 0 | 72.92 | 72.92 | 72.92 |
ND2 | 0 | 0 | 72.92 | 72.92 | 72.92 | 72.92 |
ND3 | 0 | 0 | 145.83 | 72.92 | 72.92 | 72.92 |
ND4 | 0 | 72.92 | 0 | 72.92 | 72.92 | 72.92 |
ND5 | 0 | 72.92 | 72.92 | 72.92 | 72.92 | 72.92 |
ND6 | 0 | 72.92 | 145.83 | 72.92 | 72.92 | 72.92 |
ND7 | 0 | 145.83 | 0 | 72.92 | 72.92 | 72.92 |
ND8 | 0 | 145.83 | 72.92 | 72.92 | 72.92 | 72.92 |
ND9 | 0 | 145.83 | 145.83 | 72.92 | 72.92 | 72.92 |
ND10 | 72.92 | 0 | 0 | 72.92 | 72.92 | 72.92 |
ND11 | 72.92 | 0 | 72.92 | 72.92 | 72.92 | 72.92 |
ND12 | 72.92 | 0 | 145.83 | 72.92 | 72.92 | 72.92 |
ND13 | 72.92 | 72.92 | 0 | 72.92 | 72.92 | 72.92 |
ND14 | 72.92 | 72.92 | 72.92 | 72.92 | 72.92 | 72.92 |
ND15 | 72.92 | 72.92 | 145.83 | 72.92 | 72.92 | 72.92 |
ND16 | 72.92 | 145.83 | 0 | 72.92 | 72.92 | 72.92 |
ND17 | 72.92 | 145.83 | 72.92 | 72.92 | 72.92 | 72.92 |
ND18 | 72.92 | 145.83 | 145.83 | 72.92 | 72.92 | 72.92 |
ND19 | 145.83 | 0 | 0 | 72.92 | 72.92 | 72.92 |
ND20 | 145.83 | 0 | 72.92 | 72.92 | 72.92 | 72.92 |
ND21 | 145.83 | 0 | 145.83 | 72.92 | 72.92 | 72.92 |
ND22 | 145.83 | 72.92 | 0 | 72.92 | 72.92 | 72.92 |
ND23 | 145.83 | 72.92 | 72.92 | 72.92 | 72.92 | 72.92 |
ND24 | 145.83 | 72.92 | 145.83 | 72.92 | 72.92 | 72.92 |
ND25 | 145.83 | 145.83 | 0 | 72.92 | 72.92 | 72.92 |
ND26 | 145.83 | 145.83 | 72.92 | 72.92 | 72.92 | 72.92 |
ND27 | 145.83 | 145.83 | 145.83 | 72.92 | 72.92 | 72.92 |
Table 1 Fertilization scheme kg·hm-2
处理 Treatment | 不同种植时间的肥料施用量Application rate of fertilizer at different time | |||||
---|---|---|---|---|---|---|
50 d | 60 d | 70 d | 80 d | 90 d | 100 d | |
ND1 | 0 | 0 | 0 | 72.92 | 72.92 | 72.92 |
ND2 | 0 | 0 | 72.92 | 72.92 | 72.92 | 72.92 |
ND3 | 0 | 0 | 145.83 | 72.92 | 72.92 | 72.92 |
ND4 | 0 | 72.92 | 0 | 72.92 | 72.92 | 72.92 |
ND5 | 0 | 72.92 | 72.92 | 72.92 | 72.92 | 72.92 |
ND6 | 0 | 72.92 | 145.83 | 72.92 | 72.92 | 72.92 |
ND7 | 0 | 145.83 | 0 | 72.92 | 72.92 | 72.92 |
ND8 | 0 | 145.83 | 72.92 | 72.92 | 72.92 | 72.92 |
ND9 | 0 | 145.83 | 145.83 | 72.92 | 72.92 | 72.92 |
ND10 | 72.92 | 0 | 0 | 72.92 | 72.92 | 72.92 |
ND11 | 72.92 | 0 | 72.92 | 72.92 | 72.92 | 72.92 |
ND12 | 72.92 | 0 | 145.83 | 72.92 | 72.92 | 72.92 |
ND13 | 72.92 | 72.92 | 0 | 72.92 | 72.92 | 72.92 |
ND14 | 72.92 | 72.92 | 72.92 | 72.92 | 72.92 | 72.92 |
ND15 | 72.92 | 72.92 | 145.83 | 72.92 | 72.92 | 72.92 |
ND16 | 72.92 | 145.83 | 0 | 72.92 | 72.92 | 72.92 |
ND17 | 72.92 | 145.83 | 72.92 | 72.92 | 72.92 | 72.92 |
ND18 | 72.92 | 145.83 | 145.83 | 72.92 | 72.92 | 72.92 |
ND19 | 145.83 | 0 | 0 | 72.92 | 72.92 | 72.92 |
