Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (4): 729-737.DOI: 10.3969/j.issn.1004-1524.20230048
Previous Articles Next Articles
LI Jingjing1(
), LI Chuang2, LU Yanan2, ZHENG Wenming2,*(
)
Received:2023-01-05
Online:2024-04-25
Published:2024-04-29
Contact:
ZHENG Wenming
CLC Number:
LI Jingjing, LI Chuang, LU Yanan, ZHENG Wenming. Identification and expression analysis of Thionin-like gene family in wheat[J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 729-737.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230048
| 基因名称 | 正向引物(5'→3') | 反向引物(5'→3') |
|---|---|---|
| Gene name | Forward primer(5'→3') | Reverse primer(5'→3') |
| TaThil-4A | CCGTCCCAGCCATCGTG | TCTTGAGCATCCGCTTGGAG |
| TaThil-4B | GCAGCGGAGGATTGGAGAAT | AAGGGTCAAACCAAGCCTCA |
| TaThil-4D | GCGGAGGAGTGGAGAATCTG | ACGCCTACCAAATCAGGACA |
| Ta26S | GAAGAAGGTCCCAAGGGTTC | TCTCCCTTTAACACCAACGG |
Table 1 Primers of qRT-PCR
| 基因名称 | 正向引物(5'→3') | 反向引物(5'→3') |
|---|---|---|
| Gene name | Forward primer(5'→3') | Reverse primer(5'→3') |
| TaThil-4A | CCGTCCCAGCCATCGTG | TCTTGAGCATCCGCTTGGAG |
| TaThil-4B | GCAGCGGAGGATTGGAGAAT | AAGGGTCAAACCAAGCCTCA |
| TaThil-4D | GCGGAGGAGTGGAGAATCTG | ACGCCTACCAAATCAGGACA |
| Ta26S | GAAGAAGGTCCCAAGGGTTC | TCTCCCTTTAACACCAACGG |
| 基因名称 | 基因ID | 染色体位置 | 氨基酸数量 | 半胱氨酸数量 | 编码蛋白 | 等电点 | 亚细胞定位 | 信号肽 |
|---|---|---|---|---|---|---|---|---|
| Gene name | Gene ID | Chromosome position | Number of amino acids | Number of cysteines | 分子量 Molecular mass/ku | pI | Subcellular location | Signal peptide |
| TaThil-1B;1 | TraesCS1B03G1120400LC.1 | 1B:648189213-648189524 | 103 | 5 | 11.95 | 10.45 | 细胞核Nucleus | - |
| TaThil-1B;2 | TraesCS1B03G1155100.1 | 1B:659630413-659631542 | 130 | 13 | 13.63 | 4.39 | 细胞外Extracellular | √ |
| TaThil-2B | TraesCS2B03G0504400LC.1 | 2B:198179489-198179953 | 154 | 6 | 16.54 | 11.51 | 细胞核Extracellular | - |
| TaThil-3A;1 | TraesCS3A03G0552900.1 | 3A:395791412-395792540 | 195 | 13 | 20.09 | 4.42 | 细胞外Extracellular | √ |
| TaThil-3A;2 | TraesCS3A03G0553000.1 | 3A:395835980-395837038 | 158 | 14 | 16.96 | 8.92 | 细胞外Extracellular | √ |
| TaThil-3A;3 | TraesCS3A03G1150100LC.1 | 3A:718510414-718510833 | 139 | 5 | 15.37 | 7.68 | 细胞外Extracellular | √ |
| TaThil-3B;1 | TraesCS3B03G0636600.1 | 3B:396308838-396309889 | 173 | 13 | 17.98 | 4.93 | 细胞外Extracellular | - |
| TaThil-3B;2 | TraesCS3B03G0636800.1 | 3B:396354614-396355551 | 168 | 13 | 18.10 | 9.23 | 细胞外Extracellular | √ |
| TaThil-3D;1 | TraesCS3D03G0514500.1 | 3D:293341730-293342870 | 196 | 13 | 20.30 | 4.36 | 细胞外Extracellular | √ |
| TaThil-3D;2 | TraesCS3D03G0514700.1 | 3D:293354488-293355046 | 155 | 14 | 16.48 | 8.64 | 细胞外Extracellular | √ |
