Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (2): 266-274.DOI: 10.3969/j.issn.1004-1524.2023.02.03
• Animal Science • Previous Articles Next Articles
LI Yanan(), YE Wenxing, ZHU Xiangde, CHEN Lin, XU Xiaofeng, ZHANG Lili(
)
Received:
2021-05-01
Online:
2023-02-25
Published:
2023-03-14
Contact:
ZHANG Lili
CLC Number:
LI Yanan, YE Wenxing, ZHU Xiangde, CHEN Lin, XU Xiaofeng, ZHANG Lili. LC-MS/MS-based study on effect of rice straw instead of partial corn silage on plasma metabolites of dairy cows[J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 266-274.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2023.02.03
项目Items | 对照组CS | 试验组RSc |
---|---|---|
原料Ingredients | ||
浓缩料Concentrate feed | 13.84 | 13.84 |
压片玉米Flaked corn | 22.50 | 22.50 |
甜菜颗粒Pelleted sugar beet pulp | 2.00 | 2.00 |
啤酒糟Brewer’s grains | 1.53 | 1.53 |
苜蓿青贮Alfalfa silage | 4.12 | 4.12 |
苜蓿Alfalfa | 10.32 | 10.32 |
全株玉米青贮Whole-plant corn silage | 45.06 | 30.06 |
稻草Rice straw | 15.00 | |
小苏打Sodium bicarbonate | 0.166 | 0.166 |
益康XP Yikang XP | 0.464 | 0.464 |
合计Total | 100.00 | 100.00 |
营养水平Nutrient levels1) | ||
粗蛋白质Crude protein | 11.69 | 10.98 |
产奶净能Net energy/(MJ·kg-1) | 5.94 | 5.58 |
钙Ca | 0.67 | 0.64 |
磷P | 0.28 | 0.26 |
中性洗涤纤维Neutral detergent fiber | 30.74 | 26.25 |
Table 1 Composition and nutrient levels of basal diet (dry matter basis) %
项目Items | 对照组CS | 试验组RSc |
---|---|---|
原料Ingredients | ||
浓缩料Concentrate feed | 13.84 | 13.84 |
压片玉米Flaked corn | 22.50 | 22.50 |
甜菜颗粒Pelleted sugar beet pulp | 2.00 | 2.00 |
啤酒糟Brewer’s grains | 1.53 | 1.53 |
苜蓿青贮Alfalfa silage | 4.12 | 4.12 |
苜蓿Alfalfa | 10.32 | 10.32 |
全株玉米青贮Whole-plant corn silage | 45.06 | 30.06 |
稻草Rice straw | 15.00 | |
小苏打Sodium bicarbonate | 0.166 | 0.166 |
益康XP Yikang XP | 0.464 | 0.464 |
合计Total | 100.00 | 100.00 |
营养水平Nutrient levels1) | ||
粗蛋白质Crude protein | 11.69 | 10.98 |
产奶净能Net energy/(MJ·kg-1) | 5.94 | 5.58 |
钙Ca | 0.67 | 0.64 |
磷P | 0.28 | 0.26 |
中性洗涤纤维Neutral detergent fiber | 30.74 | 26.25 |
进样时间Time/min | A/% | B/% |
---|---|---|
0 | 98 | 2 |
1.5 | 98 | 2 |
12 | 0 | 100 |
14 | 0 | 100 |
14.1 | 98 | 2 |
17 | 98 | 2 |
Table 2 Chromatographic gradient elution procedure
进样时间Time/min | A/% | B/% |
---|---|---|
0 | 98 | 2 |
1.5 | 98 | 2 |
12 | 0 | 100 |
14 | 0 | 100 |
14.1 | 98 | 2 |
17 | 98 | 2 |
Fig.2 OPLS-DA scores of CS group and RSc group R2Y represented the interpretation rate of the model in the Y-axis direction, and Q2 represented the prediction ability of the model.
Fig.3 Replacement test chart of CS group and RSc group Q2intercept and R2intercept represented the intercept between Q2 and R2 regression lines and the Y-axis.
