Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (5): 1024-1031.DOI: 10.3969/j.issn.1004-1524.20230755
• Animal Science • Previous Articles Next Articles
HE Changxi1,2(), ZHENG Jianbo2, MA Jianbo3, JIA Yongyi1, LIU Shili2, JIANG Wenping2, CHI Meili2, CHENG Shun2, LI Fei2,*(
)
Received:
2023-06-13
Online:
2024-05-25
Published:
2024-05-29
CLC Number:
HE Changxi, ZHENG Jianbo, MA Jianbo, JIA Yongyi, LIU Shili, JIANG Wenping, CHI Meili, CHENG Shun, LI Fei. Cloning and expression analysis of Runx2b in Culter alburnus[J]. Acta Agriculturae Zhejiangensis, 2024, 36(5): 1024-1031.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230755
引物名称 Primer name | 引物序列 Primer sequences (5'→3') | 目的 Application |
---|---|---|
Runx2b-F | ATGGCATCTAACAGCCTCTTTAGTT | 全长扩增 |
Full length amplification | ||
Runx2b-R | TCAATACGGCCGCCACACACCTTCG | 全长扩增 |
Full length amplification | ||
RT-Runx2b-F | AGCAGCCCCAACTCCTTCAC | qRT-PCR |
RT-Runx2b-R | AGCAGCCCCAACTCCTTCAC | qRT-PCR |
β-actin-F | ACATGAGGCAGACCGTTGCT | qRT-PCR |
β-actin-R | GGCAGCCTTCTGTGCAGATT | qRT-PCR |
Table 1 Primers used in this study
引物名称 Primer name | 引物序列 Primer sequences (5'→3') | 目的 Application |
---|---|---|
Runx2b-F | ATGGCATCTAACAGCCTCTTTAGTT | 全长扩增 |
Full length amplification | ||
Runx2b-R | TCAATACGGCCGCCACACACCTTCG | 全长扩增 |
Full length amplification | ||
RT-Runx2b-F | AGCAGCCCCAACTCCTTCAC | qRT-PCR |
RT-Runx2b-R | AGCAGCCCCAACTCCTTCAC | qRT-PCR |
β-actin-F | ACATGAGGCAGACCGTTGCT | qRT-PCR |
β-actin-R | GGCAGCCTTCTGTGCAGATT | qRT-PCR |
氨基酸类型 Type of amino acid | 数量 Numbers | 百分比 Percentage/% | 氨基酸类型 Type of amino acid | 数量 Numbers | 百分比 Percentage/% |
---|---|---|---|---|---|
丙氨酸Ala (A) | 27 | 5.8 | 精氨酸Arg (R) | 33 | 7.1 |
天冬氨酸Asn (N) | 18 | 3.9 | 天冬氨酸Asp (D) | 20 | 4.3 |
半胱氨酸Cys (C) | 4 | 0.9 | 谷氨酰胺Gln (Q) | 27 | 5.8 |
谷氨酸Glu (E) | 13 | 2.8 | 甘氨酸Gly (G) | 33 | 7.1 |
组氨酸His (H) | 9 | 1.9 | 异亮氨酸Ile (I) | 7 | 1.5 |
亮氨酸Leu (L) | 28 | 6.0 | 赖氨酸Lys (K) | 8 | 1.7 |
甲硫氨酸Met (M) | 13 | 2.8 | 苯丙氨酸Phe (P) | 20 | 4.3 |
脯氨酸Pro (P) | 53 | 11.4 | 丝氨酸Ser (S) | 64 | 13.7 |
苏氨酸Thr (T) | 38 | 8.2 | 色氨酸Trp (W) | 4 | 0.9 |
酪氨酸Tyr (Y) | 15 | 3.2 | 缬氨酸Val (V) | 32 | 6.9 |
Table 2 Amino acid composition of the protein encoded by Runx2b
氨基酸类型 Type of amino acid | 数量 Numbers | 百分比 Percentage/% | 氨基酸类型 Type of amino acid | 数量 Numbers | 百分比 Percentage/% |
---|---|---|---|---|---|
丙氨酸Ala (A) | 27 | 5.8 | 精氨酸Arg (R) | 33 | 7.1 |
天冬氨酸Asn (N) | 18 | 3.9 | 天冬氨酸Asp (D) | 20 | 4.3 |
半胱氨酸Cys (C) | 4 | 0.9 | 谷氨酰胺Gln (Q) | 27 | 5.8 |
谷氨酸Glu (E) | 13 | 2.8 | 甘氨酸Gly (G) | 33 | 7.1 |
组氨酸His (H) | 9 | 1.9 | 异亮氨酸Ile (I) | 7 | 1.5 |
亮氨酸Leu (L) | 28 | 6.0 | 赖氨酸Lys (K) | 8 | 1.7 |
甲硫氨酸Met (M) | 13 | 2.8 | 苯丙氨酸Phe (P) | 20 | 4.3 |
脯氨酸Pro (P) | 53 | 11.4 | 丝氨酸Ser (S) | 64 | 13.7 |
苏氨酸Thr (T) | 38 | 8.2 | 色氨酸Trp (W) | 4 | 0.9 |
酪氨酸Tyr (Y) | 15 | 3.2 | 缬氨酸Val (V) | 32 | 6.9 |
