Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (5): 1173-1184.DOI: 10.3969/j.issn.1004-1524.20230730
• Biosystems Engineering • Previous Articles Next Articles
LIU Quandong1,2(), SUN Wei1,*(
), ZHANG Hua1, LIU Xiaolong1, LI Hui1, WANG Hucun1
Received:
2023-06-05
Online:
2024-05-25
Published:
2024-05-29
CLC Number:
LIU Quandong, SUN Wei, ZHANG Hua, LIU Xiaolong, LI Hui, WANG Hucun. Design and performance study of leaping-over type soil covering device on film[J]. Acta Agriculturae Zhejiangensis, 2024, 36(5): 1173-1184.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230730
Fig.1 Cultivation mode of potato mulched with full film and soil covering on seed row 1, Potato tuber; 2, Potato ridge; 3, Potato seedling; 4, Soil covering on seed row; 5, Rainwater collecting micro-groove.
Fig.2 Structure diagram of potato mulched with full film and soil covering on seed row 1, Scoop chain potato sowing device; 2, Fertilizer box; 3, Frame; 4, Rainwater collecting tank ditcher; 5, Ditcher; 6, Ground wheel; 7, Leaping-type soil lifting device; 8, Film mulching device; 9, Lateral soil covering device; 10, Seed box.
Fig.3 Schematic diagram of leaping-over type soil covering device 1, Frame; 2, Ground wheel; 3, Trenching shovel; 4, Ridge body; 5, Film covering device; 6, Soil covering on the edge; 7, Soil covering on the film; 8, Plastic film; 9, Lateral soil conveying device; 10, Soil lifting device; 11, Reducer; 12, Input shaft; 13, Depth adjustment device of soil lifting shovel.
Fig.4 Stress analysis of soil particles in contact with soil lifting and trenching shovel 1, Ridges and ditches; 2, Soil particles; 3, Trenching shovel. N is the supporting force of soil particles on the shovel surface, f is the friction force, N; mg is the gravity of soil particles, N; v is the forward velocity of the planter, m·s-1; a is the installation inclination angle of the trenching shovel, °; μ is the friction coefficient between the soil and the trenching shovel; α1 is the slope angle of the trenching and lifting shovel blade.
Fig.5 Schematic diagram of working principle of leaping-over type soil lifting device 1, Soil; 2, Trenching shovel; 3, Driven wheel; 4, Scraper; 5, Lifting belt. B is the scraper width, m; h is the scraper height, m; v’ is the scraper chain speed, m·s-1; γ is the installation inclination of soil lifting device, kg·m-3; e is the installation distance of the scraper, mm; δ is the vertical distance between the earth scraper and the lowest point of the scraper, mm.
Fig.6 Schematic diagram of lateral soil covering device 1, Soil lifting device; 2, Scraper; 3, Soil feeder; 4, Screw soil conveying shaft; 5. Screw soil conveying device. D is the diameter of spiral blade of spiral soil conveyor, mm; d is the diameter of screw soil conveying shaft, mm; S is the pitch, mm.
Fig.7 Filling diagram of soil particles 1, Shield; 2, Retaining plate; 3, Screw soil conveying shaft; 4, Screw soil feeder; 5, Scraper; 6, Soil particles; 7. Driven wheel. r is the radius of soil covering device, mm; b is the thickness of the soil inside the soil cover, mm; c is the width of the soil inside the soil cover, mm; β is half of the central angle corresponding to the covering thickness, mm.
Fig.8 Analysis diagram of soil particle movement of lateral soil covering device 1, Bearing seat; 2, Soil particles; 3, Screw soil conveying device; 4, Soil covering on edge; 5, Plastic film; 6, Soil covering on seeding row. V1 is the axial velocity of soil particles, m·s-1; V2 is the circumferential velocity of soil particles, m·s-1; α is the spiral rise angle of the pusher; φ is the friction angle, t is the opening length of the soil covering device, mm.
