Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (1): 115-126.DOI: 10.3969/j.issn.1004-1524.20230239
• Horticultural Science • Previous Articles Next Articles
QIAO Hongyong1(), YUAN Tao1,*(
), ZHAO Xinyong2, YANG Huiyan2
Received:
2023-02-28
Online:
2024-01-25
Published:
2024-02-18
CLC Number:
QIAO Hongyong, YUAN Tao, ZHAO Xinyong, YANG Huiyan. Characteristics of endophyte’s community changes of Paeonia suffruticosa cv. Lu He Hong fine root in different plant ages[J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 115-126.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230239
株龄 Plant age | 株高 Plant height/cm | 东西冠幅 East-west crown width/cm | 南北冠幅 North-south crown width/cm | 基部分枝/个 Basal branching | 基部最粗枝直径 Base coarsest branch diameter/cm | 基部最细枝直径 Base most slender branch diameter/cm |
---|---|---|---|---|---|---|
ART1 | 46.83 | 61.33 | 60.33 | 7 | 1.20 | 0.60 |
ART2 | 85.33 | 104.33 | 99.67 | 7 | 3.10 | 1.58 |
ART3 | 108.33 | 109.33 | 101.33 | 6 | 4.00 | 2.17 |
ART4 | 120.00 | 118.57 | 112.86 | 4 | 4.66 | 2.66 |
Table 1 Basic information of Lu He Hong in different plant ages
株龄 Plant age | 株高 Plant height/cm | 东西冠幅 East-west crown width/cm | 南北冠幅 North-south crown width/cm | 基部分枝/个 Basal branching | 基部最粗枝直径 Base coarsest branch diameter/cm | 基部最细枝直径 Base most slender branch diameter/cm |
---|---|---|---|---|---|---|
ART1 | 46.83 | 61.33 | 60.33 | 7 | 1.20 | 0.60 |
ART2 | 85.33 | 104.33 | 99.67 | 7 | 3.10 | 1.58 |
ART3 | 108.33 | 109.33 | 101.33 | 6 | 4.00 | 2.17 |
ART4 | 120.00 | 118.57 | 112.86 | 4 | 4.66 | 2.66 |
株龄 Plant age | 可溶性糖含量 Soluble sugar content/ (μg·g-1) | 纤维素含量 Cellulose content/ (μg·g-1) | 可溶性蛋白含量 Soluble protein content/ (mg·g-1) | 丙二醛含量 Malondialdehyde content/ (nmol·g-1) | 超氧化物歧化酶 活性 SOD activity/ (U·mL-1) | 过氧化物酶活性 POD activity/ (U/mL-1) | 过氧化氢酶活性 CAT activity/ (U/mL-1) | 根系活力 Root vigor/ (mg·g-1·h-1) |
---|---|---|---|---|---|---|---|---|
ART1 | 61.52±8.11 b | 1.08±0.03 c | 9.07±0.18 b | 3.91±0.45 c | 102.66±4.60 c | 6.53±1.04 d | 4.68±0.27 d | 1.45±0.05 b |
ART2 | 70.83±5.07 a | 1.54±0.23 b | 10.30±0.85 a | 5.78±0.73 ab | 114.13±4.33 b | 9.05±1.27 c | 6.15±0.54 c | 1.66±0.12 a |
ART3 | 66.38±2.81 ab | 1.58±0.12 b | 10.54±0.90 a | 6.20±0.60 a | 153.15±5.07 a | 11.19±0.76 b | 8.72±0.71 b | 1.76±0.14 a |
ART4 | 43.16±7.18 c | 2.33±0.19 a | 8.41±0.91 b | 5.24±0.77 b | 85.81±4.88 d | 12.80±0.97 a | 10.73±0.69 a | 1.52±0.10 b |
Table 2 Physiological-biochemical index in different plant ages of Lu He Hong fine roots
株龄 Plant age | 可溶性糖含量 Soluble sugar content/ (μg·g-1) | 纤维素含量 Cellulose content/ (μg·g-1) | 可溶性蛋白含量 Soluble protein content/ (mg·g-1) | 丙二醛含量 Malondialdehyde content/ (nmol·g-1) | 超氧化物歧化酶 活性 SOD activity/ (U·mL-1) | 过氧化物酶活性 POD activity/ (U/mL-1) | 过氧化氢酶活性 CAT activity/ (U/mL-1) | 根系活力 Root vigor/ (mg·g-1·h-1) |
---|---|---|---|---|---|---|---|---|