| TaThil-4A | TraesCS4A03G0005400.1 | 4A:2778918-2779295 | 125 | 10 | 13.84 | 8.74 | 细胞外Extracellular | - |
| TaThil-4B | TraesCS4B03G0791300.1 | 4B:587455267-587456199 | 125 | 10 | 13.87 | 8.74 | 细胞外Extracellular | - |
| TaThil-4D | TraesCS4D03G0708500.1 | 4D:468863939-468864781 | 125 | 10 | 13.87 | 8.74 | 细胞外Extracellular | - |
| TaThil-5A | TraesCS5A03G0585800.1 | 5A:445399009-445399659 | 139 | 15 | 14.94 | 7.38 | 细胞外Extracellular | √ |
| TaThil-5B | TraesCS5B03G0129000.1 | 5B:56613644-56614396 | 79 | 9 | 8.48 | 8.09 | 细胞外Extracellular | √ |
| TaThil-5D;1 | TraesCS5D03G0000700.1 | 5D:504194-504552 | 110 | 6 | 12.00 | 8.52 | 细胞外Extracellular | √ |
| TaThil-5D;2 | TraesCS5D03G0000900.1 | 5D:716462-716794 | 110 | 6 | 12.00 | 8.52 | 细胞外Extracellular | √ |
| TaThil-6A;1 | TraesCS6A03G0166000.1 | 6A:44857118-44857880 | 101 | 13 | 11.01 | 7.94 | 细胞外Extracellular | √ |
| TaThil-6A;2 | TraesCS6A03G0803600LC.1 | 6A:543299654-543299977 | 107 | 6 | 11.55 | 8.26 | 细胞外Extracellular | √ |
| TaThil-6B;1 | TraesCS6B03G0169000.1 | 6B:52931251-52932028 | 124 | 13 | 12.75 | 6.03 | 细胞外Extracellular | √ |
| TaThil-6B;2 | TraesCS6B03G0171400.1 | 6B:54283983-54284834 | 109 | 12 | 11.76 | 8.76 | 细胞外Extracellular | √ |
| TaThil-6D;1 | TraesCS6D03G0024500LC.1 | 6D:4597285-4597644 | 119 | 9 | 13.18 | 4.97 | 细胞外Extracellular | √ |
| TaThil-6D;2 | TraesCS6D03G0117500.1 | 6D:33532140-33532823 | 113 | 13 | 11.83 | 7.44 | 细胞外Extracellular | √ |
| TaThil-6D;3 | TraesCS6D03G0117700.1 | 6D:33587808-33588272 | 109 | 12 | 11.75 | 8.63 | 细胞外Extracellular | √ |
| TaThil-7A | TraesCS7A03G1387900.1 | 7A:744208691-744208981 | 96 | 6 | 10.18 | 6.87 | 细胞外Extracellular | √ |
| TaThil-7D | TraesCS7D03G1304800LC.1 | 7D:642451602-642451922 | 106 | 7 | 11.38 | 8.27 | 细胞外Extracellular | √ |
Table 2 The characteristics of the Thil gene family in wheat
| 基因名称 | 基因ID | 染色体位置 | 氨基酸数量 | 半胱氨酸数量 | 编码蛋白 | 等电点 | 亚细胞定位 | 信号肽 |
|---|---|---|---|---|---|---|---|---|
| Gene name | Gene ID | Chromosome position | Number of amino acids | Number of cysteines | 分子量 Molecular mass/ku | pI | Subcellular location | Signal peptide |
| TaThil-1B;1 | TraesCS1B03G1120400LC.1 | 1B:648189213-648189524 | 103 | 5 | 11.95 | 10.45 | 细胞核Nucleus | - |
| TaThil-1B;2 | TraesCS1B03G1155100.1 | 1B:659630413-659631542 | 130 | 13 | 13.63 | 4.39 | 细胞外Extracellular | √ |
| TaThil-2B | TraesCS2B03G0504400LC.1 | 2B:198179489-198179953 | 154 | 6 | 16.54 | 11.51 | 细胞核Extracellular | - |
| TaThil-3A;1 | TraesCS3A03G0552900.1 | 3A:395791412-395792540 | 195 | 13 | 20.09 | 4.42 | 细胞外Extracellular | √ |