ND20 | 145.83 | 0 | 72.92 | 72.92 | 72.92 | 72.92 |
ND21 | 145.83 | 0 | 145.83 | 72.92 | 72.92 | 72.92 |
ND22 | 145.83 | 72.92 | 0 | 72.92 | 72.92 | 72.92 |
ND23 | 145.83 | 72.92 | 72.92 | 72.92 | 72.92 | 72.92 |
ND24 | 145.83 | 72.92 | 145.83 | 72.92 | 72.92 | 72.92 |
ND25 | 145.83 | 145.83 | 0 | 72.92 | 72.92 | 72.92 |
ND26 | 145.83 | 145.83 | 72.92 | 72.92 | 72.92 | 72.92 |
ND27 | 145.83 | 145.83 | 145.83 | 72.92 | 72.92 | 72.92 |
生育时期 Growth stage | 观测时间 Observation time | 太阳天顶角 Solar zenith angle(SZA)/(°) | 太阳方位角 Solar azimuth angle(SAA)/(°) |
---|---|---|---|
抽雄吐丝期Tasseling silking stage (VT/R1) | 10:00—10:59(10AM) | 35.59 | 125.46 |
11:00—11:59(11AM) | 28.16 | 148.67 | |
13:00—13:59(1PM) | 28.18 | 211.31 | |
14:00—14:59(2PM) | 35.62 | 234.50 | |
籽粒建成期Blister stage (R2) | 10:00—10:59(10AM) | 38.17 | 128.70 |
11:00—11:59(11AM) | 31.16 | 151.15 | |
13:00—13:59(1PM) | 31.18 | 208.83 | |
14:00—14:59(2PM) | 38.21 | 231.25 | |
乳熟期Milk stage (R3) | 10:00—10:59(10AM) | 40.76 | 131.52 |
11:00—11:59(11AM) | 34.11 | 153.18 | |
13:00—13:59(1PM) | 34.14 | 206.80 | |
14:00—14:59(2PM) | 40.80 | 228.43 | |
蜡熟期Dough stage (R5) | 10:00—10:59(10AM) | 44.30 | 134.84 |
11:00—11:59(11AM) | 38.09 | 155.45 | |
13:00—13:59(1PM) | 38.12 | 204.54 | |
14:00—14:59(2PM) | 44.35 | 225.11 |
Table 2 Specific settings of solar zenith angle and azimuth angle of PROSAIL model
生育时期 Growth stage | 观测时间 Observation time | 太阳天顶角 Solar zenith angle(SZA)/(°) | 太阳方位角 Solar azimuth angle(SAA)/(°) |
---|---|---|---|
抽雄吐丝期Tasseling silking stage (VT/R1) | 10:00—10:59(10AM) | 35.59 | 125.46 |
11:00—11:59(11AM) | 28.16 | 148.67 | |
13:00—13:59(1PM) | 28.18 | 211.31 | |
14:00—14:59(2PM) | 35.62 | 234.50 | |
籽粒建成期Blister stage (R2) | 10:00—10:59(10AM) | 38.17 | 128.70 |
11:00—11:59(11AM) | 31.16 | 151.15 | |
13:00—13:59(1PM) | 31.18 | 208.83 | |
14:00—14:59(2PM) | 38.21 | 231.25 | |
乳熟期Milk stage (R3) | 10:00—10:59(10AM) | 40.76 | 131.52 |
11:00—11:59(11AM) | 34.11 | 153.18 | |
13:00—13:59(1PM) | 34.14 | 206.80 | |
14:00—14:59(2PM) | 40.80 | 228.43 | |
蜡熟期Dough stage (R5) | 10:00—10:59(10AM) | 44.30 | 134.84 |
11:00—11:59(11AM) | 38.09 | 155.45 | |
13:00—13:59(1PM) | 38.12 | 204.54 | |
14:00—14:59(2PM) | 44.35 | 225.11 |
Fig.2 Changes of waveband reflectance at different observation time 10AM, 11AM, 1PM, 2PM represent 10:00—10:59, 11:00—11:59, 13:00—13:59, 14:00—14:59, respectively. The same as below. Fig. a-d represent the tasseling silking stage (VT/R1), blister stage (R2), milk stage (R3), and dough stage (R5), respectively.