项目 Project | 类别 Category | 泊松比 Poisson’s ratio | 剪切模量 Shear modulus/Pa | 密度 Density/(kg·m-3) |
---|---|---|---|---|
材料参数 | 土壤Soil | 0.40 | 1×106 | 1 300 |
Material parameters | 钢Steel | 0.28 | 3.5×1010 | 7 850 |
地膜Film | 0.49 | 6.1×106 | 1 000 | |
项目 Project | 类别 Category | 恢复系数 Restitution coefficient | 静摩擦系数 Static friction coefficient | 动摩擦系数 Dynamic friction coefficient |
接触参数 | 颗粒-颗粒Particle to particle | 0.21 | 0.68 | 0.27 |
Contact parameters | 颗粒-钢Particle to Steel | 0.54 | 0.31 | 0.13 |
颗粒-地膜Granular to film | 0.30 | 0.42 | 0.34 |
Table 1 Simulation material parameters and contact parameters
项目 Project | 类别 Category | 泊松比 Poisson’s ratio | 剪切模量 Shear modulus/Pa | 密度 Density/(kg·m-3) |
---|---|---|---|---|
材料参数 | 土壤Soil | 0.40 | 1×106 | 1 300 |
Material parameters | 钢Steel | 0.28 | 3.5×1010 | 7 850 |
地膜Film | 0.49 | 6.1×106 | 1 000 | |
项目 Project | 类别 Category | 恢复系数 Restitution coefficient | 静摩擦系数 Static friction coefficient | 动摩擦系数 Dynamic friction coefficient |
接触参数 | 颗粒-颗粒Particle to particle | 0.21 | 0.68 | 0.27 |
Contact parameters | 颗粒-钢Particle to Steel | 0.54 | 0.31 | 0.13 |
颗粒-地膜Granular to film | 0.30 | 0.42 | 0.34 |
水平 Level | A螺旋输土器转速 A Rotating speed of spiral soil conveyor/(r·min-1) | B覆土器开口长度 B Opening length of soil cover/mm | C覆土器离地高度 C Height of soil cover from the ground/mm |
---|---|---|---|
-1 | 120 | 80 | 200 |
0 | 150 | 100 | 250 |
1 | 180 | 120 | 300 |
Table 2 Factors and levels of soil covering test
水平 Level | A螺旋输土器转速 A Rotating speed of spiral soil conveyor/(r·min-1) | B覆土器开口长度 B Opening length of soil cover/mm | C覆土器离地高度 C Height of soil cover from the ground/mm |
---|---|---|---|
-1 | 120 | 80 | 200 |
0 | 150 | 100 | 250 |
1 | 180 | 120 | 300 |
处理 Treatment | A | B | C | 覆土宽度 Soil covering width/mm | 覆土厚度 Soil covering thickness/mm |
---|---|---|---|---|---|
1 | 150 | 120 | 300 | 261.70 | 43.0 |
2 | 150 | 100 | 250 | 245.64 | 50.7 |
3 | 120 | 120 | 250 | 204.70 | 45.3 |
4 | 120 | 100 | 300 | 249.96 | 43.7 |
5 | 150 | 100 | 250 | 245.64 | 50.7 |
6 | 150 | 80 | 200 | 201.95 | 49.1 |
7 | 150 | 120 | 200 | 218.13 | 52.2 |
8 | 180 | 100 | 200 | 222.80 | 50.5 |
9 | 150 | 100 | 250 | 245.64 | 50.7 |
10 | 180 | 80 | 250 | 249.01 | 53.0 |
11 | 180 | 120 | 250 | 245.00 | 51.5 |
12 | 120 | 100 | 200 | 212.20 | 54.2 |
13 | 180 | 100 | 300 | 276.12 | 43.3 |
14 | 120 | 80 | 250 | 233.60 | 48.8 |
15 | 150 | 80 | 300 | 258.20 | 50.3 |
16 | 150 | 100 | 250 | 245.64 | 50.7 |
17 | 150 | 100 | 250 | 245.64 | 50.7 |
Table 3 Response surface analysis results
处理 Treatment | A | B | C | 覆土宽度 Soil covering width/mm | 覆土厚度 Soil covering thickness/mm |
---|---|---|---|---|---|
1 | 150 | 120 | 300 | 261.70 | 43.0 |
2 | 150 | 100 | 250 | 245.64 | 50.7 |
3 | 120 | 120 | 250 | 204.70 | 45.3 |