ART1 | 61.52±8.11 b | 1.08±0.03 c | 9.07±0.18 b | 3.91±0.45 c | 102.66±4.60 c | 6.53±1.04 d | 4.68±0.27 d | 1.45±0.05 b |
ART2 | 70.83±5.07 a | 1.54±0.23 b | 10.30±0.85 a | 5.78±0.73 ab | 114.13±4.33 b | 9.05±1.27 c | 6.15±0.54 c | 1.66±0.12 a |
ART3 | 66.38±2.81 ab | 1.58±0.12 b | 10.54±0.90 a | 6.20±0.60 a | 153.15±5.07 a | 11.19±0.76 b | 8.72±0.71 b | 1.76±0.14 a |
ART4 | 43.16±7.18 c | 2.33±0.19 a | 8.41±0.91 b | 5.24±0.77 b | 85.81±4.88 d | 12.80±0.97 a | 10.73±0.69 a | 1.52±0.10 b |
内生微生物Endophytic microbial | 株龄Plant age | Chao1 | Shannon | Simpson |
---|---|---|---|---|
内生细菌Endophytic bacteria | ART1 | 1389.69±1307.46 a | 1.19±0.88 a | 1.70±0.70 a |
ART2 | 894.84±464.67 a | 1.01±0.62 a | 1.55±0.47 a | |
ART3 | 1232.84±169.21 a | 1.53±0.41 a | 1.65±0.27 a | |
ART4 | 995.38±305.50 a | 1.00±0.50 a | 1.33±0.21 a | |
内生真菌Endophytic fungi | ART1 | 592.29±154.31 a | 2.74±0.39 a | 6.07±1.41 a |
ART2 | 631.16±132.76 a | 2.85±0.19 a | 7.13±1.24 a | |
ART3 | 544.28±75.53 a | 2.71±0.31 a | 7.44±2.09 a | |
ART4 | 655.40±180.58 a | 2.95±0.40 a | 7.78±2.20 a |
Table 3 Endophytes community abundance and diversity of Lu He Hong fine roots in different plant ages
内生微生物Endophytic microbial | 株龄Plant age | Chao1 | Shannon | Simpson |
---|---|---|---|---|
内生细菌Endophytic bacteria | ART1 | 1389.69±1307.46 a | 1.19±0.88 a | 1.70±0.70 a |
ART2 | 894.84±464.67 a | 1.01±0.62 a | 1.55±0.47 a | |
ART3 | 1232.84±169.21 a | 1.53±0.41 a | 1.65±0.27 a | |
ART4 | 995.38±305.50 a | 1.00±0.50 a | 1.33±0.21 a | |
内生真菌Endophytic fungi | ART1 | 592.29±154.31 a | 2.74±0.39 a | 6.07±1.41 a |
ART2 | 631.16±132.76 a | 2.85±0.19 a | 7.13±1.24 a | |
ART3 | 544.28±75.53 a | 2.71±0.31 a | 7.44±2.09 a | |
ART4 | 655.40±180.58 a | 2.95±0.40 a | 7.78±2.20 a |
预测功能Prediction function | ART1 | ART2 | ART3 | ART4 |
---|---|---|---|---|
细胞过程Cellular processes | 3.24±0.40 a | 3.06±0.10 a | 3.05±0.01 a | 3.06±0.07 a |
环境信息处理Environmental information processing | 10.92±0.26 a | 10.67±0.14 b | 10.53±0.11 b | 10.67±0.05 b |
遗传信息处理Genetic information processing | 18.31±0.76 a | 18.15±0.41 a | 18.44±0.34 a | 18.11±0.26 a |
人类疾病Human diseases | 0.72±0.09 a | 0.77±0.02 a | 0.75±0.01 a | 0.76±0.02 a |
新陈代谢Metabolism | 66.03±1.28 a | 66.56±0.32 a | 66.43±0.24 a | 66.60±0.26 a |
有机系统Organismal system | 0.78±0.03 a | 0.79±0.01 a | 0.79±0.01 a | 0.79±0.01 a |
腐生营养型Saprotroph | 21.19±9.30 a | 5.67±7.79 b | 8.19±14.77 b | 4.77±4.60 b |
病理营养型Pathotroph | 46.42±19.18 b | 76.15±10.10 a | 84.57±19.34 a | 84.60±10.10 a |
共生营养型Symbiotroph | 18.20±12.07 a | 14.16±16.45 ab | 1.62±1.07 b | 6.36±5.13 ab |
混合营养型Mixture | 14.18±9.03 a | 4.02±4.09 b | 5.63±5.01 b | 4.27±3.69 b |
Table 4 Proportion of endophytes prediction function in different plant ages of Lu He Hong fine roots %
预测功能Prediction function | ART1 | ART2 | ART3 | ART4 |