序号 | 代谢物 | 变量投影重要度 | P值 | 差异倍数 | 趋势 |
---|---|---|---|---|---|
No. | Metabolites | VIP | P-value | Fold change | Trend |
1 | 氨基水杨酸Mesalamine | 2.09 | 0 | 2.2 | 上调Up |
2 | 4-羟基维甲酸4-Hydroxyretinoic Acid | 1.91 | 0 | 2.47 | 上调Up |
3 | 烟酰胺Nicotinamide | 1.35 | 0 | 1.83 | 上调Up |
4 | 苯乙烯Styrene | 1.79 | 0.001 | 2.36 | 上调Up |
5 | 前列腺素B2 Prostaglandin B2 | 2.07 | 0.001 | 2.63 | 上调Up |
6 | 别胆酸Allocholic acid | 1.69 | 0.001 | 3.12 | 上调Up |
7 | 肾上腺素Epinephrine | 1.62 | 0.001 | 1.54 | 上调Up |
8 | 哌啶酸Pipecolinic Acid | 1.52 | 0.008 | 2.51 | 上调Up |
9 | N-乙酰缬氨酸N-Acetyl valine | 1.32 | 0.010 | 1.54 | 上调Up |
10 | 肉碱Carnitine | 1.28 | 0.013 | 1.89 | 上调Up |
11 | 7-甲基鸟嘌呤7-Methylguanine | 1.62 | 0.014 | 1.55 | 上调Up |
12 | 四氢皮质酮Tetrahydro corticosterone | 2.01 | 0 | 0.26 | 下调Down |
13 | 4-苯基丁酸4-Phenylbutyric acid | 1.92 | 0 | 0.39 | 下调Down |
14 | 皮质酮Corticosterone | 2.15 | 0 | 0.22 | 下调Down |
15 | L-胱硫醚L-Cystathionine | 1.41 | 0 | 0.55 | 下调Down |
16 | L-鸟氨酸L-Ornithine | 1.91 | 0 | 0.61 | 下调Down |
17 | 棕榈油酸Palmitoleic acid | 1.78 | 0.001 | 0.46 | 下调Down |
18 | 磺乙酸Sulfoacetic acid | 1.67 | 0.004 | 0.49 | 下调Down |
19 | 21-脱氧皮质醇21-Deoxycortisol | 1.72 | 0.006 | 0.56 | 下调Down |
20 | 4-吡哆醇酸4-Pyridoxic acid | 1.62 | 0.007 | 0.62 | 下调Down |
21 | 胆甾酮Cholest-4-en-3-one | 1.64 | 0.008 | 0.53 | 下调Down |
22 | 癸酰肉碱Decanoyl carnitine | 1.06 | 0.008 | 0.56 | 下调Down |
23 | 二十碳五烯酸Eicosatetraenoic acid | 1.12 | 0.010 | 0.63 | 下调Down |
24 | 皮质醇Cortisol | 1.4 | 0.011 | 0.45 | 下调Down |
25 | 谷胱甘肽Glutathione | 1.17 | 0.014 | 0.35 | 下调Down |
26 | L-羟脯氨酸L-Hydroxyproline | 1.41 | 0.027 | 0.64 | 下调Down |
Table 3 Differential metabolites identified in the CS group and the RSc group under positive ion mode
序号 | 代谢物 | 变量投影重要度 | P值 | 差异倍数 | 趋势 |
---|---|---|---|---|---|
No. | Metabolites | VIP | P-value | Fold change | Trend |
1 | 氨基水杨酸Mesalamine | 2.09 | 0 | 2.2 | 上调Up |
2 | 4-羟基维甲酸4-Hydroxyretinoic Acid | 1.91 | 0 | 2.47 | 上调Up |
3 | 烟酰胺Nicotinamide | 1.35 | 0 | 1.83 | 上调Up |
4 | 苯乙烯Styrene | 1.79 | 0.001 | 2.36 | 上调Up |
5 | 前列腺素B2 Prostaglandin B2 | 2.07 | 0.001 | 2.63 | 上调Up |
6 | 别胆酸Allocholic acid | 1.69 | 0.001 | 3.12 | 上调Up |
7 | 肾上腺素Epinephrine | 1.62 | 0.001 | 1.54 | 上调Up |
8 | 哌啶酸Pipecolinic Acid | 1.52 | 0.008 | 2.51 | 上调Up |
9 | N-乙酰缬氨酸N-Acetyl valine | 1.32 | 0.010 | 1.54 | 上调Up |
10 | 肉碱Carnitine | 1.28 | 0.013 | 1.89 | 上调Up |
11 | 7-甲基鸟嘌呤7-Methylguanine | 1.62 | 0.014 | 1.55 | 上调Up |
12 | 四氢皮质酮Tetrahydro corticosterone | 2.01 | 0 | 0.26 | 下调Down |
13 | 4-苯基丁酸4-Phenylbutyric acid | 1.92 | 0 | 0.39 | 下调Down |
14 | 皮质酮Corticosterone | 2.15 | 0 | 0.22 | 下调Down |
15 | L-胱硫醚L-Cystathionine | 1.41 | 0 | 0.55 | 下调Down |
16 | L-鸟氨酸L-Ornithine | 1.91 | 0 | 0.61 | 下调Down |