4 | 120 | 100 | 300 | 249.96 | 43.7 |
5 | 150 | 100 | 250 | 245.64 | 50.7 |
6 | 150 | 80 | 200 | 201.95 | 49.1 |
7 | 150 | 120 | 200 | 218.13 | 52.2 |
8 | 180 | 100 | 200 | 222.80 | 50.5 |
9 | 150 | 100 | 250 | 245.64 | 50.7 |
10 | 180 | 80 | 250 | 249.01 | 53.0 |
11 | 180 | 120 | 250 | 245.00 | 51.5 |
12 | 120 | 100 | 200 | 212.20 | 54.2 |
13 | 180 | 100 | 300 | 276.12 | 43.3 |
14 | 120 | 80 | 250 | 233.60 | 48.8 |
15 | 150 | 80 | 300 | 258.20 | 50.3 |
16 | 150 | 100 | 250 | 245.64 | 50.7 |
17 | 150 | 100 | 250 | 245.64 | 50.7 |
项目 Project | 变异来源 Source of variation | 方差和 Variance sum | 自由度 Freedom | 均方 Mean square | F | P | 显著性 Significance |
---|---|---|---|---|---|---|---|
覆土宽度 | 模型Model | 5 646.07 | 3 | 1 882.02 | 22.51 | <0.000 1 | ** |
Soil covering width/mm | A | 1 068.84 | 1 | 1 068.84 | 12.78 | 0.003 4 | ** |
B | 21.88 | 1 | 21.88 | 0.261 7 | 0.617 6 | ||
C | 4 555.35 | 1 | 4 555.35 | 54.48 | <0.000 1** | ||
残差Residual | 1 087.00 | 13 | 83.62 | 22.51 | <0.000 1 | ||
失拟Lack of fit | 1 087.00 | 9 | 120.78 | 12.78 | 0.003 4 | ||
误差Error | 0.000 0 | 4 | 0.000 0 | ||||
总和Sum | 6 733.06 | 16 | |||||
覆土厚度 | 模型Model | 98.10 | 3 | 32.70 | 4.81 | 0.018 2 | * |
Soil covering thickness/mm | A | 4.96 | 1 | 4.96 | 0.729 4 | 0.408 5 | * |
B | 10.58 | 1 | 10.58 | 1.56 | 0.234 3 | ||
C | 82.56 | 1 | 82.56 | 12.14 | 0.004 0 | * | |
残差Residual | 88.42 | 13 | 6.80 | ||||
失拟Lack of fit | 88.42 | 9 | 9.82 | ||||
误差Error | 0.000 0 | 4 | 0.000 0 | ||||
总和Sum | 186.52 | 16 |
Table 4 Regression variance analysis of soil covering width and thickness
项目 Project | 变异来源 Source of variation | 方差和 Variance sum | 自由度 Freedom | 均方 Mean square | F | P | 显著性 Significance |
---|---|---|---|---|---|---|---|
覆土宽度 | 模型Model | 5 646.07 | 3 | 1 882.02 | 22.51 | <0.000 1 | ** |
Soil covering width/mm | A | 1 068.84 | 1 | 1 068.84 | 12.78 | 0.003 4 | ** |
B | 21.88 | 1 | 21.88 | 0.261 7 | 0.617 6 | ||
C | 4 555.35 | 1 | 4 555.35 | 54.48 | <0.000 1** | ||
残差Residual | 1 087.00 | 13 | 83.62 | 22.51 | <0.000 1 | ||
失拟Lack of fit | 1 087.00 | 9 | 120.78 | 12.78 | 0.003 4 | ||
误差Error | 0.000 0 | 4 | 0.000 0 | ||||
总和Sum | 6 733.06 | 16 | |||||
覆土厚度 | 模型Model | 98.10 | 3 | 32.70 | 4.81 | 0.018 2 | * |
Soil covering thickness/mm | A | 4.96 | 1 | 4.96 | 0.729 4 | 0.408 5 | * |
B | 10.58 | 1 | 10.58 | 1.56 | 0.234 3 | ||
C | 82.56 | 1 | 82.56 | 12.14 | 0.004 0 | * | |
残差Residual | 88.42 | 13 | 6.80 | ||||
失拟Lack of fit | 88.42 | 9 | 9.82 | ||||
误差Error | 0.000 0 | 4 | 0.000 0 | ||||
总和Sum | 186.52 | 16 |
Fig.9 Analysis of single factor results of soil covering width and thickness A, B are the effects of the rotation speed of the screw conveyor and the height of the cover from the ground on the cover thickness and the cover width of the seed row.