Fig.1 Multiple amino acid sequence alignment and protein domain composition analysis of Runx2b The red rectangle represents the Runt domain, and the blue rectangle represents the RunxI domain.
Fig.3 The ossification process of IBs at different stages in C. alburnus a, IBs haven’t emerged at 10 d; b, Some IBs with small length have emerged in the tail at 15 d; c, More IBs of greater length gradually emerge in the tail at 20 d; d, IBs completely appear from the tail to the head at 30 d.
Fig.4 Relative expression level of Runx2b in different tissues of C. alburnus Data marked without the same letter indicated significant differences (P<0.05). The same as below.
[1] | 何苹萍, 王卉, 韦嫔媛, 等. 禾花鲤与建鲤肌间骨miRNAs测序与分析比较[J]. 水生生物学报, 2019, 43(4): 757-762. |
HE P P, WANG H, WEI P Y, et al. miRNAs sequencing and analysis of intermuscular bone between rice flower carp and Jian carp[J]. Acta Hydrobiologica Sinica, 2019, 43(4): 757-762. (in Chinese with English abstract) | |
[2] | PATTERSON C, JOHNSON G D. The intermuscular bones and ligaments of teleostean fishes[J]. Smithsonian Contributions to Zoology, 1995(559): 1-83. |
[3] | YANG K F, JIANG W S, WANG X A, et al. Evolution of the intermuscular bones in the Cyprinidae (Pisces) from a phylogenetic perspective[J]. Ecology and Evolution, 2019, 9(15): 8555-8566. |
[4] | 孟庆闻, 苏锦祥, 李婉端. 鱼类比较解剖[M]. 北京: 科学出版社, 1987:76-181. |
[5] | 吕耀平, 鲍宝龙, 蒋燕, 等. 低等真骨鱼类肌间骨的比较分析[J]. 水产学报, 2007, 31(5): 661-668. |
LV Y P, BAO B L, JIANG Y, et al. Comparative analysis of intermuscular bones in lower teleosts[J]. Journal of Fisheries of China, 2007, 31(5): 661-668. (in Chinese with English abstract) | |
[6] | 马良骁, 董在杰, 苏胜彦, 等. 鱼类肌间刺的研究进展[J]. 江苏农业科学, 2012, 40(4): 234-235. |
MA L X, DONG Z J, SU S Y, et al. Research progress of intermuscular spines in fish[J]. Jiangsu Agricultural Sciences, 2012, 40(4): 234-235. (in Chinese with English abstract) | |
[7] | 戈贤平. 我国大宗淡水鱼产业现状与发展方向[J]. 渔业致富指南, 2013(14): 17-21. |
GE X P. Present situation and development direction of freshwater fish industry in China[J]. Fishery Guide to Be Rich, 2013(14): 17-21. (in Chinese with English abstract) | |
[8] | 王旭东, 聂春红, 高泽霞. 鱼类肌间骨发育分子调控机制及遗传选育研究进展[J]. 水生生物学报, 2021, 45(3): 680-691. |
WANG X D, NIE C H, GAO Z X. Research progress on molecular regulation mechanism and genetic selection of intermuscular bones in teleosts[J]. Acta Hydrobiologica Sinica, 2021, 45(3): 680-691. (in Chinese with English abstract) | |
[9] | ZHANG W Z, LAN T, NIE C H, et al. Characterization and spatiotemporal expression analysis of nine bone morphogenetic protein family genes during intermuscular bone development in blunt snout bream[J]. Gene, 2018, 642: 116-124. |
[10] | YANG G, QIN Z D, KOU H Y, et al. A comparative genomic and transcriptional survey providing novel insights into bone morphogenetic protein 2 (bmp2) in fishes[J]. International Journal of Molecular Sciences, 2019, 20(24): 6137. |