---|---|---|---|---|
细胞过程Cellular processes | 3.24±0.40 a | 3.06±0.10 a | 3.05±0.01 a | 3.06±0.07 a |
环境信息处理Environmental information processing | 10.92±0.26 a | 10.67±0.14 b | 10.53±0.11 b | 10.67±0.05 b |
遗传信息处理Genetic information processing | 18.31±0.76 a | 18.15±0.41 a | 18.44±0.34 a | 18.11±0.26 a |
人类疾病Human diseases | 0.72±0.09 a | 0.77±0.02 a | 0.75±0.01 a | 0.76±0.02 a |
新陈代谢Metabolism | 66.03±1.28 a | 66.56±0.32 a | 66.43±0.24 a | 66.60±0.26 a |
有机系统Organismal system | 0.78±0.03 a | 0.79±0.01 a | 0.79±0.01 a | 0.79±0.01 a |
腐生营养型Saprotroph | 21.19±9.30 a | 5.67±7.79 b | 8.19±14.77 b | 4.77±4.60 b |
病理营养型Pathotroph | 46.42±19.18 b | 76.15±10.10 a | 84.57±19.34 a | 84.60±10.10 a |
共生营养型Symbiotroph | 18.20±12.07 a | 14.16±16.45 ab | 1.62±1.07 b | 6.36±5.13 ab |
混合营养型Mixture | 14.18±9.03 a | 4.02±4.09 b | 5.63±5.01 b | 4.27±3.69 b |
指标 Index | 内生细菌 Endophytic bacteria | 内生真菌 Endophytic fungi | ||
---|---|---|---|---|
r | P | r | P | |
可溶性糖含量 | 0.108 | 0.145 | -0.047 | 0.628 |
Soluble sugar content | ||||
纤维素含量 | 0.210 | 0.023* | 0.149 | 0.093 |
Cellulose content | ||||
可溶性蛋白含量 | -0.013 | 0.545 | 0.064 | 0.287 |
Soluble protein content | ||||
丙二醛含量 | 0.116 | 0.118 | 0.126 | 0.144 |
MDA content | ||||
超氧化物歧化酶活性 | -0.102 | 0.846 | 0.051 | 0.221 |
SOD activity | ||||
过氧化物酶活性 | 0.176 | 0.028* | 0.228 | 0.302 |
POD activity | ||||
过氧化氢酶活性 | 0.201 | 0.007** | 0.030 | 0.318 |
CAT activity | ||||
根系活力Root vigor | -0.134 | 0.905 | 0.080 | 0.228 |
Table 5 Mantel correlation analysis between endophytes community structure and physiological-biochemical index of Lu He Hong fine roots
指标 Index | 内生细菌 Endophytic bacteria | 内生真菌 Endophytic fungi | ||
---|---|---|---|---|
r | P | r | P | |
可溶性糖含量 | 0.108 | 0.145 | -0.047 | 0.628 |
Soluble sugar content | ||||
纤维素含量 | 0.210 | 0.023* | 0.149 | 0.093 |
Cellulose content | ||||
可溶性蛋白含量 | -0.013 | 0.545 | 0.064 | 0.287 |
Soluble protein content | ||||
丙二醛含量 | 0.116 | 0.118 | 0.126 | 0.144 |
MDA content | ||||
超氧化物歧化酶活性 | -0.102 | 0.846 | 0.051 | 0.221 |
SOD activity | ||||
过氧化物酶活性 | 0.176 | 0.028* | 0.228 | 0.302 |
POD activity | ||||
过氧化氢酶活性 | 0.201 | 0.007** | 0.030 | 0.318 |
CAT activity | ||||
根系活力Root vigor | -0.134 | 0.905 | 0.080 | 0.228 |
内生微生物 Endophytic microbial | 株龄 Plant age | 实证网络Empirical network | 随机网络Random network | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
阈值 Cutoff | 总节点 Total nodes | 总边 Total links | 幂律指数 R2 of power- law | 平均度 Average degree | 聚类系数 Average clustering coefficient | 平均距离 Average path distance | 模块化 Modularity (module number) | 聚类系数 Average clustering coefficient | 平均距离 Average path distance | 模块化 Modularity | ||
内生细菌 | ARTI | 0.93 | 349 | 1466 | 0.740 | 8.401 | 0.345 | 4.779 | 0.561(9) | 0.050±0.005** | 3.016±0.023** | 0.205±0.004** |
