Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (2): 269-277.DOI: 10.3969/j.issn.1004-1524.20240156
• Crop Science • Previous Articles Next Articles
LAN Xuecheng1,2,3(), ZHAO Fengliang2,3,*(
), ZHANG Guangxu1,2,3, LI Yang1,2,3, GUO Xiaohong1,*(
)
Received:
2024-02-20
Online:
2025-02-25
Published:
2025-03-20
Contact:
ZHAO Fengliang,GUO Xiaohong
CLC Number:
LAN Xuecheng, ZHAO Fengliang, ZHANG Guangxu, LI Yang, GUO Xiaohong. Effects of nano zinc oxide and nano silicon dioxide on rice seed germination[J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 269-277.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240156
Fig.1 Effect of nano ZnO on water absorption of rice seeds A, Daohuaxiang No. 2; B, Kongyu131; C, Ge68you623; D, Wudayou No. 1. Bars marked without the same letters indicate significant (P<0.05) difference within treatments at the same time. The same as in Fig. 2.
纳米材料 Nanomaterial | 质量浓度 Mass concentration/(mg·L-1) | 发芽率 Germination rate/% | 发芽势 Germination vigor/% | 萌发时间 Germination time/d | 发芽指数 Germination index |
---|---|---|---|---|---|
nZnO | 0(CK) | 76.7±0.04 a | 58.3±0.03 a | 3.13±0.12 a | 5.41±0.31 a |
10 | 85.0±0.08 a | 65.0±0.80 a | 3.08±0.08 a | 6.02±0.59 a | |
100 | 86.7±0.09 a | 70.0±0.12 a | 3.01±0.20 a | 6.34±0.74 a | |
200 | 91.7±0.06 a | 78.3±0.10 a | 2.89±0.09 a | 6.87±0.39 a | |
500 | 86.7±0.04 a | 71.7±0.02 a | 3.00±0.12 a | 6.34±0.27 a | |
1 000 | 85.0±0.03 a | 70.0±0.03 a | 3.02±0.10 a | 6.19±0.22 a | |
nSiO2 | 0 | 76.7±0.04 b | 58.3±0.03 c | 3.13±0.12 a | 5.41±0.31 c |
10 | 86.7±0.03 ab | 65.0±0.03 bc | 3.13±0.08 a | 6.14±0.17 b | |
100 | 88.3±0.06 ab | 70.0±0.03 ab | 3.08±0.09 a | 6.45±0.27 b | |
200 | 96.7±0.02 a | 76.7±0.02 a | 3.03±0.08 a | 7.15±0.06 a | |
500 | 93.3±0.02 a | 73.3±0.02 ab | 3.05±0.06 a | 6.71±0.03 ab | |
1 000 | 88.3±0.02 ab | 65.0±0.03 bc | 3.09±0.02 a | 6.23±0.14 b |
Table 1 Effect of nanomaterials on seed germination of rice variety Daohuaxiang No.2
纳米材料 Nanomaterial | 质量浓度 Mass concentration/(mg·L-1) | 发芽率 Germination rate/% | 发芽势 Germination vigor/% | 萌发时间 Germination time/d | 发芽指数 Germination index |
---|---|---|---|---|---|
nZnO | 0(CK) | 76.7±0.04 a | 58.3±0.03 a | 3.13±0.12 a | 5.41±0.31 a |
10 | 85.0±0.08 a | 65.0±0.80 a | 3.08±0.08 a | 6.02±0.59 a | |
100 | 86.7±0.09 a | 70.0±0.12 a | 3.01±0.20 a | 6.34±0.74 a | |