17 | 棕榈油酸Palmitoleic acid | 1.78 | 0.001 | 0.46 | 下调Down |
18 | 磺乙酸Sulfoacetic acid | 1.67 | 0.004 | 0.49 | 下调Down |
19 | 21-脱氧皮质醇21-Deoxycortisol | 1.72 | 0.006 | 0.56 | 下调Down |
20 | 4-吡哆醇酸4-Pyridoxic acid | 1.62 | 0.007 | 0.62 | 下调Down |
21 | 胆甾酮Cholest-4-en-3-one | 1.64 | 0.008 | 0.53 | 下调Down |
22 | 癸酰肉碱Decanoyl carnitine | 1.06 | 0.008 | 0.56 | 下调Down |
23 | 二十碳五烯酸Eicosatetraenoic acid | 1.12 | 0.010 | 0.63 | 下调Down |
24 | 皮质醇Cortisol | 1.4 | 0.011 | 0.45 | 下调Down |
25 | 谷胱甘肽Glutathione | 1.17 | 0.014 | 0.35 | 下调Down |
26 | L-羟脯氨酸L-Hydroxyproline | 1.41 | 0.027 | 0.64 | 下调Down |
序号 No. | 代谢物 Metabolites | 变量投影重要度 VIP | P值 P-value | 差异倍数 Fold Change | 趋势 Trend |
---|---|---|---|---|---|
1 | 前列腺素D3 Prostaglandin D3 | 2.58 | 0 | 4.85 | 上调Up |
2 | 2,4-二羟基苯甲酸2,4-Dihydroxybenzoic acid | 1.90 | 0 | 3.76 | 上调Up |
3 | 十四烷二酸Tetradecane dioic acid | 2.22 | 0 | 1.77 | 上调Up |
4 | 胆酸Cholic acid | 2.28 | 0 | 2.66 | 上调Up |
5 | 十二烷二酸Dodecanedioic acid | 2.01 | 0 | 1.77 | 上调Up |
6 | β-羟基丁酸Beta hydroxybutyrate | 1.25 | 0 | 1.68 | 上调Up |
7 | 脱氧胆酸Deoxycholic Acid | 1.83 | 0.003 | 4.15 | 上调Up |
8 | 丁基苯甲酸Butylparaben | 1.87 | 0.005 | 1.79 | 上调Up |
9 | 肌肽Carnosine | 1.59 | 0.008 | 2.38 | 上调Up |
10 | 新喋呤Neopterin | 1.70 | 0.014 | 3.33 | 上调Up |
11 | 2,3-Dinor-TXB2 2,3-Dinor-TXB2 | 1.45 | 0.015 | 1.53 | 上调Up |
12 | 3b,7b-二羟基-5-雄甾烯-17-酮3b,7b-Dihydroxy-5-androsten-17-one | 2.43 | 0 | 0.21 | 下调Down |
13 | 12-羟基二十碳四烯酸12-Hete | 1.56 | 0 | 0.63 | 下调Down |
14 | 2,4,6-三甲基苯酚2,4,6-Trimethylphenol | 2.67 | 0 | 0.31 | 下调Down |
15 | 20-羟基二十碳四烯酸20-Hydroxy-(5Z,8Z,11Z,14Z)-eicosatetraenoic acid | 2.43 | 0 | 0.32 | 下调Down |
Table 4 Differential metabolites identified in the CS group and the RSc group under negative ion mode
序号 No. | 代谢物 Metabolites | 变量投影重要度 VIP | P值 P-value | 差异倍数 Fold Change | 趋势 Trend |
---|---|---|---|---|---|
1 | 前列腺素D3 Prostaglandin D3 | 2.58 | 0 | 4.85 | 上调Up |
2 | 2,4-二羟基苯甲酸2,4-Dihydroxybenzoic acid | 1.90 | 0 | 3.76 | 上调Up |
3 | 十四烷二酸Tetradecane dioic acid | 2.22 | 0 | 1.77 | 上调Up |
4 | 胆酸Cholic acid | 2.28 | 0 | 2.66 | 上调Up |
5 | 十二烷二酸Dodecanedioic acid | 2.01 | 0 | 1.77 | 上调Up |
6 | β-羟基丁酸Beta hydroxybutyrate | 1.25 | 0 | 1.68 | 上调Up |
7 | 脱氧胆酸Deoxycholic Acid | 1.83 | 0.003 | 4.15 | 上调Up |
8 | 丁基苯甲酸Butylparaben | 1.87 | 0.005 | 1.79 | 上调Up |
9 | 肌肽Carnosine | 1.59 | 0.008 | 2.38 | 上调Up |
10 | 新喋呤Neopterin | 1.70 | 0.014 | 3.33 | 上调Up |
11 | 2,3-Dinor-TXB2 2,3-Dinor-TXB2 | 1.45 | 0.015 | 1.53 | 上调Up |
12 | 3b,7b-二羟基-5-雄甾烯-17-酮3b,7b-Dihydroxy-5-androsten-17-one | 2.43 | 0 | 0.21 | 下调Down |
13 | 12-羟基二十碳四烯酸12-Hete | 1.56 | 0 | 0.63 | 下调Down |
14 | 2,4,6-三甲基苯酚2,4,6-Trimethylphenol | 2.67 | 0 | 0.31 | 下调Down |
15 | 20-羟基二十碳四烯酸20-Hydroxy-(5Z,8Z,11Z,14Z)-eicosatetraenoic acid | 2.43 | 0 | 0.32 | 下调Down |