植被指数 Vegetation index | 各生育时期的相关系数Correlation coefficient at different growth stages | |||
---|---|---|---|---|
VT/R1 | R2 | R3 | R5 | |
MTCI | 0.65** | 0.74** | 0.72** | 0.68** |
NDVIrededge | 0.70** | 0.76** | 0.75** | 0.75** |
CIrededge | 0.68** | 0.75** | 0.74** | 0.73** |
NDVI | 0.36** | 0.61** | 0.64** | 0.66** |
GNDVI | 0.72** | 0.67** | 0.77** | 0.76** |
TCARI/OSAVI | 0.26** | 0.46** | 0.13* | 0.41** |
OSAVI | 0.28** | 0.43** | 0.16* | 0.55** |
SIPI | 0.07 | 0.02 | 0.09 | 0.34** |
EVI | 0.23** | 0.31** | 0.09 | 0.47** |
DVI | 0.24** | 0.31** | 0.09 | 0.44** |
TCARI | 0.20** | 0.37** | 0.08 | 0.33** |
MCARI | 0.20** | 0.37** | 0.08 | 0.33** |
PPR | 0.11* | 0.31** | 0.13* | 0.37** |
Table 3 Correlations within vegetatino indexes and canopy chlorophyll density (CCD)
植被指数 Vegetation index | 各生育时期的相关系数Correlation coefficient at different growth stages | |||
---|---|---|---|---|
VT/R1 | R2 | R3 | R5 | |
MTCI | 0.65** | 0.74** | 0.72** | 0.68** |
NDVIrededge | 0.70** | 0.76** | 0.75** | 0.75** |
CIrededge | 0.68** | 0.75** | 0.74** | 0.73** |
NDVI | 0.36** | 0.61** | 0.64** | 0.66** |
GNDVI | 0.72** | 0.67** | 0.77** | 0.76** |
TCARI/OSAVI | 0.26** | 0.46** | 0.13* | 0.41** |
OSAVI | 0.28** | 0.43** | 0.16* | 0.55** |
SIPI | 0.07 | 0.02 | 0.09 | 0.34** |
EVI | 0.23** | 0.31** | 0.09 | 0.47** |
DVI | 0.24** | 0.31** | 0.09 | 0.44** |
TCARI | 0.20** | 0.37** | 0.08 | 0.33** |
MCARI | 0.20** | 0.37** | 0.08 | 0.33** |
PPR | 0.11* | 0.31** | 0.13* | 0.37** |
Fig.3 Changes of vegetation indexes simulated by PROSAIL model under different observation time NDVI, Normalized difference vegetation index; GNDVI, Green normalized difference vegetation index; CIrededge, Red edge chlorophyll index; NDVIrededge, Red edge normalized difference vegetation index; MTCI, MERIS terrestrial chlorophyll index. The same as below.
Fig.5 Absolute correlation coefficient (r) within the vegetation indexes simulated by PROSAIL model and canopy chlorophyll density (CCD) a-e represent the correlation within NDVI, GNDVI, CIrededge, NDVIrededge, MTCI and CCD, respectively. The same as in Fig.6.
Fig.6 Absolute correlation coefficient within the measured vegetation indexes based on unmanned aerial vehicle images and canopy chlorophyll density (CCD)
Fig.7 Influence of the vegetation indexes simulated by PROSAIL model on canopy chlorophyll density (CCD) estimation RMSE, Root mean square error; NRMSE, Normalized root mean squared error. The same as below.
Fig.8 Influence of the measured vegetation indexes based on unmanned aerial vehicle images on canopy chlorophyll density (CCD) estimation R2,Coefficient of determination.