| TaThil-3A;2 | TraesCS3A03G0553000.1 | 3A:395835980-395837038 | 158 | 14 | 16.96 | 8.92 | 细胞外Extracellular | √ |
| TaThil-3A;3 | TraesCS3A03G1150100LC.1 | 3A:718510414-718510833 | 139 | 5 | 15.37 | 7.68 | 细胞外Extracellular | √ |
| TaThil-3B;1 | TraesCS3B03G0636600.1 | 3B:396308838-396309889 | 173 | 13 | 17.98 | 4.93 | 细胞外Extracellular | - |
| TaThil-3B;2 | TraesCS3B03G0636800.1 | 3B:396354614-396355551 | 168 | 13 | 18.10 | 9.23 | 细胞外Extracellular | √ |
| TaThil-3D;1 | TraesCS3D03G0514500.1 | 3D:293341730-293342870 | 196 | 13 | 20.30 | 4.36 | 细胞外Extracellular | √ |
| TaThil-3D;2 | TraesCS3D03G0514700.1 | 3D:293354488-293355046 | 155 | 14 | 16.48 | 8.64 | 细胞外Extracellular | √ |
| TaThil-4A | TraesCS4A03G0005400.1 | 4A:2778918-2779295 | 125 | 10 | 13.84 | 8.74 | 细胞外Extracellular | - |
| TaThil-4B | TraesCS4B03G0791300.1 | 4B:587455267-587456199 | 125 | 10 | 13.87 | 8.74 | 细胞外Extracellular | - |
| TaThil-4D | TraesCS4D03G0708500.1 | 4D:468863939-468864781 | 125 | 10 | 13.87 | 8.74 | 细胞外Extracellular | - |
| TaThil-5A | TraesCS5A03G0585800.1 | 5A:445399009-445399659 | 139 | 15 | 14.94 | 7.38 | 细胞外Extracellular | √ |
| TaThil-5B | TraesCS5B03G0129000.1 | 5B:56613644-56614396 | 79 | 9 | 8.48 | 8.09 | 细胞外Extracellular | √ |
| TaThil-5D;1 | TraesCS5D03G0000700.1 | 5D:504194-504552 | 110 | 6 | 12.00 | 8.52 | 细胞外Extracellular | √ |
| TaThil-5D;2 | TraesCS5D03G0000900.1 | 5D:716462-716794 | 110 | 6 | 12.00 | 8.52 | 细胞外Extracellular | √ |
| TaThil-6A;1 | TraesCS6A03G0166000.1 | 6A:44857118-44857880 | 101 | 13 | 11.01 | 7.94 | 细胞外Extracellular | √ |
| TaThil-6A;2 | TraesCS6A03G0803600LC.1 | 6A:543299654-543299977 | 107 | 6 | 11.55 | 8.26 | 细胞外Extracellular | √ |
| TaThil-6B;1 | TraesCS6B03G0169000.1 | 6B:52931251-52932028 | 124 | 13 | 12.75 | 6.03 | 细胞外Extracellular | √ |
| TaThil-6B;2 | TraesCS6B03G0171400.1 | 6B:54283983-54284834 | 109 | 12 | 11.76 | 8.76 | 细胞外Extracellular | √ |
| TaThil-6D;1 | TraesCS6D03G0024500LC.1 | 6D:4597285-4597644 | 119 | 9 | 13.18 | 4.97 | 细胞外Extracellular | √ |
| TaThil-6D;2 | TraesCS6D03G0117500.1 | 6D:33532140-33532823 | 113 | 13 | 11.83 | 7.44 | 细胞外Extracellular | √ |
| TaThil-6D;3 | TraesCS6D03G0117700.1 | 6D:33587808-33588272 | 109 | 12 | 11.75 | 8.63 | 细胞外Extracellular | √ |
| TaThil-7A | TraesCS7A03G1387900.1 | 7A:744208691-744208981 | 96 | 6 | 10.18 | 6.87 | 细胞外Extracellular | √ |
| TaThil-7D | TraesCS7D03G1304800LC.1 | 7D:642451602-642451922 | 106 | 7 | 11.38 | 8.27 | 细胞外Extracellular | √ |
Fig.4 Heatmap analysis showing the expression patterns of the Thil family genes in wheat in response to fungal infections log2(tpm) color from left to right represents expression levels from low to high.