[1] | 韩芳玉, 张俊飚, 程琳琳, 等. 气候变化对中国水稻产量及其区域差异性的影响[J]. 生态与农村环境学报, 2019, 35(3): 283-289. |
HAN F Y, ZHANG J B, CHENG L L, et al. Impact of climate change on rice yield and its regional heterogeneity in China[J]. Journal of Ecology and Rural Environment, 2019, 35(3): 283-289. (in Chinese with English abstract) | |
[2] | 丛宏斌, 姚宗路, 赵立欣, 等. 中国农作物秸秆资源分布及其产业体系与利用路径[J]. 农业工程学报, 2019, 35(22): 132-140. |
CONG H B, YAO Z L, ZHAO L X, et al. Distribution of crop straw resources and its industrial system and utilization path in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(22): 132-140. (in Chinese with English abstract) | |
[3] | 李玲玉. 微贮稻草和新鲜玉米秸秆对肉牛生产性能、微生物区系和差异代谢物影响的比较[D]. 南昌: 江西农业大学, 2019. |
LI L Y. Comparison of growth performance, microflora and differential metabolites of beef cattle fed fermented rice straw with beef cattle fed fresh corn stalk[D]. Nanchang: Jiangxi Agricultural University, 2019. (in Chinese with English abstract) | |
[4] | 郑娟善, 丁考仁青, 李新圃, 等. 瘤胃微生物在木质纤维素价值化利用的研究进展[J]. 草业学报, 2021, 30(9): 182-192. |
ZHENG J S, DING K R Q, LI X P, et al. Research progress on rumen microorganisms in the utilization of lignocellulose as an energy resource[J]. Acta Prataculturae Sinica, 2021, 30(9): 182-192. (in Chinese with English abstract) | |
[5] | LIU J J, LIU X P, REN J W, et al. The effects of fermentation and adsorption using lactic acid bacteria culture broth on the feed quality of rice straw[J]. Journal of Integrative Agriculture, 2015, 14(3): 503-513. |
[6] | YIN P Y, XU G W. Metabolomics for tumor marker discovery and identification based on chromatography-mass spectrometry[J]. Expert Review of Molecular Diagnostics, 2013, 13(4): 339-348. |
[7] | NI Y, XIE G X, JIA W. Metabonomics of human colorectal cancer: new approaches for early diagnosis and biomarker discovery[J]. Journal of Proteome Research, 2014, 13(9): 3857-3870. |
[8] | SHAO F J, YING Y T, TAN X, et al. Metabonomics profiling reveals biochemical pathways associated with pulmonary arterial hypertension in broiler chickens[J]. Journal of Proteome Research, 2018, 17(10): 3445-3453. |
[9] | SUMNER L W, LEI Z T, NIKOLAU B J, et al. Modern plant metabolomics: advanced natural product gene discoveries, improved technologies, and future prospects[J]. Natural Product Reports, 2015, 32(2): 212-229. |
[10] | KENÉZ Á, DÄNICKE S, ROLLE-KAMPCZYK U, et al. A metabolomics approach to characterize phenotypes of metabolic transition from late pregnancy to early lactation in dairy cows[J]. Metabolomics, 2016, 12(11): 1-11. |
[11] | 杜超, 马露, 吴兆海, 等. 外源添加丝兰植物粉末对泌乳期奶牛瘤胃体外发酵特征的影响[J]. 动物营养学报, 2020, 32(12): 5743-5750. |