200 | 91.7±0.06 a | 78.3±0.10 a | 2.89±0.09 a | 6.87±0.39 a | |
500 | 86.7±0.04 a | 71.7±0.02 a | 3.00±0.12 a | 6.34±0.27 a | |
1 000 | 85.0±0.03 a | 70.0±0.03 a | 3.02±0.10 a | 6.19±0.22 a | |
nSiO2 | 0 | 76.7±0.04 b | 58.3±0.03 c | 3.13±0.12 a | 5.41±0.31 c |
10 | 86.7±0.03 ab | 65.0±0.03 bc | 3.13±0.08 a | 6.14±0.17 b | |
100 | 88.3±0.06 ab | 70.0±0.03 ab | 3.08±0.09 a | 6.45±0.27 b | |
200 | 96.7±0.02 a | 76.7±0.02 a | 3.03±0.08 a | 7.15±0.06 a | |
500 | 93.3±0.02 a | 73.3±0.02 ab | 3.05±0.06 a | 6.71±0.03 ab | |
1 000 | 88.3±0.02 ab | 65.0±0.03 bc | 3.09±0.02 a | 6.23±0.14 b |
纳米材料 Nanomaterial | 质量浓度 Mass concentration/(mg·L-1) | 发芽率 Germination rate/% | 发芽势 Germination vigor/% | 萌发时间 Germination time/d | 发芽指数 Germination index |
---|---|---|---|---|---|
nZnO | 0(CK) | 91.7±0.02 a | 68.3±0.06 a | 3.30±0.19 a | 6.01±0.28 b |
10 | 96.7±0.02 a | 80.0±0.03 a | 3.09±0.12 a | 6.74±0.22 a | |
100 | 98.3±0.02 a | 80.0±0.06 a | 3.01±0.11 a | 6.92±0.09 a | |
200 | 96.7±0.02 a | 81.7±0.03 a | 3.13±0.19 a | 6.75±0.11 a | |
500 | 93.3±0.03 a | 75.0±0.03 a | 3.14±0.04 a | 6.37±0.21 ab | |
1 000 | 93.3±0.03 a | 71.7±0.03 a | 3.21±0.11 a | 6.29±0.15 ab | |
nSiO2 | 0 | 91.7±0.02 a | 68.3±0.06 a | 3.30±0.19 a | 6.01±0.28 a |
10 | 93.3±0.07 a | 73.3±0.04 a | 3.28±0.03 a | 6.29±0.45 a | |
100 | 96.7±0.02 a | 75.0±0.03 a | 3.18±0.16 a | 5.57±0.11 a | |
200 | 96.7±0.02 a | 76.7±0.04 a | 3.12±0.09 a | 6.68±0.13 a | |
500 | 91.7±0.02 a | 68.3±0.03 a | 3.23±0.09 a | 6.10±0.16 a | |
1 000 | 91.7±0.03 a | 68.3±0.04 a | 3.26±0.02 a | 6.04±0.29 a |
Table 2 Effect of nanomaterials on seed germination of rice variety Kongyu131
纳米材料 Nanomaterial | 质量浓度 Mass concentration/(mg·L-1) | 发芽率 Germination rate/% | 发芽势 Germination vigor/% | 萌发时间 Germination time/d | 发芽指数 Germination index |
---|---|---|---|---|---|
nZnO | 0(CK) | 91.7±0.02 a | 68.3±0.06 a | 3.30±0.19 a | 6.01±0.28 b |
10 | 96.7±0.02 a | 80.0±0.03 a | 3.09±0.12 a | 6.74±0.22 a | |
100 | 98.3±0.02 a | 80.0±0.06 a | 3.01±0.11 a | 6.92±0.09 a | |
200 | 96.7±0.02 a | 81.7±0.03 a | 3.13±0.19 a | 6.75±0.11 a | |
500 | 93.3±0.03 a | 75.0±0.03 a | 3.14±0.04 a | 6.37±0.21 ab | |
1 000 | 93.3±0.03 a | 71.7±0.03 a | 3.21±0.11 a | 6.29±0.15 ab | |
nSiO2 | 0 | 91.7±0.02 a | 68.3±0.06 a | 3.30±0.19 a | 6.01±0.28 a |
10 | 93.3±0.07 a | 73.3±0.04 a | 3.28±0.03 a | 6.29±0.45 a | |