Endophytic | ART2 | 0.93 | 210 | 440 | 0.711 | 4.190 | 0.202 | 5.608 | 0.872(19) | 0.024±0.006** | 3.774±0.047** | 0.468±0.008** |
bacteria | ART3 | 0.93 | 384 | 1557 | 0.457 | 8.109 | 0.311 | 5.136 | 0.722(9) | 0.031±0.004** | 3.054±0.012** | 0.311±0.006** |
ART4 | 0.93 | 349 | 1375 | 0.654 | 7.880 | 0.255 | 5.274 | 0.766(19) | 0.037±0.004** | 3.075±0.020** | 0.311±0.005** | |
内生真菌 | ARTI | 0.96 | 302 | 824 | 0.833 | 5.457 | 0.265 | 7.189 | 0.693(19) | 0.036±0.006** | 3.500±0.040** | 0.394±0.006** |
Endophytic | ART2 | 0.96 | 308 | 603 | 0.806 | 3.916 | 0.234 | 7.732 | 0.832(32) | 0.027±0.005** | 3.515±0.027** | 0.405±0.006** |
fungi | ART3 | 0.96 | 285 | 807 | 0.843 | 5.663 | 0.371 | 7.322 | 0.735(19) | 0.043±0.007** | 3.376±0.038** | 0.380±0.006** |
ART4 | 0.96 | 302 | 570 | 0.800 | 3.775 | 0.207 | 8.329 | 0.832(26) | 0.016±0.004** | 4.156±0.046** | 0.518±0.007** |
Table 6 Comparison of topological characteristics between empirical network and random network of endophytes in different plant ages of Lu He Hong fine roots
内生微生物 Endophytic microbial | 株龄 Plant age | 实证网络Empirical network | 随机网络Random network | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
阈值 Cutoff | 总节点 Total nodes | 总边 Total links | 幂律指数 R2 of power- law | 平均度 Average degree | 聚类系数 Average clustering coefficient | 平均距离 Average path distance | 模块化 Modularity (module number) | 聚类系数 Average clustering coefficient | 平均距离 Average path distance | 模块化 Modularity | ||
内生细菌 | ARTI | 0.93 | 349 | 1466 | 0.740 | 8.401 | 0.345 | 4.779 | 0.561(9) | 0.050±0.005** | 3.016±0.023** | 0.205±0.004** |
Endophytic | ART2 | 0.93 | 210 | 440 | 0.711 | 4.190 | 0.202 | 5.608 | 0.872(19) | 0.024±0.006** | 3.774±0.047** | 0.468±0.008** |
bacteria | ART3 | 0.93 | 384 | 1557 | 0.457 | 8.109 | 0.311 | 5.136 | 0.722(9) | 0.031±0.004** | 3.054±0.012** | 0.311±0.006** |
ART4 | 0.93 | 349 | 1375 | 0.654 | 7.880 | 0.255 | 5.274 | 0.766(19) | 0.037±0.004** | 3.075±0.020** | 0.311±0.005** | |
内生真菌 | ARTI | 0.96 | 302 | 824 | 0.833 | 5.457 | 0.265 | 7.189 | 0.693(19) | 0.036±0.006** | 3.500±0.040** | 0.394±0.006** |
Endophytic | ART2 | 0.96 | 308 | 603 | 0.806 | 3.916 | 0.234 | 7.732 | 0.832(32) | 0.027±0.005** | 3.515±0.027** | 0.405±0.006** |
fungi | ART3 | 0.96 | 285 | 807 | 0.843 | 5.663 | 0.371 | 7.322 | 0.735(19) | 0.043±0.007** | 3.376±0.038** | 0.380±0.006** |
ART4 | 0.96 | 302 | 570 | 0.800 | 3.775 | 0.207 | 8.329 | 0.832(26) | 0.016±0.004** | 4.156±0.046** | 0.518±0.007** |
Fig.3 Molecular network of endophytes in different plant ages of Lu He Hong fine roots a, Bacteria; b, Fungi. A node represents an OTU; The color of nodes represents phylum level classification, and the size of nodes represents the number of connections; Each line represents a correlation between two nodes connected to it, with orange representing a negative correlation and green representing a positive correlation.