DU C, MA L, WU Z H, et al. Effects of exogenous addition Yucca plant powder on in vitro rumen fermentation characteristics of lactating dairy cows[J]. Chinese Journal of Animal Nutrition, 2020, 32(12): 5743-5750. (in Chinese with English abstract) | |
[12] | 张子霄, 张舒, 卢娜, 等. 饲用甜菜对泌乳奶牛生产性能、血清生化指标和营养物质表观消化率的影响[J]. 动物营养学报, 2019, 31(10): 4784-4792. |
ZHANG Z X, ZHANG S, LU N, et al. Effects of feed beet on performance, serum biochemical indexes and nutrient apparent digestibility of lactating dairy cows[J]. Chinese Journal of Animal Nutrition, 2019, 31(10): 4784-4792. (in Chinese with English abstract) | |
[13] | DUNKLEY P R, DICKSON P W. Tyrosine hydroxylase phosphorylation in vivo[J]. Journal of Neurochemistry, 2019, 149(6): 706-728. |
[14] | MAGNAN C, LEVIN B E, LUQUET S. Brain lipid sensing and the neural control of energy balance[J]. Molecular and Cellular Endocrinology, 2015, 418: 3-8. |
[15] | VERBERNE A J M, KORIM W S, SABETGHADAM A, et al. Adrenaline: insights into its metabolic roles in hypoglycaemia and diabetes[J]. British Journal of Pharmacology, 2016, 173(9): 1425-1437. |
[16] | ARNER P. Catecholamine-induced lipolysis in obesity[J]. International Journal of Obesity, 1999, 23(1): S10-S13. |
[17] | ENJALBERT F, NICOT M C, BAYOURTHE C, et al. Ketone bodies in milk and blood of dairy cows: relationship between concentrations and utilization for detection of subclinical ketosis[J]. Journal of Dairy Science, 2001, 84(3): 583-589. |
[18] | 曾磊, 王之盛, 康坤, 等. 饲粮能量水平对围产期肉牛营养物质表观消化率和血清生化指标的影响[J]. 动物营养学报, 2020, 32(8): 3732-3741. |
ZENG L, WANG Z S, KANG K, et al. Effects of dietary energy levels on nutrient apparent digestibility and serum biochemical indexes of beef cattle during transition period[J]. Chinese Journal of Animal Nutrition, 2020, 32(8): 3732-3741. (in Chinese with English abstract) | |
[19] | MCART J A A, NYDAM D V, OETZEL G R. Dry period and parturient predictors of early lactation hyperketonemia in dairy cattle[J]. Journal of Dairy Science, 2013, 96(1): 198-209. |
[20] | OSPINA P A, NYDAM D V, STOKOL T, et al. Associations of elevated nonesterified fatty acids and β-hydroxybutyrate concentrations with early lactation reproductive performance and milk production in transition dairy cattle in the northeastern United States[J]. Journal of Dairy Science, 2010, 93(4): 1596-1603. |
[21] | FRITZ I B, MCEWEN B. Effects of carnitine on fatty-acid oxidation by muscle[J]. Science, 1959, 129(3345): 334-335. |
[22] | NAKAMURA M T, YUDELL B E, LOOR J J. Regulation of energy metabolism by long-chain fatty acids[J]. Progress in Lipid Research, 2014, 53: 124-144. |
[23] | ALMANNAI M, ALFADHEL M, EL-HATTAB A W. Carnitine inborn errors of metabolism[J]. Molecules, 2019, 24(18): 3251. |