[1] | TIAN X L, LIU J J, LIU Q C, et al. The effects of soil properties, cropping systems and geographic location on soil prokaryotic communities in four maize production regions across China[J]. Journal of Integrative Agriculture, 2022, 21(7): 2145-2157. |
[2] | SHAO G M, HAN W T, ZHANG H H, et al. Prediction of maize crop coefficient from UAV multisensor remote sensing using machine learning methods[J]. Agricultural Water Management, 2023, 276: 108064. |
[3] | LÓPEZ A, JURADO J M, OGAYAR C J, et al. A framework for registering UAV-based imagery for crop-tracking in Precision Agriculture[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 97: 102274. |
[4] | DENG L, MAO Z H, LI X J, et al. UAV-based multispectral remote sensing for precision agriculture: a comparison between different cameras[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 146: 124-136. |
[5] | CHENG J P, YANG H, QI J B, et al. Estimating canopy-scale chlorophyll content in apple orchards using a 3D radiative transfer model and UAV multispectral imagery[J]. Computers and Electronics in Agriculture, 2022, 202: 107401. |
[6] | JAY S, BARET F, DUTARTRE D, et al. Exploiting the centimeter resolution of UAV multispectral imagery to improve remote-sensing estimates of canopy structure and biochemistry in sugar beet crops[J]. Remote Sensing of Environment, 2019, 231: 110898. |
[7] | WANG N, SUOMALAINEN J, BARTHOLOMEUS H, et al. Diurnal variation of sun-induced chlorophyll fluorescence of agricultural crops observed from a point-based spectrometer on a UAV[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 96: 102276. |
[8] | 郭松, 常庆瑞, 郑智康, 等. 基于无人机高光谱影像的玉米叶绿素含量估测[J]. 江苏农业学报, 2022, 38(4): 976-984. |
GUO S, CHANG Q R, ZHENG Z K, et al. Estimation of maize chlorophyll content based on unmanned aerial vehicle (UAV) hyperspectral images[J]. Jiangsu Journal of Agricultural Sciences, 2022, 38(4): 976-984. (in Chinese with English abstract) | |
[9] | QIAO L, ZHANG Z Y, CHEN L S, et al. Detection of chlorophyll content in maize canopy from UAV imagery[J]. IFAC-PapersOnLine, 2019, 52(30): 330-335. |
[10] | LI Z H, LI Z H, FAIRBAIRN D, et al. Multi-LUTs method for canopy nitrogen density estimation in winter wheat by field and UAV hyperspectral[J]. Computers and Electronics in Agriculture, 2019, 162: 174-182. |
[11] | YANG G J, LI C C, WANG Y J, et al. The DOM generation and precise radiometric calibration of a UAV-mounted miniature snapshot hyperspectral imager[J]. Remote Sensing, 2017, 9(7): 642. |
[12] | PENG M M, HAN W T, LI C Q, et al. Modeling the daytime net primary productivity of maize at the canopy scale based on UAV multispectral imagery and machine learning[J]. Journal of Cleaner Production, 2022, 367: 133041. |
[13] | 周珊羽. 基于无人机高光谱系统多角度观测的农作物叶绿素含量反演[D]. 济南: 山东大学, 2019. |
ZHOU S Y. Parameter retrieval of different crop types based on hyperspectral multi-angle data recorded from a UAV platform[D]. Jinan: Shandong University, 2019. (in Chinese with English abstract) | |
[14] | WANG L, LIAO Q H, XU X B, et al. Estimating the vertical distribution of chlorophyll in winter wheat based on multi-angle hyperspectral data[J]. Remote Sensing Letters, 2020, 11(11): 1032-1041. |
[15] | ADELUYI O, HARRIS A, VERRELST J, et al. Estimating the phenological dynamics of irrigated rice leaf area index using the combination of PROSAIL and Gaussian Process Regression[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 102: 102454. |
[16] | LI D, CHEN J M, ZHANG X, et al. Improved estimation of leaf chlorophyll content of row crops from canopy reflectance spectra through minimizing canopy structural effects and optimizing off-noon observation time[J]. Remote Sensing of Environment, 2020, 248: 111985. |
[17] | 舒方, 袁金国. 基于模型模拟的NDVI对叶片生化组分参数的敏感性及叶绿素估算[J]. 科技通报, 2019, 35(4): 120-128. |
SHU F, YUAN J G. Sensitivity of NDVI to leaf biochemical components parameters based on simulation and chlorophyll content estimation[J]. Bulletin of Science and Technology, 2019, 35(4): 120-128. (in Chinese with English abstract) | |
[18] | 何宇航. 多角度遥感植物冠层叶绿素含量反演研究[D]. 杭州: 杭州电子科技大学, 2021. |