[11] | SU S Y, DONG Z J. Comparative expression analyses of bone morphogenetic protein 4 (BMP4) expressions in muscles of tilapia and common carp indicate that BMP4 plays a role in the intermuscular bone distribution in a dose-dependent manner[J]. Gene Expression Patterns, 2018, 27: 106-113. |
[12] | NIE C H, WAN S M, CHEN Y L, et al. Loss of scleraxis leads to distinct reduction of mineralized intermuscular bone in zebrafish[J]. Aquaculture and Fisheries, 2021, 6(2): 169-177. |
[13] | 陈宇龙, 张丽红, 周佳佳, 等. 团头鲂肌腱发育相关基因tnmd/xirp2a的克隆和表达[J]. 华中农业大学学报, 2019, 38(2): 1-8. |
CHEN Y L, ZHANG L H, ZHOU J J, et al. Cloning and expression analysis of tnmd/xirp2a genes relating to tendon development in Megalobrama amblycephala[J]. Journal of Huazhong Agricultural University, 2019, 38(2): 1-8. (in Chinese with English abstract) | |
[14] | 田雪, 王良炎, 陈琳, 等. SOST基因在淇河鲫肌间骨骨化过程中的表达研究[J]. 水产学报, 2016, 40(5): 673-680. |
TIAN X, WANG L Y, CHEN L, et al. The mRNA and protein expression of gene SOST during ossification process of intermuscular bone in crucian carp (Carassius auratus) in Qihe River[J]. Journal of Fisheries of China, 2016, 40(5): 673-680. (in Chinese with English abstract) | |
[15] | 杨敏璇, 朱焯安, 陈嘉俊, 等. 鲫鱼肌间刺形成基因SOST的克隆表达研究[J]. 仲恺农业工程学院学报, 2019, 32(2): 58-63. |
YANG M X, ZHU Z A, CHEN J J, et al. Cloning and prokaryotic expression of the SOST gene of Carassius auratus[J]. Journal of Zhongkai University of Agriculture and Engineering, 2019, 32(2): 58-63. (in Chinese with English abstract) | |
[16] | MEVEL R, DRAPER J E, LIE-A-LING M, et al. RUNX transcription factors: orchestrators of development[J]. Development, 2019, 146(17): 148296. |
[17] | QIN X, JIANG Q, MIYAZAKI T, et al. Runx2 regulates cranial suture closure by inducing hedgehog, Fgf, Wnt and Pthlh signaling pathway gene expressions in suture mesenchymal cells[J]. Human Molecular Genetics, 2019, 28(6): 896-911. |
[18] | NIE C H, WAN S M, CHEN Y L, et al. Single-cell transcriptomes and runx2b(-/-) mutants reveal the genetic signatures of intermuscular bone formation in zebrafish[J]. National Science Review, 2022, 9(11): 97-107. |
[19] | 贾永义, 郑建波, 顾志敏, 等. 翘嘴鲌Sox9基因的克隆及CpG岛甲基化与基因表达的关系[J]. 水生生物学报, 2019, 43(3): 473-478. |
JIA Y Y, ZHENG J B, GU Z M, et al. The relationship of Sox9 expression and its CpG island methylation in Culter alburnus[J]. Acta Hydrobiologica Sinica, 2019, 43(3): 473-478. (in Chinese with English abstract) | |
[20] | 柯中和, 张炜, 蒋燕, 等. 鲢肌间小骨发育的形态学观察[J]. 动物学杂志, 2008, 43(6): 88-96. |
KE Z H, ZHANG W, JIANG Y, et al. Developmental morphology of the intermuscular bone in Hypophthalmichthys molitrix[J]. Chinese Journal of Zoology, 2008, 43(6): 88-96. (in Chinese with English abstract) | |
[21] | QIN X, JIANG Q, NAGANO K, et al. Runx 2 is essential for the transdifferentiation of chondrocytes into osteoblasts[J]. PLoS Genetics, 2020, 16(11): e1009169. |