[1] | DUBEY A, MALLA M A, KUMAR A, et al. Plants endophytes: unveiling hidden agenda for bioprospecting toward sustainable agriculture[J]. Critical Reviews in Biotechnology, 2020, 40(8): 1210-1231. |
[2] | SANTOYO G, MORENO-HAGELSIEB G, DEL CARMEN OROZCO-MOSQUEDA M, et al. Plant growth-promoting bacterial endophytes[J]. Microbiological Research, 2016, 183: 92-99. |
[3] | SHAFFIQUE S, KHAN M A, IMRAN M, et al. Research progress in the field of microbial mitigation of drought stress in plants[J]. Frontiers in Plant Science, 2022, 13: 870626. |
[4] | COLEMAN-DERR D, DESGARENNES D, FONSECA-GARCIA C, et al. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species[J]. New Phytologist, 2016, 209(2): 798-811. |
[5] | 李婷, 邓顺升, 刘艳明, 等. 不同生长条件下铁皮石斛内生细菌多样性及活性菌株的筛选[J]. 华南农业大学学报, 2021, 42(5): 80-86. |
LI T, DENG S S, LIU Y M, et al. Diversity of endophytic bacteria of Dendrobium officinale under different growth conditions and screening of active strains[J]. Journal of South China Agricultural University, 2021, 42(5): 80-86. (in Chinese with English abstract) | |
[6] | BAI Y, MÜLLER D B, SRINIVAS G, et al. Functional overlap of the Arabidopsis leaf and root microbiota[J]. Nature, 2015, 528(7582): 364-369. |
[7] | 张爱梅, 殷一然, 孔维宝, 等. 西藏沙棘5种不同组织内生细菌多样性[J]. 生物多样性, 2021, 29(9): 1236-1244. |
ZHANG A M, YIN Y R, KONG W B, et al. Diversity of endophytic bacteria in five types of tissues of Hippophae tibetana[J]. Biodiversity Science, 2021, 29(9): 1236-1244. (in Chinese with English abstract) | |
[8] | ZHANG J Y, ZHANG N, LIU Y X, et al. Root microbiota shift in rice correlates with resident time in the field and developmental stage[J]. Science China Life Sciences, 2018, 61(6): 613-621. |
[9] | TEIXEIRA P J P, COLAIANNI N R, FITZPATRICK C R, et al. Beyond pathogens: microbiota interactions with the plant immune system[J]. Current Opinion in Microbiology, 2019, 49: 7-17. |
[10] | ZHANG L, ZHANG W P, LI Q Q, et al. Deciphering the root endosphere microbiome of the desert plant Alhagi sparsifolia for drought resistance-promoting bacteria[J]. Applied and Environmental Microbiology, 2020, 86(11): e02863-e02819. |
[11] | CHENNIAPPAN C, NARAYANASAMY M, DANIEL G M, et al. Biocontrol efficiency of native plant growth promoting rhizobacteria against rhizome rot disease of turmeric[J]. Biological Control, 2019, 129: 55-64. |
[12] | ADELEKE B S, BABALOLA O O. Biotechnological overview of agriculturally important endophytic fungi[J]. Horticulture, Environment, and Biotechnology, 2021, 62(4): 507-520. |
[13] | 何建清, 张格杰, 陈芝兰, 等. 大花黄牡丹内生菌的分离鉴定及其抗菌活性菌株的筛选[J]. 西北植物学报, 2011, 31(12): 2539-2544. |
HE J Q, ZHANG G J, CHEN Z L, et al. Isolation and dentification of endophyte from Paeonia ludlowii and screening of their antimicrobial activities[J]. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(12): 2539-2544. (in Chinese with English abstract) | |
[14] | 杨瑞先, 姬俊华, 王祖华, 等. 牡丹根部内生细菌的分离鉴定及脂肽类物质的拮抗活性研究[J]. 微生物学通报, 2015, 42(6): 1081-1088. |
YANG R X, JI J H, WANG Z H, et al. Isolation, identification and inhibitory activity of lipopeptides of endophytic bacteria from the root of Paeonia suffruticosa[J]. Microbiology China, 2015, 42(6): 1081-1088. (in Chinese with English abstract) | |
[15] | 郑艳, 戴婧婧, 管玉鑫, 等. 凤丹内生菌的分离鉴定及抑菌活性研究[J]. 中国中药杂志, 2016, 41(1): 45-50. |
ZHENG Y, DAI J J, GUAN Y X, et al. Isolation, identification and inhibition activity of endophytes in Fengdan[J]. China Journal of Chinese Materia Medica, 2016, 41(1): 45-50. (in Chinese with English abstract) | |
[16] | 刘雪停, 夏彦飞, 李身, 等. 杨山牡丹生防内生细菌的分离及鉴定[J]. 江西农业学报, 2022, 34(2): 62-68. |
LIU X T, XIA Y F, LI S, et al. Isolation and identification of endophytic bacteria from Paeonia ostii[J]. Acta Agriculturae Jiangxi, 2022, 34(2): 62-68. (in Chinese with English abstract) | |