HE Y H. Research on plant canopy chlorophyll content retrieval with multi-angle remote sensing techniques[D]. Hangzhou: Hangzhou Dianzi University, 2021. (in Chinese with English abstract) | |
[19] | 姚延娟, 范闻捷, 刘强, 等. 玉米全生长期叶面积指数收获测量法的改进[J]. 农业工程学报, 2010, 26(8): 189-194. |
YAO Y J, FAN W J, LIU Q, et al. Improved harvesting method for corn LAI measurement in corn whole growth stages[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(8): 189-194. (in Chinese with English abstract) | |
[20] | 李得孝, 郭月霞, 员海燕, 等. 玉米叶绿素含量测定方法研究[J]. 中国农学通报, 2005, 21(6): 153-155. |
LI D X, GUO Y X, YAN H Y, et al. Determined methods of chlorophyll from maize[J]. Chinese Agricultural Science Bulletin, 2005, 21(6): 153-155. (in Chinese with English abstract) | |
[21] | TA N, CHANG Q R, ZHANG Y M. Estimation of apple tree leaf chlorophyll content based on machine learning methods[J]. Remote Sensing, 2021, 13(19): 3902. |
[22] | HAN H S, WAN R R, LI B. Estimating forest aboveground biomass using Gaofen-1 images, Sentinel-1 images, and machine learning algorithms: a case study of the dabie mountain region, China[J]. Remote Sensing, 2021, 14(1): 176. |
[23] | ZENG N, REN X L, HE H L, et al. Estimating grassland aboveground biomass on the Tibetan Plateau using a random forest algorithm[J]. Ecological Indicators, 2019, 102: 479-487. |
[24] | JACQUEMOUD S, VERHOEF W, BARET F, et al. PROSPECT+SAIL models: a review of use for vegetation characterization[J]. Remote Sensing of Environment, 2009, 113: S56-S66. |
[25] | DARVISHZADEH R, SKIDMORE A, SCHLERF M, et al. Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland[J]. Remote Sensing of Environment, 2008, 112(5): 2592-2604. |
[26] | ROUSE J W, HAAS R H, SCHELL J A. Monitoring the vernal advancements and retrogradation (green wave effect) of natural vegetation[EB/OL]. (1973-04-01) [2023-03-06]. https://ntrs.nasa.gov/api/citations/19730017588/downloads/19730017588.pdf. |
[27] | GITELSON A A, MERZLYAK M N. Remote sensing of chlorophyll concentration in higher plant leaves[J]. Advances in Space Research, 1998, 22(5): 689-692. |
[28] | GITELSON A A, VIÑA A, CIGANDA V, et al. Remote estimation of canopy chlorophyll content in crops[J]. Geophysical Research Letters, 2005, 32(8): L08403. |
[29] | PEN-UELAS J, FILELLA I, LLORET P, et al. Reflectance assessment of mite effects on apple trees[J]. International Journal of Remote Sensing, 1995, 16(14): 2727-2733. |
[30] | GITELSON A, MERZLYAK M N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. spectral features and relation to chlorophyll estimation[J]. Journal of Plant Physiology, 1994, 143(3): 286-292. |
[31] | DASH J, CURRAN P J. The MERIS terrestrial chlorophyll index[J]. International Journal of Remote Sensing, 2004, 25(23): 5403-5413. |
[32] | DAUGHTRY C S T, WALTHALL C L, KIM M S, et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance[J]. Remote Sensing of Environment, 2000, 74(2): 229-239. |
[33] | ZARCO-TEJADA P J, HABOUDANE D, MILLER J R, et al. Leaf chlorophyll a+b and canopy LAI estimation in crops using R-T models and hyperspectral reflectance imagery[EB/OL]. [2023-03-06]. https://quantalab.ias.csic.es/pdf/zarco_ESA_2002.pdf. |
[34] | TUCKER C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment, 1979, 8(2): 127-150. |
[35] | HUETE A, DIDAN K, MIURA T, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote Sensing of Environment, 2002, 83(1/2): 195-213. |
[36] | RONDEAUX G, STEVEN M, BARET F. Optimization of soil-adjusted vegetation indices[J]. Remote Sensing of Environment, 1996, 55(2): 95-107. |
[37] | METTERNICHT G. Vegetation indices derived from high-resolution airborne videography for precision crop management[J]. International Journal of Remote Sensing, 2003, 24(14): 2855-2877. |
[38] | HABOUDANE D, MILLER J R, TREMBLAY N, et al. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture[J]. Remote Sensing of Environment, 2002, 81(2/3): 416-426. |
[39] | ALI A, IMRAN M, ALI A, et al. Evaluating Sentinel-2 red edge through hyperspectral profiles for monitoring LAI & chlorophyll content of Kinnow Mandarin orchards[J]. Remote Sensing Applications: Society and Environment, 2022, 26: 100719. |
[40] | MILLER J R, HARE E W, WU J. Quantitative characterization of the vegetation red edge reflectance 1: an inverted-Gaussian reflectance model[J]. International Journal of Remote Sensing, 1990, 11(10): 1755-1773. |