100 | 96.7±0.02 a | 75.0±0.03 a | 3.18±0.16 a | 5.57±0.11 a | |
200 | 96.7±0.02 a | 76.7±0.04 a | 3.12±0.09 a | 6.68±0.13 a | |
500 | 91.7±0.02 a | 68.3±0.03 a | 3.23±0.09 a | 6.10±0.16 a | |
1 000 | 91.7±0.03 a | 68.3±0.04 a | 3.26±0.02 a | 6.04±0.29 a |
纳米材料 Nanomaterial | 质量浓度 Mass concentration/(mg·L-1) | 发芽率 Germination rate/% | 发芽势 Germination vigor/% | 萌发时间 Germination time/d | 发芽指数 Germination index |
---|---|---|---|---|---|
nZnO | 0(CK) | 90.0±0.03 a | 80.0±0.03 c | 2.24±0.09 a | 8.44±0.12 b |
10 | 91.7±0.06 a | 86.7±0.04 abc | 2.20±0.17 a | 8.80±0.50 ab | |
100 | 93.3±0.04 a | 93.3±0.04 ab | 2.03±0.03 a | 9.22±0.36 ab | |
200 | 98.3±0.02 a | 96.7±0.02 a | 2.10±0.05 a | 9.57±0.15 a | |
500 | 96.7±0.02 a | 93.3±0.02 ab | 2.16±0.09 a | 9.26±0.18 ab | |
1 000 | 91.7±0.04 a | 85.0±0.03 bc | 2.19±0.30 a | 8.74±0.17 ab | |
nSiO2 | 0 | 90.0±0.03 a | 80.0±0.03 b | 2.24±0.09 a | 8.44±0.12 b |
10 | 93.3±0.02 a | 86.7±0.04 ab | 2.20±0.07 a | 8.87±0.26 ab | |
100 | 95.0±0.03 a | 90.0±0.03 ab | 2.18±0.02 a | 9.15±0.27 ab | |
200 | 98.3±0.02 a | 95.0±0.03 a | 2.11±0.12 a | 9.54±0.07 a | |
500 | 95.0±0.03 a | 91.7±0.03 a | 2.16±0.03 a | 9.14±0.34 ab | |
1 000 | 90.0±0.03 a | 85.0±0.03 ab | 2.19±0.04 a | 8.61±0.35 b |
Table 3 Effect of nanomaterials on seed germination of rice variety Ge68you623
纳米材料 Nanomaterial | 质量浓度 Mass concentration/(mg·L-1) | 发芽率 Germination rate/% | 发芽势 Germination vigor/% | 萌发时间 Germination time/d | 发芽指数 Germination index |
---|---|---|---|---|---|
nZnO | 0(CK) | 90.0±0.03 a | 80.0±0.03 c | 2.24±0.09 a | 8.44±0.12 b |
10 | 91.7±0.06 a | 86.7±0.04 abc | 2.20±0.17 a | 8.80±0.50 ab | |
100 | 93.3±0.04 a | 93.3±0.04 ab | 2.03±0.03 a | 9.22±0.36 ab | |
200 | 98.3±0.02 a | 96.7±0.02 a | 2.10±0.05 a | 9.57±0.15 a | |
500 | 96.7±0.02 a | 93.3±0.02 ab | 2.16±0.09 a | 9.26±0.18 ab | |
1 000 | 91.7±0.04 a | 85.0±0.03 bc | 2.19±0.30 a | 8.74±0.17 ab | |
nSiO2 | 0 | 90.0±0.03 a | 80.0±0.03 b | 2.24±0.09 a | 8.44±0.12 b |
10 | 93.3±0.02 a | 86.7±0.04 ab | 2.20±0.07 a | 8.87±0.26 ab | |
100 | 95.0±0.03 a | 90.0±0.03 ab | 2.18±0.02 a | 9.15±0.27 ab | |
200 | 98.3±0.02 a | 95.0±0.03 a | 2.11±0.12 a | 9.54±0.07 a | |
500 | 95.0±0.03 a | 91.7±0.03 a | 2.16±0.03 a | 9.14±0.34 ab | |
1 000 | 90.0±0.03 a | 85.0±0.03 ab | 2.19±0.04 a | 8.61±0.35 b |
纳米材料 Nanomaterial | 质量浓度 Mass concentration/(mg·L-1) | 发芽率 Germination rate/% | 发芽势 Germination vigor/% | 萌发时间 Germination time/d | 发芽指数 Germination index |