[17] | YANG R X, LIU P, YE W Y. Illumina-based analysis of endophytic bacterial diversity of tree peony (Paeonia Sect. Moutan) roots and leaves[J]. Brazilian Journal of Microbiology, 2017, 48(4): 695-705. |
[18] | 禄亚洲, 张二豪, 尹秀, 等. 西藏濒危植物大花黄牡丹内生真菌及其根际土壤真菌的群落多样性研究[J]. 生物学杂志, 2020, 37(6): 59-63. |
LU Y Z, ZHANG E H, YIN X, et al. Diversity of endophytic fungi and the rhizosphere soil fungi communities of the endangered plant Paeonia ludlowii in Tibet[J]. Journal of Biology, 2020, 37(6): 59-63. (in Chinese with English abstract) | |
[19] | 冯玮娜, 彭培好. 四川牡丹根际微生物及种子内生菌组成[J]. 东北林业大学学报, 2020, 48(1): 88-94. |
FENG W N, PENG P H. Microbial composition associated with the rhizosphere and seed endosphere of Paeonia szechuanica[J]. Journal of Northeast Forestry University, 2020, 48(1): 88-94. (in Chinese with English abstract) | |
[20] | 高丹蕾, 吴璐瑶, 孟凡志, 等. 引种栽培条件下大花黄牡丹根际微生物多样性及群落结构[J]. 东北农业大学学报, 2022, 53(3): 19-29. |
GAO D L, WU L Y, MENG F Z, et al. Rhizosphere microbial diversity and community structure of Paeonia ludlowi in introduction area[J]. Journal of Northeast Agricultural University, 2022, 53(3): 19-29. (in Chinese with English abstract) | |
[21] | 王莲英. 中国牡丹品种图志[M]. 北京: 中国林业出版社, 1997. |
[22] | 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006. |
[23] | 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. |
[24] | CAPORASO J G, LAUBER C L, WALTERS W A, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(Suppl 1): 4516-4522. |
[25] | WHITE T J, BRUNS T, LEE S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics[M]// PCR Protocols. Amsterdam: Elsevier, 1990: 315-322. |
[26] | IHRMARK K, BÖDEKER I T M, CRUZ-MARTINEZ K, et al. New primers to amplify the fungal ITS2 region: evaluation by 454-sequencing of artificial and natural communities[J]. FEMS Microbiology Ecology, 2012, 82(3): 666-677. |
[27] | 吴璐瑶, 张卓, 孔晓, 等. 白粉病对大叶黄杨叶片内生细菌群落的影响[J]. 西北农林科技大学学报(自然科学版), 2022, 50(5): 65-75. |
WU L Y, ZHANG Z, KONG X, et al. Responses of endophytic bacterial community in leaves of Euonymus japonicus to powdery mildew[J]. Journal of Northwest A & F University (Natural Science Edition), 2022, 50(5): 65-75. (in Chinese with English abstract) | |
[28] | FENG K, ZHANG Z J, CAI W W, et al. Biodiversity and species competition regulate the resilience of microbial biofilm community[J]. Molecular Ecology, 2017, 26(21): 6170-6182. |
[29] | DENG Y, JIANG Y H, YANG Y F, et al. Molecular ecological network analyses[J]. BMC Bioinformatics, 2012, 13: 113. |
[30] | XIAO N J, ZHOU A F, KEMPHER M L, et al. Disentangling direct from indirect relationships in association networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(2): e2109995119. |
[31] | OLESEN J M, BASCOMPTE J, DUPONT Y L, et al. The modularity of pollination networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(50): 19891-19896. |
[32] | 徐民民, 黄莹, 李波, 等. 生物炭对小麦根际和根内微生物群落结构的影响[J]. 浙江农业学报, 2021, 33(3): 516-525. |
XU M M, HUANG Y, LI B, et al. Effect of biochar on wheat root-associated microbial community structures[J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 516-525. (in Chinese with English abstract) | |
[33] | 陈绍通, 戴军, 姜雪萍, 等. 不同生长年限霍山石斛内生菌的多样性与差异性[J]. 中国中药杂志, 2019, 44(6): 1145-1150. |
CHEN S T, DAI J, JIANG X P, et al. Diversity and difference of endophytes in Dendrobium huoshanense with different growth years[J]. China Journal of Chinese Materia Medica, 2019, 44(6): 1145-1150. (in Chinese with English abstract) | |
[34] | 黄蕊. 不同林龄木麻黄根内生细菌的多样性及其代谢产物的化感潜力[D]. 海口: 海南师范大学, 2019. |