[24] | LI T G, APTE U. Bile acid metabolism and signaling in cholestasis, inflammation, and cancer[J]. Advances in Pharmacology, 2015, 74: 263-302. |
[25] | SHIFFKA S J, KANE M A, SWAAN P W. Planar bile acids in health and disease[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2017, 1859(11): 2269-2276. |
[26] | CHIANG J Y L. Bile acid metabolism and signaling[J]. Comprehensive Physiology, 2013, 3(3): 1191-1212. |
[27] | BELENKY P, BOGAN K L, BRENNER C. NAD+metabolism in health and disease[J]. Trends in Biochemical Sciences, 2007, 32(1): 12-19. |
[28] | ROMANI M, HOFER D C, KATSYUBA E, et al. Niacin: an old lipid drug in a new NAD+ dress[J]. Journal of Lipid Research, 2019, 60(4): 741-746. |
[29] | DEWANTININGRUM J, HAFIZ A. The role of glutathione peroxidase maternal serum level in late onset of severe preeclampsia[J]. Hypertension in Pregnancy, 2016, 35(4): 483-489. |
[30] | CASTILLO C, HERNANDEZ J, BRAVO A, et al. Oxidative status during late pregnancy and early lactation in dairy cows[J]. The Veterinary Journal, 2005, 169(2): 286-292. |
[31] | REN G, RIMANDO A M, MATHEWS S T. AMPK activation by pterostilbene contributes to suppression of hepatic gluconeogenic gene expression and glucose production in H4IIE cells[J]. Biochemical and Biophysical Research Communications, 2018, 498(3): 640-645. |
[32] | KUO T Y, HARRIS C A, WANG J C. Metabolic functions of glucocorticoid receptor in skeletal muscle[J]. Molecular and Cellular Endocrinology, 2013, 380(1/2): 79-88. |
[33] | VIJAYAN M M, RAPTIS S, SATHIYAA R. Cortisol treatment affects glucocorticoid receptor and glucocorticoid-responsive genes in the liver of rainbow trout[J]. General and Comparative Endocrinology, 2003, 132(2): 256-263. |
[1] | LYU Qian, LUO Qiao, LUO Xue, CHEN Jiubing, MA Li, LUO Zhengzhong, YAO Xueping, YU Shumin, SHEN Liuhong, CAO Suizhong. Analysis of microbial community difference between sand and rubber bedding in dairy farm by high throughput sequencing technology [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1377-1385. |
[2] | JIN Xiaojie, ZHANG Jingzhen, YANG Xinsun. Comparative metabolite profiling of rhizome and bulbil of wild Chinese yam (Dioscorea polystachya Turcz.) from Wuxue by widely targeted metabolomics [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 727-735. |
[3] | LIN Zhiwen, ZHANG Peng, WU Tianhao, SHAN Ying, ZOU Ganghua, ZHAO Fengliang, ZHENG Guiping. Effects of straw and straw-derived biochar returning on ammonia volatilization in tropical soil-rice system [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2689-2699. |