---|---|---|---|---|---|
nZnO | 0(CK) | 88.3±0.04 a | 75.0±0.03 b | 2.48±0.06 a | 7.85±0.30 b |
10 | 95.0±0.03 a | 86.7±0.03 ab | 2.33±0.03 ab | 8.79±0.30 ab | |
100 | 96.7±0.03 a | 95.0±0.03 a | 2.10±0.05 c | 9.40±0.30 a | |
200 | 98.3±0.02 a | 93.3±0.04 a | 2.24±0.10 bc | 9.31±0.31 a | |
500 | 95.0±0.03 a | 86.7±0.04 ab | 2.26±0.03 abc | 8.88±0.35 ab | |
1 000 | 95.0±0.03 a | 85.0±0.06 ab | 2.37±0.10 ab | 8.70±0.46 ab | |
nSiO2 | 0 | 88.3±0.04 b | 75.0±0.03 c | 2.48±0.06 a | 7.85±0.30 b |
10 | 97.0±0.02 ab | 92.0±0.02 ab | 2.24±0.16 b | 9.23±0.13 ab | |
100 | 95.0±0.03 ab | 91.7±0.02 ab | 2.21±0.03 b | 8.97±0.30 ab | |
200 | 98.0±0.02 a | 98.0±0.02 a | 1.98±0.08 c | 9.76±0.14 a | |
500 | 96.7±0.02 ab | 91.7±0.02 ab | 2.21±0.03 b | 9.16±0.20 ab | |
1 000 | 95.0±0.03 ab | 88.3±0.02 b | 2.25±0.02 b | 8.95±0.32 ab |
Table 4 Effect of nanomaterials on seed germination of rice variety Wudayou No. 1
纳米材料 Nanomaterial | 质量浓度 Mass concentration/(mg·L-1) | 发芽率 Germination rate/% | 发芽势 Germination vigor/% | 萌发时间 Germination time/d | 发芽指数 Germination index |
---|---|---|---|---|---|
nZnO | 0(CK) | 88.3±0.04 a | 75.0±0.03 b | 2.48±0.06 a | 7.85±0.30 b |
10 | 95.0±0.03 a | 86.7±0.03 ab | 2.33±0.03 ab | 8.79±0.30 ab | |
100 | 96.7±0.03 a | 95.0±0.03 a | 2.10±0.05 c | 9.40±0.30 a | |
200 | 98.3±0.02 a | 93.3±0.04 a | 2.24±0.10 bc | 9.31±0.31 a | |
500 | 95.0±0.03 a | 86.7±0.04 ab | 2.26±0.03 abc | 8.88±0.35 ab | |
1 000 | 95.0±0.03 a | 85.0±0.06 ab | 2.37±0.10 ab | 8.70±0.46 ab | |
nSiO2 | 0 | 88.3±0.04 b | 75.0±0.03 c | 2.48±0.06 a | 7.85±0.30 b |
10 | 97.0±0.02 ab | 92.0±0.02 ab | 2.24±0.16 b | 9.23±0.13 ab | |
100 | 95.0±0.03 ab | 91.7±0.02 ab | 2.21±0.03 b | 8.97±0.30 ab | |
200 | 98.0±0.02 a | 98.0±0.02 a | 1.98±0.08 c | 9.76±0.14 a | |
500 | 96.7±0.02 ab | 91.7±0.02 ab | 2.21±0.03 b | 9.16±0.20 ab | |
1 000 | 95.0±0.03 ab | 88.3±0.02 b | 2.25±0.02 b | 8.95±0.32 ab |
Fig.3 Effect of nZaO (A) and nSiO2 (B) on fresh weight of aboveground part and root of rice D2, Daohuaxiang No. 2; K131, Kongyu131; G68, Ge68you623; W1, Wudayou No. 1. Bars marked without the same letters indicate significant (P<0.05) difference within treatments for the fresh weight of aboveground part or root of rice. The same as in Fig. 4. The data were recorded by single plant.