HUANG R. Diversity of endophytic bacteria and allelopathic potential of their metabolites in differently aged Casuarina equisetifolia roots[D]. Haikou: Hainan Normal University, 2019. (in Chinese with English abstract) | |
[35] | LYDELL C, DOWELL L, SIKAROODI M, et al. A population survey of members of the Phylum Bacteroidetes isolated from salt marsh sediments along the east coast of the United States[J]. Microbial Ecology, 2004, 48(2): 263-273. |
[36] | CHAURASIA A, MEENA B R, TRIPATHI A N, et al. Actinomycetes: an unexplored microorganisms for plant growth promotion and biocontrol in vegetable crops[J]. World Journal of Microbiology and Biotechnology, 2018, 34(9): 132. |
[37] | KIELAK A M, BARRETO C C, KOWALCHUK G A, et al. The ecology of acidobacteria: moving beyond genes and genomes[J]. Frontiers in Microbiology, 2016, 7: 744. |
[38] | LIU S, WANG Z Y, NIU J F, et al. Changes in physicochemical properties, enzymatic activities, and the microbial community of soil significantly influence the continuous cropping of Panax quinquefolius L. (American ginseng)[J]. Plant and Soil, 2021, 463(1): 427-446. |
[39] | MITTLER R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science, 2002, 7(9): 405-410. |
[40] | 朱秋萍, 郭春苗, 木巴热克·阿尤普, 等. 扁桃内果皮木质化过程中相关酶活性的变化[J]. 果树学报, 2018, 35(9): 1079-1086. |
ZHU Q P, GUO C M, MUBAREKE·AYOUPU, et al. Changes in relative enzyme activities during the lignification in the almond endocarp[J]. Journal of Fruit Science, 2018, 35(9): 1079-1086. (in Chinese with English abstract) | |
[41] | 姜哲浩. 青藏高原东缘黄花棘豆内生真菌群落特征及其适应机制[D]. 兰州: 甘肃农业大学, 2021. |
JIANG Z H. Characteristics and adaptive mechanism of endophytic fungi community of Oxytropis ochrocephala in the eastern qinghai-tibet plateau[D]. Lanzhou: Gansu Agricultural University, 2021. (in Chinese with English abstract) | |
[42] | 曹曼曼, 王飞, 周北海, 等. 铁尾矿芦苇根际微生物和根内生菌群落分布及其限制性因子解析[J]. 环境科学, 2021, 42(10): 4998-5009. |
CAO M M, WANG F, ZHOU B H, et al. Community distribution of the rhizospheric and endophytic bacteria of Phragmites australis and their limiting factors in iron tailings[J]. Environmental Science, 2021, 42(10): 4998-5009. (in Chinese with English abstract) | |
[43] | 魏晓帅, 郭米山, 高广磊, 等. 呼伦贝尔沙地樟子松根内真菌群落结构与功能群特征[J]. 北京大学学报(自然科学版), 2020, 56(4): 710-720. |
WEI X S, GUO M S, GAO G L, et al. Community structure and functional groups of fungi in the roots associated with Pinus sylvestri var. mongolica in the Hulunbuir sandy land[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(4): 710-720. (in Chinese with English abstract) | |
[44] | LANGILLE M G I, ZANEVELD J, CAPORASO J G, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nature Biotechnology, 2013, 31(9): 814-821. |
[45] | NGUYEN N H, SONG Z W, BATES S T, et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild[J]. Fungal Ecology, 2016, 20: 241-248. |
[46] | DOUGLAS G M, MAFFEI V J, ZANEVELD J R, et al. PICRUSt2 for prediction of metagenome functions[J]. Nature Biotechnology, 2020, 38(6): 685-688. |
[47] | 王峰, 陈玉真, 吴志丹, 等. 种植模式和坡位对茶园土壤细菌群落结构及功能类群的影响[J]. 生态学报, 2022, 42(20): 8435-8452. |
WANG F, CHEN Y Z, WU Z D, et al. Effects of planting patterns and slope positions on soil bacterial community structure and functional groups in tea gardens[J]. Acta Ecologica Sinica, 2022, 42(20): 8435-8452. (in Chinese with English abstract) | |
[48] | 熊丹, 欧静, 李林盼, 等. 黔中地区马尾松林下杜鹃根部内生真菌群落组成及其生态功能[J]. 生态学报, 2020, 40(4): 1228-1239. |
XIONG D, OU J, LI L P, et al. Community composition and ecological function analysis of endophytic fungi in the roots of Rhododendron simsii in Pinus massoniana forest in central Guizhou[J]. Acta Ecologica Sinica, 2020, 40(4): 1228-1239. (in Chinese with English abstract) | |