序号 No. | A | B | C | 预测值Predictive value | 仿真值Simulation value | ||
---|---|---|---|---|---|---|---|
覆土宽度 Soil covering width/mm | 覆土厚度 Soil covering thickness/mm | 覆土宽度 Soil covering width/mm | 覆土厚度 Soil covering thickness/mm | ||||
1 | 169 | 100 | 250 | 246.24 | 49.82 | 251.70 | 48.00 |
2 | 169 | 100 | 210 | 227.15 | 52.39 | 228.20 | 51.70 |
3 | 155 | 100 | 280 | 255.16 | 47.52 | 254.25 | 45.10 |
4 | 135 | 100 | 233 | 225.00 | 50.00 | 226.20 | 52.00 |
Table 5 Predicted and simulated values of soil covering
序号 No. | A | B | C | 预测值Predictive value | 仿真值Simulation value | ||
---|---|---|---|---|---|---|---|
覆土宽度 Soil covering width/mm | 覆土厚度 Soil covering thickness/mm | 覆土宽度 Soil covering width/mm | 覆土厚度 Soil covering thickness/mm | ||||
1 | 169 | 100 | 250 | 246.24 | 49.82 | 251.70 | 48.00 |
2 | 169 | 100 | 210 | 227.15 | 52.39 | 228.20 | 51.70 |
3 | 155 | 100 | 280 | 255.16 | 47.52 | 254.25 | 45.10 |
4 | 135 | 100 | 233 | 225.00 | 50.00 | 226.20 | 52.00 |
Fig.10 Simulation process of planting rows and covering soil on the film 1 is a crossing type soil lifting device, 2 is a lateral opposite row soil covering device, 3 is a seed row soil covering device, 4 is a membrane edge soil covering device, and Fig. A-F are soil covering figures at different time.
Fig.11 Field test of covering soil A, The field experiment with soil covering; B, The results of the soil covering experiment; C, The emergence of potatoes.
试验指标 Test indicators | 跨越式覆土装置性能参数 Performance parameters of spanning soil covering device | 国家标准 National standard |
---|---|---|
种行覆土宽度合格率Qualified rate of soil covering width in planting rows/% | 92 | ≥90 |
种行覆土厚度合格率Qualified rate of soil covering thickness in planting rows/% | 91 | ≥90 |
地膜采光面破损程度Degree of damage to the lighting surface of the plastic film/(mm·m-2) | 49.2 | ≤55 |
自然出苗率Natural seedling emergence rate/% | 92.5 | — |
烧苗率Seedling burning rate/% | 7 | — |
Table 6 Experimental results
试验指标 Test indicators | 跨越式覆土装置性能参数 Performance parameters of spanning soil covering device | 国家标准 National standard |
---|---|---|
种行覆土宽度合格率Qualified rate of soil covering width in planting rows/% | 92 | ≥90 |
种行覆土厚度合格率Qualified rate of soil covering thickness in planting rows/% | 91 | ≥90 |
地膜采光面破损程度Degree of damage to the lighting surface of the plastic film/(mm·m-2) | 49.2 | ≤55 |
自然出苗率Natural seedling emergence rate/% | 92.5 | — |
烧苗率Seedling burning rate/% | 7 | — |
[1] | ZHAO H, WANG R Y, MA B L, et al. Ridge-furrow with full plastic film mulching improves water use efficiency and tuber yields of potato in a semiarid rainfed ecosystem[J]. Field Crops Research, 2014, 161: 137-148. |
[2] | QIN S H, ZHANG J L, DAI H L, et al. Effect of ridge-furrow and plastic-mulching planting patterns on yield formation and water movement of potato in a semi-arid area[J]. Agricultural Water Management, 2014, 131: 87-94. |
[3] | 李明举, 刘垚, 周应友, 等. 不同地膜与覆盖方式对马铃薯经济性状及产量的影响[J]. 耕作与栽培, 2013(5): 37-38. |
LI M J, LIU Y, ZHOU Y Y, et al. Effects of different kind of plastic film and mulching methods on economic traits and yield of potato[J]. Tillage and Cultivation, 2013(5): 37-38. (in Chinese with English abstract) | |
[4] | LIU Q D, SUN W, ZHANG H A, et al. Numerical simulation and experiment of the emergence of young potato sprouts through soil-covered plastic mulching[J]. Agronomy Journal, 2023, 115(6): 2791-2800. |
[5] | 孙伟. 马铃薯自动破膜效应及全膜覆土技术研究[D]. 兰州: 甘肃农业大学, 2014. |
SUN W. Research on the automatic breaking effect of potato film and the technology of full film covering with soil[D]. Lanzhou: Gansu Agricultural University, 2014. (in Chinese with English abstract) | |