[22] | FLORES M V, LAM E Y N, CROSIER P, et al. A hierarchy of Runx transcription factors modulate the onset of chondrogenesis in craniofacial endochondral bones in zebrafish[J]. Developmental Dynamics, 2006, 235(11): 3166-3176. |
[23] | DONSANTE S, PALMISANO B, SERAFINI M, et al. From stem cells to bone-forming cells[J]. International Journal of Molecular Sciences, 2021, 22(8): 3989. |
[24] | LIU S L, ZHENG J B, LI F, et al. Chromosome-scale assembly and quantitative trait locus mapping for major economic traits of the Culter alburnus genome using Illumina and PacBio sequencing with Hi-C mapping information[J]. Frontiers in Genetics, 2023, 14: 1072506. |
[25] | 陈洁, 吕耀平, 戴庆敏, 等. 唇䱻twist1和twist2基因克隆及其在肌间刺骨化过程中的表达[J]. 水产学报, 2021, 45(4): 489-496. |
CHEN J, LYU Y P, DAI Q M, et al. Molecular characterization of two twist genes in barbel steed (Hemibarbus labeo) and their relationship with intermuscular bone development[J]. Journal of Fisheries of China, 2021, 45(4): 489-496. (in Chinese with English abstract) | |
[26] | 陈洁, 吕耀平, 戴庆敏, 等. 唇䱻bmp2a基因克隆及其与肌间刺骨化相关性分析[J]. 水生生物学报, 2021, 45(1): 8-13. |
CHEN J, LYU Y P, DAI Q M, et al. Molecular characterization of a bmp2a homologue in barbel steed (Hemibarbus labeo) and its involvement in intermuscular bone development[J]. Acta Hydrobiologica Sinica, 2021, 45(1): 8-13. (in Chinese with English abstract) | |
[27] | 王钊鑫, 李淑慧, 代慧娟, 等. MIP-1α对人牙周膜干细胞骨向分化的影响及其机制[J]. 解放军医学杂志, 2023, 48(3): 283-291. |
WANG Z X, LI S H, DAI H J, et al. Effect and mechanism of MIP-1α on osteo-differentiation of human periodontal ligament stem cells[J]. Medical Journal of Chinese PLA, 2023, 48(3): 283-291. (in Chinese) |
[1] | LI Yaping, JIN Fulai, HUANG Zonggui, ZHANG Tao, DUAN Xiaojing, JIANG Wu, TAO Zhengming, CHEN Jiadong. Identification and expression pattern analysis of glycoside hydrolase GH3 gene family in Dendrobium officinale [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 790-799. |
[2] | PENG Jiacheng, WU Yue, XU Jiehao, XIA Meiwen, QI Tianpeng, XU Haisheng. Cloning of paxillin gene from Macrobrachium nipponense and effect of cadmium stress on its expression [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 247-253. |
[3] | LIU Xiaolin, SUN Tingting, YANG Jie, HE Hengbin. Cloning and expression analysis of FLS gene of flavonol synthetase in Lilium auratum and L.speciosum var. gloriosoides [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 344-357. |
[4] | WU Jiao, GONG Chengyu, CHEN Chaoqun, CHEN Hongxu, LIU Junhong, TANG Wenjing, CHU Yuanqi, YANG Wenlong, ZHANG Yao, GONG Ronggao. Ecological response of organic acid metabolism of Huangguogan fruits at different altitudes [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 853-861. |