[49] | RAYA-DÍAZ S, QUESADA-MORAGA E, BARRÓN V, et al. Redefining the dose of the entomopathogenic fungus Metarhizium brunneum(Ascomycota, Hypocreales) to increase Fe bioavailability and promote plant growth in calcareous and sandy soils[J]. Plant and Soil, 2017, 418(1): 387-404. |
[50] | FUHRMAN J A. Microbial community structure and its functional implications[J]. Nature, 2009, 459(7244): 193-199. |
[1] | ZHANG Hongfang, QIAN Tao, JIN Ting, XIE Xiaoling, WU Choufei, XIAO Yingping, MA Lingyan. Gut microbial profiles and its developmental changes of grass carp (Ctenopharyngodon idella) [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 780-789. |
[2] | LIU Huichun, XU Wenting, ZHOU Jianghua, ZHANG Jiaqiang, SHI Xiaohua, ZHU Kaiyuan. Transcriptomic analysis and simple sequence repeat markers development of Paeonia suffruticosa L. in responses to waterlogging stress [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 544-558. |
[3] | MA Bingzeng, JIANG Yunfeng, YAN Ting, LIU Junnan. Influence of no tillage with high stubble on macrofauna community of black soil [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 187-195. |
[4] | SI Linlin, XU Jing, CAO Kai, ZHANG Xian, WANG Jianhong. Response of bacterial community to planting cover crops in virgin upland red soil [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1864-1875. |
[5] | ZHU Shijun, WANG Lili, JIN Shuquan, ZHOU Jinbo, WANG Feng, LU Xiaohong. Effects of different soil disinfection methods on soil fungal diversity and community structure [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 639-646. |
[6] | HAO Liuliu, DAI Lili, PENG Liang, CHEN Siyuan, TAO Ling, LI Gu, ZHANG Hui. Active organic carbon, microbial community structure and their relationship in rice rhizosphere soil of rice-crayfish co-culture systems [J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2901-2913. |
[7] | WANG Jingge, JI Xiaofeng, WU Jing, YANG Hua, TANG Biao, DING Bao'an. Effects of sulfamonomethoxine on bacterial community structure in feces of laying hens [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 284-292. |
[8] | CHEN Qianli, WANG Hancheng, LIANG Yongjin, CAI Liuti, HUANG Yu, ZHOU Hao, LI Zhong, HAN Jie. Fungal composition and diversity analysis of healthy and rotten tobacco leaves after curing [J]. , 2020, 32(6): 1019-1028. |
[9] | LUO Manli, LAN Qin, WANG Ge, WEI Hong, XIAO Jiujin, ZHANG Jian. Effect of fertilization on soil fauna community structure in farmland [J]. , 2019, 31(6): 946-954. |
[10] | GOU Liqiong, YAO Heng, WANG Ge, HUAGN Rucheng, DUAN Junhua, XIAO Jiujin, ZHANG Jian. Effects of different straw returning methods on cropland soil fauna community [J]. , 2019, 31(3): 450-457. |
[11] | GUI Guohong, YANG Hua, ZHU Jiangqun, ZHU Jianfeng, XIAO Yingping, XU E. Study on microbial community structure in chilled chicken during cold storage [J]. , 2019, 31(1): 47-55. |
[12] | DENG Zhenshan, WEI Tingting, SU Rui, GAO Fei, LIU Yuzhen, CHEN Bangkai, MO Darui, HE Xi, XU Hongxia. Isolation of an endophytic bacterial strain with antifungal activity from wild jujube [J]. , 2017, 29(12): 2068-2076. |
[13] | CHEN Yun, LIU Qi, DENG Junliang, YANG Yanyi, GAO Shuang, CHEN Chong, YAO Shuhua. Effects of composite antimicrobial peptide on rumen bacteria community structure of goat [J]. , 2017, 29(11): 1800-1808. |
[14] | LI Yuan-yuan, SHI Kai, DELIGEER. Community structure and fauna of Lygus complex in Inner Mongolia [J]. , 2016, 28(9): 1558-1563. |
[15] | ZHANG Aiju1,2,3, LIU Jindian1,2,3,*,YANG Yuanjie1,2,3,GUO Aihuan1,2,3, GU Zhimin1,2,3,*. Analysis of community characteristics of macrozoobenthos in enhancement and releasing zone in Tonglu section of Qiantang River [J]. , 2016, 28(8): 1323-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||