[1] | 吴媛媛. 我国水稻生产现状及发展趋势[J]. 新农业, 2018(7): 27-28. |
WU Y Y. Current situation and development trend of rice production in China[J]. Xin Nongye, 2018(7): 27-28. (in Chinese) | |
[2] | 梁玉刚, 李静怡, 周晶, 等. 中国水稻栽培技术的演变与展望[J]. 作物研究, 2022, 36(2): 180-188. |
LIANG Y G, LI J Y, ZHOU J, et al. Evolution and prospect of rice cultivation technology in China[J]. Crop Research, 2022, 36(2): 180-188. (in Chinese with English abstract) | |
[3] | MUKHERJEE A, MAJUMDAR S, SERVIN A D, et al. Carbon nanomaterials in agriculture: a critical review[J]. Frontiers in Plant Science, 2016, 7: 172. |
[4] | 祁国效. 纳米材料对水稻的影响研究进展[J]. 南方农业, 2021, 15(36): 45-48. |
QI G X. Research progress on the influence of nano-materials on rice[J]. South China Agriculture, 2021, 15(36): 45-48. (in Chinese) | |
[5] | 陈士勇, 王锐, 陈志青, 等. 纳米锌和离子锌对水稻产量形成及籽粒锌含量的影响[J]. 作物杂志, 2022(4): 107-114. |
CHEN S Y, WANG R, CHEN Z Q, et al. Effects of nano-zinc and ion-zinc on rice yield formation and grain zinc content[J]. Crops, 2022(4): 107-114. (in Chinese with English abstract) | |
[6] | NAIK S K, DAS D K. Relative performance of chelated zinc and zinc sulphate for lowland rice (Oryza sativa L.)[J]. Nutrient Cycling in Agroecosystems, 2008, 81(3): 219-227. |
[7] | 于敬波, 李林林, 张悦, 等. 纳米氧化锌对水稻种子萌发和幼苗生长的影响[J]. 长春师范大学学报, 2021, 40(2): 127-131. |
YU J B, LI L L, ZHANG Y, et al. Toxicological effects of zinc oxidenanoparticles on rice seedling[J]. Journal of Changchun Normal University, 2021, 40(2): 127-131. (in Chinese with English abstract) | |
[8] | YUVARAJ M, SUBRAMANIAN K S. Fabrication of zinc nano fertilizer on growth parameter of rice[J]. Trends in Biosciences, 2015, 7(17): 2564-2565. |
[9] | 闫龙翔, 霍晓玉, 阚雨晨, 等. 新型含硒纳米硅肥在水稻上的施用效果初探[J]. 上海农业科技, 2021(3): 85-87. |
YAN L X, HUO X Y, KAN Y C, et al. Preliminary study on the application effect of new selenium-containing nano-silicon fertilizer on rice[J]. Shanghai Agricultural Science and Technology, 2021(3): 85-87. (in Chinese) | |
[10] | 孙德权, 陆新华, 胡玉林, 等. 纳米硅材料对植物生长发育影响的研究进展[J]. 热带作物学报, 2019, 40(11): 2300-2311. |
SUN D Q, LU X H, HU Y L, et al. Research progress of silica nanoparticle effects on the growth and development of plants[J]. Chinese Journal of Tropical Crops, 2019, 40(11): 2300-2311. (in Chinese with English abstract) | |
[11] | 杨莎莎, 林匡飞, 徐圣友, 等. 多尺度纳米SiO2对水稻的生态毒理效应及临界指标研究[J]. 农业环境科学学报, 2009, 28(1): 30-34. |
YANG S S, LIN K F, XU S Y, et al. Eco-toxicological effects of multiscale nano-SiO2 and its critical value on rice[J]. Journal of Agro-Environment Science, 2009, 28(1): 30-34. (in Chinese with English abstract) | |
[12] | 汪玉洁, 陈日远, 刘厚诚, 等. 纳米材料在农业上的应用及其对植物生长和发育的影响[J]. 植物生理学报, 2017, 53(6): 933-942. |
WANG Y J, CHEN R Y, LIU H C, et al. Applications of nanomaterials in agriculture and its effects on the growth and development of plants[J]. Plant Physiology Journal, 2017, 53(6): 933-942. (in Chinese with English abstract) | |
[13] | 薛琳, 孙宇彤, 盛明悦, 等. 纳米材料对作物种子萌发及生长发育的影响[J]. 中国农学通报, 2020, 36(21): 33-39. |
XUE L, SUN Y T, SHENG M Y, et al. Nanomaterials: effects on seed germination and growth and development of crop[J]. Chinese Agricultural Science Bulletin, 2020, 36(21): 33-39. (in Chinese with English abstract) | |
[14] | THIRUVENGADAM M, GURUNATHAN S, CHUNG I M. Physiological, metabolic, and transcriptional effects of biologically-synthesized silver nanoparticles in turnip (Brassica rapa ssp. rapa L.)[J]. Protoplasma, 2015, 252(4): 1031-1046. |