Fig.5 Expression levels of the Thil genes in different interactions of wheat and Puccinia triticina YM34, Yunmai 34; JM17, Jimai 17;XM18, Jimai 18; AK58, Aikang 58.
| [1] | HAN G Z. Origin and evolution of the plant immune system[J]. The New Phytologist, 2019, 222(1): 70-83. |
| [2] | LI P, LU Y J, CHEN H, et al. The lifecycle of the plant immune system[J]. Critical Reviews in Plant Sciences, 2020, 39(1): 72-100. |
| [3] | JONES J D G, DANGL J L. The plant immune system[J]. Nature, 2006, 444: 323-329. |
| [4] | YUAN M H, JIANG Z Y, BI G Z, et al. Pattern-recognition receptors are required for NLR-mediated plant immunity[J]. Nature, 2021, 592: 105-109. |
| [5] | YUAN M H, NGOU B P M, DING P T, et al. PTI-ETI crosstalk: an integrative view of plant immunity[J]. Current Opinion in Plant Biology, 2021, 62: 102030. |
| [6] | SILVERSTEIN K A T, MOSKAL W A Jr, WU H C, et al. Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants[J]. The Plant Journal, 2007, 51(2): 262-280. |
| [7] | DOS SANTOS-SILVA C A, ZUPIN L, OLIVEIRA-LIMA M, et al. Plant antimicrobial peptides: state of the art, in silico prediction and perspectives in the omics era[J]. Bioinformatics and Biology Insights, 2020, 14: 1177932220952739. |
| [8] | HÖNG K, AUSTERLITZ T, BOHLMANN T, et al. The thionin family of antimicrobial peptides[J]. PLoS One, 2021, 16(7): e0254549. |
| [9] | STEC B. Plant thionins-the structural perspective[J]. Cellular and Molecular Life Sciences CMLS, 2006, 63(12): 1370-1385. |
| [10] | ALMAGHRABI B, ALI M A, ZAHOOR A, et al. Arabidopsis thionin-like genes are involved in resistance against the beet-cyst nematode (Heterodera schachtii)[J]. Plant Physiology and Biochemistry, 2019, 140: 55-67. |
| [11] | TAVEIRA G B, MATHIAS L S, DA MOTTA O V, et al. Thionin-like peptides from Capsicum annuum fruits with high activity against human pathogenic bacteria and yeasts[J]. Biopolymers, 2014, 102(1): 30-39. |
| [12] | TAVEIRA G B, CARVALHO A O, RODRIGUES R, et al. Thionin-like peptide from Capsicum annuum fruits: mechanism of action and synergism with fluconazole against Candida species[J]. BMC Microbiology, 2016, 16: 12. |
| [13] | 杨宏亮, 袁桢, 钱徐佳志, 等. 大麦Thionin-like基因家族基因表达谱分析[J]. 生物技术通报, 2022, 38(10): 140-147. |
| YANG H L, YUAN Z, QIAN X, et al. Expression profile analysis of thionin-like gene family in barley[J]. Biotechnology Bulletin, 2022, 38(10): 140-147. (in Chinese with English abstract) | |
| [14] | LARKIN M A, BLACKSHIELDS G, BROWN N P, et al. Clustal W and Clustal X version 2.0[J]. Bioinformatics, 2007, 23(21): 2947-2948. |
| [15] | FINN R D, CLEMENTS J, EDDY S R. HMMER web server: interactive sequence similarity searching[J]. Nucleic Acids Research, 2011, 39(Web Server issue): W29-W37. |
| [16] | ZHU T T, WANG L, RIMBERT H, et al. Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly[J]. The Plant Journal, 2021, 107(1): 303-314. |
| [17] | YU C S, CHEN Y C, LU C H, et al. Prediction of protein subcellular localization[J]. Proteins: Structure, Function, and Bioinformatics, 2006, 64(3): 643-651. |
| [18] | ALMAGRO ARMENTEROS J J, TSIRIGOS K D, SØNDERBY C K, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks[J]. Nature Biotechnology, 2019, 37: 420-423. |