[6] | LIU Q D, SUN W, WANG H C, et al. Design and field test of a leaping type soil-covering device on plastic film[J]. Agriculture, 2023, 13(9): 1680. |
[7] | 孙伟, 刘小龙, 张华, 等. 马铃薯施肥播种起垄全膜覆盖种行覆土一体机设计[J]. 农业工程学报, 2017, 33(20): 14-22. |
SUN W, LIU X L, ZHANG H, et al. Design of potato casingsoil planter in all-in-one machine combined with fertilizing, sowing, ridging, complete film mulching and planting line covering[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20): 14-22. (in Chinese with English abstract) | |
[8] | 哈尔滨工业大学理论力学教研室. 理论力学-下册[M]. 5版. 北京: 高等教育出版社, 1997: 5-8. |
[9] | 孙伟, 王虎存, 赵武云, 等. 残膜回收型全膜覆土垄播马铃薯挖掘机设计与试验[J]. 农业机械学报, 2018, 49(9): 105-114. |
SUN W, WANG H C, ZHAO W Y, et al. Design and experiment of potato digger with waste film recollection for complete film mulching, soil covering and ridge sowing pattern[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(9): 105-114. (in Chinese with English abstract) | |
[10] | 北京农业机械化学院. 农业机械学[M]. 北京: 农业出版社, 1981. |
[11] | 陈志. 农业机械设计手册[M]. 北京: 中国农业科学技术出版社, 2007. |
[12] | 戴飞, 宋学锋, 赵武云, 等. 微垄式覆膜覆土联合作业机设计与试验[J]. 农业机械学报, 2020, 51(3): 97-105, 129. |
DAI F, SONG X F, ZHAO W Y, et al. Design and experiment of operation machine for filming and covering soil on tiny ridges[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(3): 97-105, 129. (in Chinese with English abstract) | |
[13] | 孙伟, 刘小龙, 石林榕, 等. 刮板升运带式膜上覆土装置覆土特性[J]. 机械工程学报, 2016, 52(7): 38-45. |
SUN W, LIU X L, SHI L R, et al. Covering soil on plastic-film characteristics of scraper lifting belt mechanism[J]. Journal of Mechanical Engineering, 2016, 52(7): 38-45. (in Chinese with English abstract) | |
[14] | 李革, 艾力·哈斯木, 康秀生, 等. 地膜播种机螺旋覆土滚筒的参数优化[J]. 农业工程学报, 2003, 19(6): 135-138. |
LI G, AILI·HASMU, KANG X S, et al. Parametric optimization of the spiral cylinder of a plastic-film mulch seeder[J]. Transactions of the Chinese Society of Agricultural Engineering, 2003, 19(6): 135-138. (in Chinese with English abstract) | |
[15] | 陈学庚, 赵岩. 棉花双膜覆盖精量播种机的研制[J]. 农业工程学报, 2010, 26(4): 106-112. |
CHEN X G, ZHAO Y. Development of double-film mulch precision planter for cotton seeding[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(4): 106-112. (in Chinese with English abstract) | |
[16] | 刘洋, 李亚雄, 王涛, 等. 两种膜上覆土机构特点及性能分析比较[J]. 新疆农垦科技, 2010, 33(3): 49-50. |
LIU Y, LI Y X, WANG T, et al. Analysis and comparison of characteristics and performance of two kinds of soil covering mechanisms on film[J]. Xinjiang Farm Research of Science and Technology, 2010, 33(3): 49-50. (in Chinese) | |
[17] | 杨文武, 罗锡文, 王在满, 等. 轮式拖拉机水田轮辙覆土装置设计与试验[J]. 农业工程学报, 2016, 32(16): 26-31. |
YANG W W, LUO X W, WANG Z M, et al. Design and experiment of track filling assembly mounted on wheeled-tractor for paddy fields[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(16): 26-31. (in Chinese with English abstract) | |
[18] | 向冬枝, 徐余伟. 螺旋输送机设计参数的选择和确定[J]. 水泥技术, 2010(1): 29-33. |
XIANG D Z, XU Y W. Design parameter selection of spiral conveyer[J]. Cement Technology, 2010(1): 29-33. (in Chinese with English abstract) | |
[19] | 王涛. 螺旋输送机出料口设计[J]. 中国井矿盐, 2019, 50(3): 25-27. |
WANG T. Design on material export of spiral conveyer[J]. China Well and Rock Salt, 2019, 50(3): 25-27. (in Chinese with English abstract) | |
[20] | 中华人民共和国农业部. 马铃薯种植机质量评价技术规范: NY/T 1415—2007[S]. 北京: 中国标准出版社, 2007. |
[21] | 中华人民共和国农业部. 铺膜穴播机作业质量: NY/T 987—2006[S]. 北京: 中国标准出版社, 2006. |