[5] | LI Hongyi, ZHOU Runsheng, LIANG Xiaoling, ZHANG Chuyue, LYU Qixin, YANG Changhua, ZHANG Mao. Effect of dietary calcium and phosphorus level on Magang geese growth performance and liver gene expression [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2533-2542. |
[6] | KONG Fanwang, ZHANG Zhigang, LI Wei, CHEN Yufeng, WANG Changjiang, ZHENG Yaqin, XU Meng. Identification of 4CL gene family in peach and its expression analysis in fruit coloration during development stage and chilling injury during post-harvest low temperature storage [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2600-2610. |
[7] | LIN Xianyu, LI Ziqian, BAI Song, LUO Jun, QU Yan. Changes of antioxidant enzyme activity and differential expression of key genes in Camellia reticulata during drought-rehydration process [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2611-2620. |
[8] | XIONG Xingwei, WANG Yiqin, TIAN Huaizhi, ZHANG Suqin, GENG Guangdong. Molecular mechanisms of chlorophyll-reduced cotyledon based on transcriptome sequencing in pumpkin [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 90-102. |
[9] | YAN Mei, YAO Yandong, MOU Kaiping, DAN Yuanyuan, LI Weitai, LIAO Weibiao. Involvement of abscisic acid in hydrogen gas-enhanced drought resistance by improving antioxidant enzyme activity and gene expression in tomato seedlings [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1901-1910. |
[10] | DONG Yuanyuan, XU Heng, ZHANG Hua, ZHANG Heng, WANG Fulin, GU Nana, ZHU Ying. Dynamic profile of genes related to seed dormancy under high humidity condition during late stage of rice grain filling [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1103-1113. |
[11] | YU Yanling, LUO Honglin, LUO Hui, FENG Pengfei, PAN Chuanyan, SONG Manling, XIAO Rui, ZHANG Yongde. Genome-wide identification and expression of MRF gene family in embryonic development of Trachinotus ovatus [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 695-705. |
[12] | LIU Tongjin, XU Mingjie, WANG Jinglei, LIU Liangfeng, CUI Qunxiang, BAO Chonglai, WANG Changyi. Genome-wide identification and expression analysis of ALMT gene family in radish [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 746-755. |
[13] | FAN Youcun, ZHANG Hongyan, YANG Xusheng, HAN Qian, LIU Yujiao, WU Xuexia. Cloning, bioinformatics analysis and gene expression pattern of VfHKT1; 1 in Vicia faba L. [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 756-765. |
[14] | WANG Qiankun, ZHANG Xiaohui, PANG Youzhi, QI Yanxia, LEI Ying, BAI Junyan, HU Yunqi, ZHAO Yiwei, YUAN Zhiwen, WANG Tao. Screening of genes related to auto-sexing on feather color based on RNA-seq technology [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 498-506. |
[15] | JIA Liqiang, ZHAO Qiufang, CHEN Shu, DING Bo. Expression analysis of bZIP G subfamily genes in maize [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 221-231. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||