| [19] | HU B, JIN J P, GUO A Y, et al. GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8): 1296-1297. |
| [20] | KUMAR S, STECHER G, LI M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6): 1547-1549. |
| [21] | BAILEY T L, JOHNSON J, GRANT C E, et al. The MEME suite[J]. Nucleic Acids Research, 2015, 43(W1): W39-W49. |
| [22] | LESCOT M, DÉHAIS P, THIJS G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research, 2002, 30(1): 325-327. |
| [23] | CHEN C J, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202. |
| [24] | BORRILL P, RAMIREZ-GONZALEZ R, UAUY C. expVIP: a customizable RNA-seq data analysis and visualization platform[J]. Plant Physiology, 2016, 170(4): 2172-2186. |
| [25] | WANG Y, TAO X, TANG X M, et al. Comparative transcriptome analysis of tomato (Solanum lycopersicum) in response to exogenous abscisic acid[J]. BMC Genomics, 2013, 14(1): 841. |
| [26] | BJORNSON M, PIMPRIKAR P, NÜRNBERGER T, et al. The transcriptional landscape of Arabidopsis thaliana pattern-triggered immunity[J]. Nature Plants, 2021, 7: 579-586. |
| [27] | LI W, DENG Y W, NING Y S, et al. Exploiting broad-spectrum disease resistance in crops: from molecular dissection to breeding[J]. Annual Review of Plant Biology, 2020, 71: 575-603. |
| [28] | 袁娜, 李阳, 杨郁文, 等. 棉花CLE多肽家族的全基因组鉴定与生物信息学分析[J]. 棉花学报, 2019, 31(4): 263-281. |
| YUAN N, LI Y, YANG Y W, et al. Genome-wide identification and characterization of CLE family in cotton (Gossypium spp.)[J]. Cotton Science, 2019, 31(4): 263-281. (in Chinese with English abstract) | |
| [29] | WANG S, TIAN L, LIU H, et al. Large-scale discovery of non-conventional peptides in maize and Arabidopsis through an integrated peptidogenornic pipeline[J]. Mol Plant, 2020, 13(7):1078-1093. |
| [30] | NIRMALA J, DRADER T, LAWRENCE P K, et al. Concerted action of two avirulent spore effectors activates Reaction to Puccinia graminis 1 (Rpg1)-mediated cereal stem rust resistance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(35): 14676-14681. |
| [31] | SHEN Y L, LIU N, LI C, et al. The early response during the interaction of fungal phytopathogen and host plant[J]. Open Biology, 2017, 7(5): 170057. |
| [1] | ZHANG Jun, ZHANG Bo, HU Bibo, LIU Jingliang, ZHANG Xiaoyu, LI Chunyang, XIONG Shengting, GUO Binbin, WANG Xiucun, MA Chao. Identification and expression analysis of members of the SWEET and SUT families in wheat (Triticum aestivum L.) [J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 1825-1839. |
| [2] | HAN Xiao, LIU Xujie, SHI Lyu, ZHANG Jin, SHAN Haiyong, SHI Xiaoxu, YAN Yini, LIU Jian, XUE Yaguang. Effects of reduced application of controlled-release nitrogen fertilizer on rice yield, quality and nitrogen fertilizer utilization efficiency under concentrated coverage of wheat straw between rows for returning to field [J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 1-13. |
| [3] | YANG Xiaoyu, MA Zhihui, WEI Qing, NIU Zhipeng, CHEN Anqi, HU Zhengchong, WANG Linsheng. Preliminary mapping of a wheat awn length gene and prediction of candidate genes [J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 14-23. |