[41] | 许晓斌. 基于辐射传输模型的玉米氮素高光谱遥感定量估算[D]. 青岛: 山东科技大学, 2019. |
XU X B. Nitrogen quantitative estimation of maize using hyperspectral remote sensing based on radiation transfer model[D]. Qingdao: Shandong University of Science and Technology, 2019. (in Chinese with English abstract) |
[1] | LENG Yifeng, LUO Fan, CHEN Congshun, DING Xin, CAI Guangze. Phylogenetic relationship and genetic differentiation of maize landraces revealed by genome-wide SNP developed by genotyping-by-sequencing in Daliangshan Mountain area, China [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 32-47. |
[2] | LEI Lian. Effects of regulated deficit drip irrigation under film on plant growth, yield and water use of seed-producing maize [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1542-1549. |
[3] | ZHANG Meng, SHE Bao, YANG Yuying, HUANG Linsheng, ZHU Mengqi. Study on extraction method of soybean planting areas based on unmanned aerial vehicle RGB image [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 952-961. |
[4] | WANG Ningke, ZHANG Rui, ZHANG Shengyong. Effects of mechanization service degree and farmland operation scale on maize production efficiency [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 698-707. |
[5] | ZHENG Ran, LYU Dan, WU Qinggui, DI Xiaohong, ZHU Tongtong, QIU Guanjie, LUO Hongbing. Analysis of biological, physiological and biochemical mechanism of abortion of C-type cytoplasmic male sterile line S37-2 in maize [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 259-265. |
[6] | CUI Lingyu, YU Man, QIAO Yuying, SU Yao, WANG Yunlong, SHEN Alin. Research trend of soil quality assessment and microbiological indicators based on Web of Science database [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2688-2697. |
[7] | YU Bo, WANG Yuyan, REN Qin, DANG Yulei, ZHANG Zhipeng, WANG Yu. Effects of straw returning on soil structure and spring maize growth [J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2446-2455. |
[8] | MENG Fanhao, YANG Hengshan, ZHANG Ruifu, ZHANG Yuqin, LI Weimin, ZHANG Yushan, ZHANG Mingwei. Effects of irrigation methods on yield and water and nitrogen utilization efficiency of spring maize in Xiliaohe Plain, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1826-1836. |
[9] | GUO Han, LU Zhou, XU Feifei, LUO Ming, ZHANG Xu. Leaf area index estimation of winter wheat based on global sensitivity analysis and machine learning [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 2020-2031. |
[10] | HU Kaibo, YANG Qingxia, LI Yang, WU Kaixian, ZHAO Ping, LONG Guangqiang. Effect of application of amino acid fertilizer on spring maize cultivation under nitrogen reduction [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 661-670. |
[11] | JIA Liqiang, ZHAO Qiufang, CHEN Shu, DING Bo. Expression analysis of bZIP G subfamily genes in maize [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 221-231. |
[12] | CUI Wenfang, CHEN Jing, LU Fukuan, QIN Li, QIN Dezhi, WANG Liping, GAO Julin. Effects of biochar application combined with nitrogen reduction on yield and nitrogen use efficiency of maize [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 248-254. |
[13] | YUAN Chongyuan, ZHU Yuanfei, CHEN Xia, ZHU Chan, WANG Yi, TAO Haiyan, YU Jiaojiao. Identification of the interaction between ZmNLP5 and promoters of ZmSTP1, ZmAAP2 gene in maize [J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2340-2347. |
[14] | GAO Xin, YANG Hengshan, ZHANG Ruifu, ZHANG Yuqin, LI Rui, ZHANG Mingwei. Difference analysis on seed yield and root cap characteristics for spring maize under water fertilizer and high yield optimization of shallow burying drip irrigation [J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 1-9. |
[15] | WANG Jia, MU Ruirui, YANG Qiaoqiao, LIU Wei, ZHANG Yuehe, KANG Jianhong. Effects of potassium application rate on chlorophyll fluorescence characteristics and yield of spring maize in Ningxia under integrated drip irrigation [J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1347-1357. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||