[4] | SHEN Liuhong, CHENG Lijie, YOU Liuchao, YONG Kang, LUO Zhengzhong, CHEN Jiubing, LUO Qiao, YU Shumin, CAO Suizhong. Effects of heat stress and spray-fan cooling system on physiology and production efficiency of dairy cows in different lactation stages [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1602-1610. |
[5] | ZHANG Peng, ZHANG Xi, YANG Xueyan, LIU Yuanlin, LI Ru, LONG Ming, TIAN Xiaojing, ZHANG Fumei, CHEN Shien, MA Zhongren. Discriminant analysis of origin of Panax notoginseng and its main roots and lateral roots based on trace element analysis [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1300-1308. |
[6] | FU Yuan, SHI Tuanyuan, SUN Hongchao. Establishment and application of indirect-ELISA for detection of Mycoplasma parvum based on mp-tGAPDH [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 809-815. |
[7] | WU Peicong, ZHANG Peng, SHAN Ying, ZOU Ganghua, DING Zheli, ZHU Zhiqiang, ZHAO Fengliang. Effects of staw-derived biochar on ammonia volatilization in tropical soil-rice system [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 678-687. |
[8] | QIAN Xiaohui, CHEN Longqing, LI Shuangqin, SHI Rui. Analysis on alkaloids metabolites of two edible roses [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 454-463. |
[9] | WANG Xian, LIU Fang, WEI Xiaohong, ZHU Xiaolin, WANG Baoqiang. Study on resistance of different tomato germplasm materials to yellow leaf curl virus disease [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2085-2097. |
[10] | WU Jia, CHEN Lang, JIANG Tao, HUANG Guoming, LI Zhuo, LI Yaodong, ZHANG Li, LIU Lixia. Genetic polymorphism screening of CSF3 gene in dairy cow and its bioinformatics analysis [J]. , 2020, 32(6): 986-993. |
[11] | JI Xiaofeng, LYU Wentao, WANG Jianmei, LIAO Linhui, XU Jie, QIAN Mingrong. Determination of fipronil and its metabolites in fresh eggs by ultra high performance liquid chromatography-tandem mass spectrometry [J]. , 2020, 32(10): 1849-1854. |
[12] | SU Yao, JIA Shengqiang, HE Zhenchao, YANG Yanhua, YU Man, CHEN Xijing, SHEN Alin. Optimization of straw decomposition with inoculants by using response surface method [J]. , 2019, 31(5): 798-805. |
[13] | NI Ligang, ZHAO Xuting, WANG Xiaoyan, SONG Chengyi, WU Xinsheng, GAN Yuan. MicroRNA sequencing and analysis of porcine lung of Jiangquhai pig response to Mycoplasma hyopneumoniae infection [J]. , 2019, 31(12): 1979-1986. |
[14] | XU Xiaofeng, GUO Cheng. Changes of rumen bacterial flora after starch induced milk fat depression in dairy cows [J]. , 2019, 31(10): 1591-1598. |
[15] | XIANG Tianyong, QIAN Guang, ZHU Jie, SHAN Shengdao, LAN Jianming. Multiple deposition reaction of rice straw by hydrothermal carbonization [J]. , 2018, 30(1): 137-143. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||