| [4] | MIN Jiangyan, TANG Zhuolei, YANG Xue, HUANG Xiaoyan, HUANG Kaifeng, HE Peiyun. Effect of different drought-rewatering modes on growth and yield of Tartary buckwheat [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2000-2009. |
| [5] | SHEN Zhengrong, DAI Yuanxing, GUO Liuming, WANG Zhiyao, ZHANG Hengmu. Preparation and application of specific antibody against coat protein (CP) of Chinese wheat mosaic virus (CWMV) [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2042-2050. |
| [6] | QI Xueli, LI Ying, DUAN Junzhi. Application of salt tolerance genes in wheat salt tolerance genetic engineering [J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1447-1457. |
| [7] | XUE Xianbin, JIA Qiong, CHEN Zhengfeng, LI Ruiyuan, CHEN Qingfu, SHI Taoxiong. Comprehensive evaluation of agronomic characteristics of recombinant inbred lines of Tartary buckwheat based on principal component analysis [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 748-759. |
| [8] | ZHANG Yongbin, LI Xiang, MAN Weidong, LIU Mingyue, FAN Jihao, HU Haoran, SONG Lijie, LIU Weijia. Research on yield estimation method of winter wheat based on Sentinel-1/2 data and machine learning algorithms [J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2812-2822. |
| [9] | LIU Yongan, HUANG Yechang, YUE Gaohong, GAO Xiteng, DENG Lizhang, PAN Binrong. Proteomic analysis of grain of high-quality wheat variety Wenmai 10 [J]. Acta Agriculturae Zhejiangensis, 2024, 36(11): 2437-2446. |
| [10] | LOU Yuangen, LI Chuang, LI Jingjing, XING Guozhen, LU Yanan, ZHENG Wenming. Identification and analysis of HP gene family in wheat [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2023-2032. |
| [11] | WANG Di, YANG Hanmei, LI Yangqian, JIA Mengting, ZOU Liang, YANG Fan. Multidimensional evaluation of “variety, quality, efficiency and application” of Tartary buckwheat and research progress of high-value utilization of active ingredients [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1960-1974. |
| [12] | YU Guihong, SONG Guicheng, ZHANG Peng, WANG Huadun, FAN Xiangyun. Comprehensive evaluation of waterlogging tolerance of 18 wheat varieties at jointing stage [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1235-1242. |
| [13] | YANG Kai, CHEN Kai, LI Hongmei, ZHAO Zhongjuan, HU Jindong, LI Jishun, YANG Hetong. Biocontrol efficacy and action mechanism of Trichoderma harzianum LTR-2 and Arthrobacter ureafaciens DnL1-1 against crown rot of wheat [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1385-1395. |
| [14] | REN Kaiming, WANG Ben, YANG Wenjun, FAN Yonghui, ZHANG Wenjing, MA Shangyu, HUANG Zhenglai. Effects of nitrogen on physiological growth, quality and yield of weak gluten wheat after rice stubble [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 769-779. |
| [15] | LU Shuai, LUO Xiaogang, LIU Quanwei, ZHANG Yi, MENG Yanghao, LI Jie, ZHANG Jinglai. Effect of organic-inorganic compound fertilizer on wheat growth, nutrients and heavy metal content of soil and wheat [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 922-930. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||