[1] | CONG Jie, ZHANG Yueru, LI Xilong, PAN Yuxuan, LYU Huangzhen, LYU Chengxu. Design and experiment of a handheld non-destructive detection device for potato dry matter content [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 943-951. |
[2] | CHAI Rongyao, YOU Yuxin, QIU Haiping, GUO Junning, ZHANG Zhen, LI Bin, SHEN Shengfa, WANG Yanli. Establishment of sweet potato stem rot resistance identification technology and analysis of germplasm resource resistance [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 569-578. |
[3] | GUO Faxu, FENG Quan, YANG Sen, YANG Wanxia. Inversion of leaf nitrogen content in potato canopy based on unmanned aerial vehicle hyperspectral images [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1904-1914. |
[4] | LUO Qinchuan, TANG Wei, MA Jukui, CHEN Jingwei, YANG Dongjing, GAO Fangyuan, SUN Houjun, XIE Yiping, ZHANG Chengling. Transcriptomic analysis of Fusarium solani infecting sweetpotato [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1097-1107. |
[5] | MENG Yusha, WANG Yin, LAI Qixian, LIU Lei, XIANG Chao, WU Yonghua, ZHENG Yanran, GU Xingguo, FANG Hao, MIAO Miao, WU Liehong, TANG Yong. Assessment of genetic diversity and variety identification based on insertion site-based polymorphism (ISBP) markers developed in wild species related to sweet potato [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 489-498. |
[6] | LI Wenxiang, WANG Fang, WANG Jian. Cloning and target gene screening of miR397 in potato [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1141-1151. |
[7] | YUAN Wenya, KANG Yichen, YANG Xinyu, ZHNAG Ruyan, ZHOU Chuntao, WANG Yong, CHEN Xipeng, YU Huifang, QIN Shuhao. Effects of rhizosphere soil extract of Qingshui alfalfa (Medicago sativa L.) on enzyme activities and microbial communities in rhizosphere soil of continuous cropping potato [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 240-247. |
[8] | SHEN Shengfa, XIANG Chao, LI Bing, LUO Zhigao, WU Liehong. Phenotypic identification and diversity analysis of potato germplasm resources in Zhejiang Province, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2319-2328. |
[9] | WANG Haiyi, ZHANG Zhaoguo, IBRAHIM Issa, XIE Kaiting, Wael EL-KOLALY, CAO Qinzhou. Design and experiment of small-sized potato harvester suitable for hilly and mountainous areas [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 724-738. |
[10] | XIE Ziyu, WANG Ke’er, ZHAO Wenliang, WEN Zuhui, CHEN Linrun, XU Lishan. Nutritional components and bioactivities of sweet potatoes with different flesh colors [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 183-192. |
[11] | ZHAO Lin, YE Xiafang, DONG Wei, SHI Jiang, LUO Letan, LUO Guoquan. Changes of nutritional quality and starch properties of different types of sweet potato roots during storage [J]. Acta Agriculturae Zhejiangensis, 2021, 33(12): 2224-2233. |
[12] | LIANG Liqin, YANG Rui, GAO Gang. Bioinformatics analysis of StUOXs gene family in potato [J]. , 2020, 32(9): 1523-1532. |
[13] | XU Jianmin, SHI Hedi, SHI Peihua, ZHANG Zeyang, XU Zhigang. Comparison of fitting models of light response curve of potato under different light quality [J]. , 2020, 32(5): 753-761. |
[14] | LIU Ziying, YUAN Bin, XIAO Huamei, WU Yongfei, LIU Xiaolin, HU Xiangfei. Screening, identification of Phytophthora infestans and its antagonistic bacterial strain [J]. , 2020, 32(5): 840-848. |
[15] | WU Weicheng, DAI Jianbo, CAO Yan, XIA Qile, CHEN Jianbing, MENG Xianghe. Effects of physical modification on content, polysaccharide composition and structure of dietary fiber in sweet potato peels [J]. , 2020, 32(3): 490-498. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||