[15] | KARUNAKARAN G, SURIYAPRABHA R, RAJENDRAN V, et al. Influence of ZrO2, SiO2, Al2O3 and TiO2 nanoparticles on maize seed germination under different growth conditions[J]. IET Nanobiotechnology, 2016, 10(4): 171-177. |
[16] | YANG Z Z, CHEN J, DOU R Z, et al. Assessment of the phytotoxicity of metal oxide nanoparticles on two crop plants, maize (Zea mays L.) and rice (Oryza sativa L.)[J]. International Journal of Environmental Research and Public Health, 2015, 12(12): 15100-15109. |
[17] | 赵威, 陈先良, 王长进, 等. 纳米氧化锌对玉米幼苗生长及酶活性的影响[J]. 安徽农学通报, 2021, 27(9): 22-26. |
ZHAO W, CHEN X L, WANG C J, et al. Effects of nano-zinc oxide on growth and enzyme activity of maize seedlings[J]. Anhui Agricultural Science Bulletin, 2021, 27(9): 22-26. (in Chinese) | |
[18] | 王宁. 纳米氧化锌对湿地植物的胁迫效应[D]. 南京: 东南大学, 2016. |
WANG N. The stress on the wetland plants of zinc oxide nano particles[D]. Nanjing: Southeast University, 2016. (in Chinese with English abstract) | |
[19] | 胡灵璇. 纳米氧化锌对木槿生长发育及锌吸收的影响研究[D]. 长沙: 中南林业科技大学, 2023. |
HU L X. Effect of ZnO nanoparticles on the growth and development and zinc uptake of Hibiscus syriacus L.[D]. Changsha: Central South University of Forestry & Technology, 2023. (in Chinese with English abstract) | |
[20] | 孙露莹, 宋凤斌, 李向楠, 等. 纳米氧化锌对玉米种子萌发及根系碳代谢的影响[J]. 土壤与作物, 2020, 9(1): 40-49. |
SUN L Y, SONG F B, LI X N, et al. Effects of ZnO nanoparticles on seed germination and root carbon metabolism in maize(Zea mays L.)[J]. Soils and Crops, 2020, 9(1): 40-49. (in Chinese with English abstract) | |
[21] | 刘保友. 纳米二氧化硅增强水稻和苹果胁迫抗性的作用机理研究[D]. 泰安: 山东农业大学, 2022. |
LIU B Y. Mechanism of silica nanoparticles to enhance stress resistance in rice and apple[D]. Tai’an: Shandong Agricultural University, 2022. (in Chinese with English abstract) | |
[22] | 王攀. 纳米二氧化硅对大豆盐胁迫的缓解效应及其微生物学机制[D]. 杨凌: 西北农林科技大学, 2023. |
WANG P. Alleviating effect of silica nanoparticles on salt-stressed soybean and its microbiological mechanism[D]. Yangling: Northwest A & F University, 2023. (in Chinese with English abstract) | |
[23] | 孙光燕. 新型纳米材料调控玉米萌发和幼苗生长的生理机制[D]. 哈尔滨: 东北农业大学, 2022. |
SUN G Y. Physiological mechanism of new nanomaterials regulating maize germination and seedling growth[D]. Harbin: Northeast Agricultural University, 2022. (in Chinese with English abstract) | |
[24] | 刘新浩. 纳米二氧化硅对镉胁迫下小麦种子萌发的影响[J]. 河南农业, 2022(18): 47-48. |
LIU X H. Effect of nano-silica on wheat seed germination under cadmium stress[J]. Agriculture of Henan, 2022(18): 47-48. (in Chinese) | |
[25] | 刘建华, 钱瑭璜, 彭昭良, 等. 纳米硅对中华结缕草种子萌发和幼苗期生长的影响[J]. 天津农业科学, 2017, 23(4): 6-9. |
LIU J H, QIAN T H, PENG Z L, et al. Effects of nano-silicon on the germination and seedling growth of Zoysia sinica[J]. Tianjin Agricultural Sciences, 2017, 23(4): 6-9. (in Chinese with English abstract) |
[1] | WAN Shaoyuan, LIU Xianbo, CAI Shuo, SHI Hong, CHENG Jie. Effect of irrigation and planting methods on the yield and quality of double-cropping rice [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 257-268. |
[2] | LI Jianqiang, WEI Qianqian, LIU Xiaoxia, ZHANG Junhua, ZHU Chunquan. Effects of optimizing fertilization methods on rice yield and soil nutrient balance [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 438-446. |
[3] | HAN Xiao, LIU Xujie, SHI Lyu, ZHANG Jin, SHAN Haiyong, SHI Xiaoxu, YAN Yini, LIU Jian, XUE Yaguang. Effects of reduced application of controlled-release nitrogen fertilizer on rice yield, quality and nitrogen fertilizer utilization efficiency under concentrated coverage of wheat straw between rows for returning to field [J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 1-13. |
[4] | WU Haofeng, LIN Zhaoyang, SHEN Zhicheng. A transgenic rice resistant to glyphosate and flazasulfuron [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 1957-1968. |
[5] | CHEN Yutiao, YAN Chuan, HONG Xiaofu, SONG Jiayu. Effects of submergence at tillering stage on growth characters, yield formation and potassium uptake of japonica inbred rice [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 1990-1999. |
[6] | ZHAN Mengqi, SU Aoxue, HOU Qian, ZHANG Haoyu, JIANG Xinrui, XU Yan. Uptake and accumulation of lindane in rice and its metabolomics [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2110-2121. |
[7] | SHAO Yaxu, LIU Tao, WANG Shicheng, YAN Lei. Screening of proportions and molding conditions of seeding substrate with straw and organic fertilizer [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1856-1866. |
[8] | PAN Zhijun, WU Xiaowen, WU Chenyang, CHENG Yu, CHEN Long, ZHANG Xiaohong, ZHANG Jinshan, ZHOU Bing, JIANG Bo, ZHANG Wenjing, CHE Zhao, SONG He. Analysis of yield and utilization of temperature and light resources of different types of ratoon rice varieties in central Anhui, China [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1492-1501. |
[9] | TANG Jinyu, HUANG Fuyong, DAI Yangxin, LOU Bao, GUO Shuirong. The temporal characteristic of plankton community and their relationship with shrimp growth in the co-cultural farming of rice and redclaw crayfish (Cherax quadricarinatus) [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1537-1547. |
[10] | XIONG Rui, OUYANG Ning, OU Xi, ZHONG Kangyu, ZHOU Wentao, WANG Hongrui, LONG Pan, XU Ying, FU Zhiqiang. Effect of straw returning and tillage method on soil aggregates and carbon, nitrogen content in double-season rice [J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1347-1356. |
[11] | ZHAO Liming, WANG Yaxin, JIANG Wenxin, DUAN Shaobiao, SHEN Xuefeng, ZHENG Dianfeng, FENG Naijie. Effects of plant growth regulators on yield, quality and photosynthetic characteristics of high-quality japonica rice [J]. Acta Agriculturae Zhejiangensis, 2024, 36(5): 1003-1014. |
[12] | WANG Zhuoquan, LIN Zhenpeng, CHEN Xudong, QIAN Bin, ZHAI Rongrong, YE Shenghai, YE Jing, WU Mingming, ZHU Guofu, ZHANG Xiaoming. Effects of glutinous rice characteristics of different glutinous rice varieties on the quality of Shaoxing rice wine [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 773-779. |
[13] | DONG Aiqin, CHEN Yuanhua, YANG Tao, XU Changxu, CHENG Liqun, XIE Jie. Effect of application of lime with Chinese milk vetch on the cadmium uptake in rice [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 600-612. |
[14] | YE Qin, MENG Xianghe, CHEN Lihong. Effects of rice bran curing on physicochemical quality and fat oxidation characteristics of sauce duck [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 634-642. |
[15] | ZHANG Bin, YUAN Zhihui, PENG Lujun, ZHOU Xiangping, ZHOU Deying, WANG Xichun. Fermented rice husk affects the growth and development of tobacco seedlings by enhancing nitrogen metabolism pathway [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 237-246. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||